Cryptography in World War II
Jefferson Institute for Lifelong Learning at UVa
Class 3: Captain Ridley's Shooting Party

Enigma

- Invented commercially, 1923
- Used by German Navy, Army, Air Force
- About 50,000 in use
- Modified throughout WWII, believed to be perfectly secure
- Kahn's Codebreakers (1967) didn't know it was broken
Enigma machine - Turing's 1940 Treatise on at Bletchley Park Enigma declassified in 1996

Simple Substitution Ciphers (from Class 1)

ABCDEFGHIJKLMNOPQRSTUVWXYZ

JIDKQACRSHLGWNFEXUZVTPMYOB

$$
\text { JILL } \Rightarrow \text { HSGG }
$$

JILL wWII Crypto Spring 2006 - Class 3: Enigmatic Enigma

Rotating Substitution Cipher

ABCDEFGHIJKLMNOPQRSTUVWXYZ

KQACRSHLGWNFEXUZVTPMYOBJID
$\mathrm{J} \Rightarrow \mathrm{H} \quad \mathrm{I} \Rightarrow \mathrm{H} \quad \mathrm{L} \Rightarrow \mathrm{N} \mathrm{L} \Rightarrow \mathrm{F}$ JILL \Rightarrow HHNF

JILL wwiI Crypto Spring 2006 - Class 3: Enigmatic Enigma

Rotating Substitution Weaknesses

- Will repeat after 26 letters
- If there is a lot of ciphertext, can still do frequency analysis on every $26^{\text {th }}$ letter slides
- Some properties revealed
- If we see repeated letters in ciphertext, what does it mean?

$$
\text { JILL } \Rightarrow \mathrm{HHNF}
$$

Settings

- Plugboard: swap pairs of letters
- Number of plugs varied (≤ 6 until 1939, up to 10 after)
- Rotors
- Before 1939 - Three rotors (choose order)
- After - Choose 3 from set of 5 rotors
- Orientations (3) - start orientations of the 3 rotors
- Ring settings (2) - when next ring advances
- Reflector
- Fixed symmetric substitution $(A \rightarrow B \Rightarrow B \rightarrow A)$ Involution: if we do it twice, get original back

JILL WWII Crypto Spring 2006 - Class 3: Enigmatic Enigma

"This fictional movie about a fictional U.S. submarine mission is followed by a mention in the end credits of those actual British missions. Oh, the British deciphered the Enigma code, too. Come to think of it, they pretty much did everything in real life that the Americans do in this movie."

JILL WWII Crypto Spring 2006 - Class 3: Enigmatic Enigma

Codebook (Rotor Settings)

Batons Attack

- We know Z is:
- Function: contradiction if $Z(x) \neq Z(x)$
- Involution: contradiction if $Z(x)=y \& Z(y) \neq x$
- Find a rotor setting with no contradictions
- Long enough crib, there will only be one
- But if crib is too long, need to deal with R2 moving
- List of probable 4-10 letter words
- Catalog to map Z to rotor settings for R2 and R3

Batons Attack

$\mathrm{C} \quad=\mathrm{XTSWVUINZ}$
$\mathrm{P}_{\text {guess }}=$ wehrmacht ("armed forces")
$L_{l}(\mathrm{X})=\mathrm{Z} L_{l}(\mathrm{w})$
$L_{2}(\mathrm{~T})=\mathrm{Z} L_{2}(\mathrm{e})$
$L_{3}(\mathrm{~S})=\mathrm{Z} L_{3}(\mathrm{~h})$
$L_{4}(\mathrm{~W})=Z L_{4}(\mathrm{r})$
$L_{5}(\mathrm{~V})=Z L_{5}(\mathrm{~m})$
$L_{6}(\mathrm{U})=Z L_{6}(\mathrm{a})$
$L_{7}(\mathrm{I})=Z L_{7}$ (c)
For a given starting rotor setting, solve for Z 1: $\mathrm{R}=Z(\mathrm{~B}) 2: \mathrm{S}=Z(\mathrm{~F}) 3: \mathrm{X}=Z(\mathrm{G}) 4: \mathrm{P}=Z(\mathrm{Y})$
5: $\mathrm{U}=\mathrm{Z}(\mathrm{V}) 6: \mathrm{H}=Z(\mathrm{I}) 7: \mathrm{M}=\mathrm{Z}(\mathrm{B})$
JILL wWII Crypto Spring 2006 - Class 3: Enigmatic Enigma

Operation

- Day key (distributed in code book)
- Each message begins with message key ("randomly" chosen by sender) encoded using day key
- Message key sent twice to check
- After receiving message key, reorient rotors according to key

Letter Permutations

Symmetry of Enigma:
if $\mathrm{E}_{\mathrm{pos}}(x)=y$ we know $\mathrm{E}_{\text {pos }}(y)=x$
Given message openings
DMQ VBM $\quad \mathrm{E}_{1}\left(m_{1}\right)=\mathrm{D} \quad \mathrm{E}_{4}\left(m_{1}\right)=\mathrm{V}$
$\mathrm{E}_{1} \circ \mathrm{E}_{4}(\mathrm{D})=\mathrm{V}$
VON PUY $\quad \Rightarrow E_{1}(\mathrm{D})=m_{1}$
PUC FMQ $\quad \Rightarrow E_{4}\left(E_{1}(D)\right)=V$
With enough message openings, we can build complete cycles for each position pair:
$\mathrm{E}_{1} \mathrm{O} \mathrm{E}_{4}=$ (DVPFKXGZYO) (EIJMUNQLHT) (BC) (RW) (A) (S)
Note: Cycles must come in pairs of equal length

Rejewski's Theorem

E_{1} contains $\left(a_{1} a_{2}\right)\left(a_{3} a_{4}\right) \ldots\left(a_{2 k-1} a_{2 k}\right)$
E_{4} contains $\left(\mathrm{a}_{2} \mathrm{a}_{3}\right)\left(\mathrm{a}_{4} \mathrm{a}_{5}\right) \ldots\left(\mathrm{a}_{2 \mathrm{k}} \mathrm{a}_{1}\right)$

$$
\begin{aligned}
& \mathrm{E}_{1} \mathrm{E}_{4} \text { contains }\left(\mathrm{a}_{1} \mathrm{a}_{3} \mathrm{a}_{5} \ldots \mathrm{a}_{2 k-1}\right) \\
& \left(\mathrm{a}_{2 k} a_{2 k-2} \ldots a_{4} a_{2}\right)
\end{aligned}
$$

- The composition of two involutions consists of pairs of cycles of the same length
- For cycles of length n, there are n possible factorizations

Composing Involutions

- E_{1} and E_{2} are involutions ($x \rightarrow y \Rightarrow y \rightarrow x$)
- Without loss of generality, we can write:
E_{1} contains $\left(a_{1} a_{2}\right)\left(a_{3} a_{4}\right) \ldots\left(a_{2 k-1} a_{2 k}\right)$
E_{2} contains $\left(a_{2} a_{3}\right)\left(a_{4} a_{5}\right) \ldots\left(a_{2 k} a_{1}\right)$
E_{1}
$a_{1} \leftrightarrow a_{2}$
$a_{3} \leftrightarrow a_{4}$

$$
\text { or } x=\mathrm{a}_{1}
$$

$\mathrm{a}_{2} \leftrightarrow x=\mathrm{a}_{3}$
$\mathrm{a}_{4} \leftrightarrow x=\mathrm{a}_{5}$ or $x=a_{1}$
Why can't x be a_{2} or a_{3} ?
JILL wwiI Crypto Spring 2006 - Class 3: Enigmatic Enigma

Factoring Permutations

(RW) (A) (S)
$(A)(S)=(A S) \circ(S A)$
(BC) $(\mathrm{RW})=(\mathrm{BR})(\mathrm{CW}) \circ$ (BW)(CR)
or $=(B W)(R C) o(W C)(B R)$
(DVPFKXGZYO) (EIJMUNQLHT)
$=(\mathrm{DE})(\mathrm{VI}) \ldots$ or $(\mathrm{DI})(\mathrm{VJ}) \ldots$ or $(\mathrm{DJ})(\mathrm{VM}) \ldots$
\ldots (DT)(VE)

36

How many factorizations?

(DVPFKXGZYO) (EIJMUNQLHT)

E_{1}	E_{2}
$D \leftrightarrow a_{2}$	$a_{2} \leftrightarrow V$
$V \leftrightarrow a_{4}$	$a_{4} \leftrightarrow P$

Once we guess a_{2} everything else must follow! So, only n possible factorizations for an n-letter cycle
Total to try $=2 * 10=20$
$E_{2} E_{5}$ and $E_{3} E_{6}$ likely to have about 20 to try also \Rightarrow About 20^{3} (8000) factorizations to try (still too many in pre-computer days)

JILL WWII Crypto Spring 2006 - Class 3: Enigmatic Enigma

Solving?

$\mathrm{E}_{1}=\mathrm{B}^{-1} \mathrm{~L}^{-1} \mathrm{Q} L B$
$E_{2}=B^{-1} L^{-2} Q^{2} B$
$\mathrm{E}_{3}=\mathrm{B}^{-1} \mathrm{~L}^{-3} \mathrm{QL}^{3} \mathrm{~B}$
6 equations, 3 unknowns
$E_{4}=B^{-1} L^{-4} Q^{4} B$
Not known to be efficiently solvable
$E_{5}=B^{-1} L^{-5} Q^{5} B$
$E_{6}=B^{-1} L^{-6} Q^{6} B$

1939

- Early 1939 - Germany changes scamblers and adds extra plugboard cables, stop double-transmissions
- Poland unable to cryptanalyze
- 25 July 1939 - Rejewski invites French and British cryptographers
- Gives England replica Enigma machine constructed from plans, cryptanalysis
- 1 Sept 1939 - Germany invades Poland, WWII starts

Luckily...

- Operators picked message keys ("cillies")
- Identical letters
-Easy to type (e.g., QWE)
- If we can guess $P_{1}=P_{2}=P_{3}$ (or known relationships) can reduce number of possible factorizations
- If we're lucky - this leads to $\mathrm{E}_{1} \ldots \mathrm{E}_{6}$

JILL WWII Crypto Spring 2006 - Class 3: Enigmatic Enigma
Solving?

$\mathrm{E}_{1}=\mathrm{B}^{-1} \mathrm{~L}^{-1} \mathrm{Q} \mathrm{LB} \quad$| Often, know |
| :--- |
| plugboard settings |
| (didn't change |

$\mathrm{BE}_{1} \mathrm{~B}^{-1}=\mathrm{L}^{-1} \mathrm{Q} \mathrm{L}$
6 equations, 2 unknowns frequently)
Solvable
6 possible arrangements of 3 rotors, 26^{3} starting
locations
$=105,456$ possibilities
Poles spent a year building a catalog of cycle structures
covering all of them (until Nov 1937): 20 mins to break
Then Germans changed reflector and they had to start
over.

Alan Turing

- Leads British effort to crack Enigma
- Use cribs ("WETTER" transmitted every day at 6am) to find structure of plugboard settings
- 10,000 people worked at Bletchley Park on breaking Enigma (100,000 for
 Manhattan Project)

"Bombes"

- Idea by Alan Turing
- Name from Rejewski's "Bomba" machine (Polish for bomb)
- "for lack of a better idea" (Rejewki's paper)
- Design by "Doc" Keen, British Tabulating Machine Co.
- First machine, "Victory": Bletchley Park, March 1940
JILL WWII Crypto Spring 2006 - Class 3: Enigmatic Enigma

Enigma Cryptanalysis

- Relied on combination of sheer brilliance, mathematics, espionage, operator errors, and hard work
- Huge impact on WWII
- Britain knew where German U-boats were
- Advance notice of bombing raids
- But...keeping code break secret more important than short-term uses or giving credit: Turing's Enigma report declassified in 1996!

JILL wwil Crypto Spring 2006 - Class 3: Enigmatic Enigma

Next Class: Modern Crypto

- Strong Symmetric Ciphers
- How they are similar and different
- How hard to break
- How two people who have never met can communicate securely
- Public-key Cryptography
- What it means when you see the key symbol on your web browser

