

Why perfectly secure?

For any given ciphertext, all
plaintexts are equally possible.
Ciphertext: $\quad \mathbf{J}=01001$
Key1: $\quad \mathbf{I}=00110$
Plaintext1: $\quad 01111=\mathbf{K}$
Key2: $\quad L=10010$
Plaintext2: $\quad=11011=$ shift

Vernam's Key

- A long paper tape with random letters on it (using Baudot code)
- Cannot reuse key - tape must be very long!

Morehouse's Improvement

- Like Vernam machine, but with two key tapes

Lorenz Cipher

- Based on the Vernam and Morehouse - Used Baudot code
- Believed managing long paper tapes during wartime was too difficult
- Machine generates key sequence
- If two machines start in same configuration, same key sequence
- Will not repeat for $\sim 10^{19}$ letters

All words ever spoken or written by all humans is estimated around 10^{18} letters

JILL wWII Crypto Spring 2006 - Class 2: Breaking Fish

Looping Tapes

Tape 1 (999 letters)

The tape equivalent to Tape $1 \oplus$ Tape 2 would not repeat for 999 * 1000 letters!

Note: it is no longer a perfect cipher though. Some keys are not possible after 1001 letters.

Wheel Operation

Breaking Fish

- GCHQ learned about first Fish link (Tunny) in May 1941
- Intercepted unencrypted Baudot-encoded test messages
- August 30, 1941: Big Break!
- Operator retransmits failed message with same starting configuration
- Gets lazy and uses some abbreviations, makes some mistakes
- SPRUCHNUMMER/SPRUCHNR (Serial Number)

JILL wwII Crypto Spring 2006 - Class 2: Breaking Fish

"Cribs"

- Know: C1, C2 (intercepted ciphertext) $C 1 \oplus C 2=M 1 \oplus M 2$
- Don't know M1 or M2
- But, can make some guesses (cribs) - SPRUCHNUMMER
- Sometimes allies moved ships, sent out bombers to help the cryptographers get good cribs
- Given guess for M1, calculate M2
$M 2=C 1 \oplus C 2 \oplus M 1$
ruwndrmereng gdelessesminghat work for M1 and 17

Use by Nazis

- Considered most secure cipher machine
- Messages between Hitler's army headquarters and European capital headquarters
- Each link had a slightly different system (British named them for fish):
-Tunny: Vienna - Athens
- Jelly: Berlin - Paris

JILL wWII Crypto Spring 2006 - Class 2: Breaking Fish

"Two Time" Pad

- Allies have intercepted:
$\mathrm{C} 1=\mathrm{M} 1 \oplus \mathbf{K 1}$
$C 2=M 2 \oplus \mathbf{K 1}$
Same key used for both (same starting configuration)
- Breaking message:
$\mathrm{C} 1 \oplus \mathrm{C} 2=(\mathrm{M} 1 \oplus \mathbf{K} \mathbf{1}) \oplus(\mathrm{M} 2 \oplus \mathbf{K} \mathbf{1})$
$=(M 1 \oplus M 2) \oplus(K \mathbf{1} \oplus \mathbf{K} \mathbf{1})$
$=M 1 \oplus M 2$
JILL wWII Crypto Spring 2006 - Class 2: Breaking Fish
16

Finding K1

- From the 2 intercepted messages, Col. John Tiltman worked on guessing cribs to find M1 and M2
-4000 letter message, found 4000 letter key
- Bill Tutte (recent Chemistry graduate) given task of determining machine structure from key
- Already knew it was 2 sets of 5 wheels and 2 wheels of unknown function

Reverse Engineering Lorenz

- Looked at patterns of bits in key
- Found repeating sequence:
- Repetition period of 41, learned first wheel had 41 pins
- Similar for other wheels, determining S/M/K wheel structure
- After 6 months of hard work: determined likely machine structure that would generate K1

Breaking Traffic

- Knew machine structure, but a different initial configuration was used for each message
- Need to determine wheel setting:
- Initial position of each of the 12 wheels
- 1271 possible starting positions
- Needed to try them fast enough to decrypt message while it was still strategically valuable

Intercepting Traffic

- Set up listening post to intercept traffic from 12 Lorenz (Fish) links
- Different links between conquered capitals
- Slightly different coding procedures, and different configurations
- 600 people worked on intercepting traffic
- Sent intercepts to Bletchley (usually by motorcycle courier)

JILL wWII Crypto Spring 2006 - Class 2: Breaking Fish

Recognizing a Good Guess

- Intercepted Message (divided into 5 channels for each Baudot code bit)

$$
z_{c}=z_{0} z_{1} z_{2} z_{3} z_{4} z_{5} z_{6} z_{7} \ldots
$$

$$
z_{c, i}=m_{c, i} \oplus x_{c, i} \oplus s_{c, i}
$$

Message Key (parts from S-wheels and rest)

- Look for statistical properties
- How many of the $z_{c, i}$'s are 0 ? $1 / 2$ (not useful)
-How many of $\left(z_{c, i+1} \oplus z_{c, i}\right)$ are 0 ? $1 / 2$

Double Delta

- $\Delta Z_{c, i}=Z_{c, i} \oplus Z_{c, i+1}$
- Combine two channels:
$\Delta Z_{1,1} \oplus \Delta Z_{2, I}=$
$\Delta M_{1, i} \oplus \Delta M_{2, i} \quad>1 / 2$ Yippee!
$\oplus \Delta \mathrm{X}_{1, \mathrm{i}} \oplus \Delta \mathrm{X}_{2, \mathrm{i}}$
$=1 / 2$ (key)
$\oplus \Delta S_{1, i} \oplus \Delta S_{2, i} \quad>1 / 2$

IILL wWII Crypto Spring 2006 - Class 2: Breaking Fish

Double Delta

$\Delta M_{1, i} \oplus \Delta M_{2, i}$	$>1 / 2$ Yippee!
$\oplus \Delta X_{1, i} \oplus \Delta X_{2, i}$	$=1 / 2$ (key)
$\oplus \Delta S_{1, i} \oplus \Delta S_{2, i}$	$>1 / 2$

Why is $\Delta M_{1, i} \oplus \Delta M_{2, i}>1 / 2$
Message is in German, more likely following letter is a repetition than random
Why is $\Delta \mathrm{S}_{1, \mathrm{i}} \oplus \Delta \mathrm{S}_{2, \mathrm{i}}>1 / 2$
S-wheels only turn some of the time
(when M-wheel is 1)
JILL wWII Crypto Spring 2006 - Class 2: Breaking Fish
24

Using the Advantage

- If the guess of \mathbf{X} is correct, should see higher than $1 / 2$ of the double deltas are 0
- Try guessing different configurations to find highest number of 0 double deltas
- Problem:
\# of double delta operations to try one config
$=$ length of Z * length of X
$=$ for 10,000 letter message $=12 \mathrm{M}$ for each setting * $7 \oplus$ per double delta
$=89 \mathrm{M} \oplus$ operations
JILL wWII Crypto Spring 2006 - Class 2: Breaking Fish

Colossus

- Heath Robinson machines were too slow
- Colossus designed and first built in Jan 1944
- Replaced keytext tape loop with electronic keytext generator
- Speed up ciphertext tape:
$-5,000$ chars per second $=30 \mathrm{mph}$
- Perform 5 double deltas simultaneously
- Speedup $=2.5 \mathrm{X}$ for faster tape $* 5 \mathrm{X}$ for parallelism

JILL wWII Crypto Spring 2006 - Class 2: Breaking Fish
28

Impact on WWII

- 10 Colossus machines operated at Bletchley park
- Various improvements in speed
- Decoded 63 million letters in Nazi command messages
- Learned German troop locations to plan D-Day (knew the deception was working)

Next Class

- Enigma and how it was broken
- Some similarities to Colossus:
- Exploited operator errors
- Built machines to quickly try possibilities

JILL wWII Crypto Spring 2006 - Class 2: Breaking Fish

