
Privacy through Noise:
A Design Space for Private Identification

Karsten Nohl
University of Virginia
nohl@cs.virginia.edu

David Evans
University of Virginia
evans@cs.virginia.edu

Abstract—To protect privacy in large systems, users
should be able to authenticate against a central server
without disclosing their identity to others. Private identi-
fication protocols based on public key cryptography are
computationally expensive and cannot be implemented on
small devices like RFID tags. Symmetric key protocols,
on the other hand, provide only modest levels of privacy,
but can be efficiently executed on servers and cheaply
implemented on devices. The privacy of symmetric-key
privacy protocols derives from the fact that an attacker
only ever knows a small fraction of the keys in a system
while the legitimate reader knows all keys. We propose
to amplify this gap in the ability to distinguish users by
adding noise to user responses. We focus on scenarios
where an attacker is not able to acquire multiple different
reads known to be from the same device, and justify this
threat model by proposing a simple modification to RFID
tag designs. In such scenarios, we can use noise to blur
the borders between groups of users that the attacker
would otherwise be able to distinguish. We evaluate the
effectiveness and cost of this randomization and find that
the information leakage from the tree protocol can be
decreased to two thousandths of its original value with 150
times the number of server-side cryptographic operations
and minimal cost to the tag. Degrees of privacy up to those
achieved by public key protocols can be reached while
staying well below the cost of public key cryptography.

I. INTRODUCTION

The need for an ever-growing number of small de-
vices and tokens to identify or authenticate creates a per-
manent threat to privacy. To preserve privacy, users need
to be able to identify themselves to a legitimate server
without disclosing their identity to unauthorized readers.
Private identification can be achieved through public key
cryptography. Public key encryption, however, cannot
be implemented on small devices. Hardware implemen-
tations of public key ciphers are at least six orders of
magnitude larger or slower than symmetric primitives
such as block ciphers, stream ciphers, and hash func-
tions. Radio-readable credit cards are one example of
a large-scale system where lack of privacy protection
has raised some alarm [7]. The resource constraints
of these contactless credit cards and the increasingly
large number of issued cards require a privacy solution
that scales gracefully and comes at little extra cost per
card. However, privacy protocols specifically designed

to support the area, power, and scalability constraints
of large RFID systems have repeatedly been shown to
disclose too much information [2][19][14][9].

We propose a new threat model for private identifica-
tion systems in which an attacker is not able to interact
with a particular tag for a prolonged period of time.
This assumption is realistic since it is already assumed
that there is no physical security on the tags; an attacker
who acquires physical access to a tag can easily extract
all key material from the tag. In scenarios where it is
safe to assume an attacker cannot knowingly conduct
repeated interactions with the same tag, our randomized
protocol provides design choices on the trade-off curve
between scalability and privacy that lie between current
RFID protocols and public key protocols.

Several RFID privacy protocols have been proposed
for low-security RFID applications such as retail logis-
tics, where readings are frequent and data has to be
available instantly (e.g., [12]). These protocols are cheap
for both the tag and the server. Whether private iden-
tification protocols need to be particularly inexpensive
on the server side is an open point of discussion. Ap-
plications such as credit card transactions, for example,
already involve extensive server computation for fraud
detection. Privacy protocols for these applications can
hence be more expensive for the server.

Our protocol improves upon the Molnar-Wagner tree-
based RFID privacy protocol in which each user is
assigned several secrets, many of which are shared with
some of the other users [12]. The tree protocol provides
only modest levels of privacy since an attacker who
steals secrets from one user can distinguish groups of
other users. We improve the privacy of the tree protocol
by flipping a random set of bits in user messages. The
randomization increases the server cost, but never leads
to an incorrect or failed identification since it is not done
at the last level of the tree.

The idea of using noise to improve a property of a
cryptographic process is inspired by HB protocols that
use randomization to make a function non-invertible [8].
In our protocol, we add noise to the output of a one-
way function to gain privacy. The ideas are orthogonal
and can be combined by using an HB function as the

one-way function in our protocol.
Contributions. The primary contribution of this

paper is the development and analysis of a new way
of providing privacy for a class of large-scale, low-cost
identification systems. In particular:
∙ We provide a definition for private identification

protocols and introduce a distinguishability game
for measuring the privacy of a private identification
protocol (Section II-B). We provide a metric for
evaluating the privacy of a private identification
based on a refinement of a metric that was intro-
duced in [15] (Section II-C).

∙ We describe a new threat model for limited inter-
action systems (Section II-A).

∙ We introduce the randomized tree protocol (Sec-
tion III), and analyze its privacy properties of the
randomized tree protocol (Section III-A). We also
consider the privacy properties under a stronger
threat model in which an attacker can perform
multiple reads with a target tag (Section III-C).

∙ We present and analyze an alternate version of the
protocol that takes advantage of selective random-
ization (Section III-B).

∙ We analyze the costs of the protocol, including
results from simulations and a closed-form approx-
imation of the server workload (Section IV).

II. PRIVATE IDENTIFICATION

In various applications, including radio-enabled credit
cards, protocols are needed to protect the user’s privacy.
These protocols must be efficiently implementable on
identification tokens and must not lead to prohibitive
computational overhead for the back-end server.

A. Threat Model

We assume an attacker who is motivated to track
individuals based on the tagged items they carry. The
attacker’s goal is to distinguish between tags as accu-
rately as possible to build a profile of individual users.
Attackers do not necessarily need to uniquely identify a
tag to obtain information useful in building a user profile
since they can combine protocol-level information with
contextual information and combine data from multiple
tags carried by the same user. Hence, an attacker can
succeed by distinguishing tags in small groups rather
than by uniquely identifying tags.

The attacker can set up rogue readers at various
locations such as doorways, and can carry a portable
rogue reader in a backpack. In addition, we assume
attackers can acquire many tags and acquire the secrets
stored on those tags. Note that an attacker who can
physically plant a tag on an individual can easily track
that individual; hence, there is little value in designing
a protocol to resist attacks that involve physical access

to a tag that returns to the system. We further assume
that the time an attacker can surreptitiously interact with
a isolated tag is limited. An attacker may be able to
interact with a tag for a short while by standing near the
user with a backpack, but would not be able to do this
for a prolonged period without raising some suspicion.
As another example, if privacy paranoid users put their
tag-enabled cards in a Faraday-cage wallet the tags are
only exposed for the short period of time when they are
taken out for use.

Passive RFID tags can easily be designed to impose a
time limit between separate readings so that an attacker
would need prolonged access to an isolated tag to
obtain multiple readings known to come from the same
tag. To prevent an attacker from collecting a large
number of readings, while maintaining the functionality
of the tag, a tag should respond with the same message
when queried multiple times in the same location, but
should respond with different messages when queried
in different locations. This behavior can be achieved
for RFID tags by storing the once-computed and ran-
domized hash in capacitor-backed RAM. When the tag
has left the reader field for some time, the capacitor
is depleted and the stored value is lost. A new hash
is then generated on the next query. This behavior will
prevent an attacker from learning several responses that
are known to be from the same user, which is essential
for the randomization technique proposed in this paper
to be effective.

Security researchers are rightfully wary of assump-
tions that limit attacker capabilities, and we must be
careful to not overestimate the security of a solution
in situations where these limits on attackers may not
hold. On the other hand, when such assumptions can
be established they enable new types of solutions. The
approach of assuming restrictions on attacker capabili-
ties to enable otherwise unattainable security properties
was previously used by Bailey, et al. [3]. In their case,
the goal was to find a protocol that can provide both
public guarantees that there are no covert channels and
identification privacy. The two goals are incompatible,
and it is provably impossible to attain both with a strong
attacker model. By restricting the attacker model to an
attacker who can only sporadically interact with a tag,
they were able to develop a protocol that provides both
identification privacy and public guarantees that there
are no covert channels. In our case, limiting the number
of interactions an attacker can have with a known tag
enables a protocol with enhanced privacy at limited cost.
For many scenarios, this threat model is realistic given
the capacitor hardware modification; in Section 3.3, we
analyze the impact of relaxing this threat model.

2

B. Definition

The goal of a private identification protocol is to
enable legitimate readers to correctly identify users,
while preventing rogue readers and eavesdroppers from
learning user identities. Private identification protocols
should provide low levels of information disclosure and
high levels of indistinguishability among users.

A private identification protocol takes two inputs: a
secret key, s, and a random nonce, r, that is produced
on the identification token and send to the reader. It
produces an output, h, that can be used by a legitimate
reader to identify the user. The output is typically a
one-way hash that hides the key: h← P(s,r).

The legitimate reader has a set of secrets, S, and must
be able to efficiently determine s given h and r. Rogue
readers do not have access to S. Without knowledge of
S, obtaining h and r must leak very little information
about s. The legitimate reader secret, S, could be a set of
keys (as in the hash protocols discussed in this paper),
or a single private key (as in a public-key protocol).

The first requirement for private identification proto-
cols is correctness. A legitimate reader should be able
to efficiently and correctly identify the sender, s, given
knowledge of S, h, and r. For scalability, the search for
the correct key should be fast on average and should
grow much slower than linearly in the number of users.

The second requirement is privacy, which we for-
malize using the distinguishability game. A private
identification protocol must allow an attacker at most
a small advantage in the following game:

Distinguishability Game. The attacker is given four
values: two input nonces, r0 and r1, and two responses,
x0 and x1. The attacker is then asked to decide between
two different cases for how these values were generated:

1) One secret key, s: h0 = P(s,r0), h1 = P(s,r1).
2) Two secret keys, s0 ∕= s1: h0 = P(s0,r0), h1 =

P(s1,r1).

In the first case, the protocol is run twice with the
same key but different nonces. In the second case,
two keys and nonces are randomly chosen and the
protocol is run on different keys and nonces. In each
case, the distinguisher only gets to see the random
nonces and the protocol output but not the secret keys.
The distinguisher then has to decide whether two given
responses were generated from two different secrets (in
which case it outputs 0) or using one secret (in which
case it outputs 1).

For all polynomial time distinguishers, D(⋅), there
exists a bound, ε , on the probability that two users
with different keys can be distinguished. The advantage,
ε , with which the best distinguisher can tell the two
cases apart corresponds to the maximum probability

with which an attacker can distinguish two different
users on average:

∣∣∣∣∣∣∣∣
Pr[k←Un; r1,r2←Un; h1← P(k,r1) ;

h2← P(k,r2) : D(r1,h1,r2,h2) = 1]
−Pr[k1,k2←Un; r1,r2←Un; h1← P(k1,r1) ;

h2← P(k2,r2) : D(r1,h1,r2,h2) = 1]

∣∣∣∣∣∣∣∣≤ ε

(Un is a value randomly chosen from the uniform
distribution over all strings of length n).

For a system to be considered private, we need ε to
be small. We define a protocol to provide polynomial
privacy if and only if the attacker advantage decreases
faster than any polynomial in the key length, n. This is
given when for every polynomial function p(n) there
exists an m for which for all n > m : ε ≤ p(n)−1.

For a protocol to also provide authentication, an
attacker must not be able to spoof a user’s response
without knowing the secret keys, even after seeing many
of the user’s responses. Authentication follows trivially
from private identification in the tree protocol, which is
introduced in Section II-D, by adding a nonce selected
by the server. In this paper, we concentrate on improv-
ing private identification. The results apply equally to
private authentication, because our approach only alters
the higher levels of the tree, while authentication only
happens at the lowest level of the tree.

C. Measuring Privacy

The advantage ε represents the privacy of a sys-
tem, but there is no fixed threshold value of ε that
separates private from non-private. Instead the attacker
advantage necessary to put a system at risk will vary
across systems as well as attackers. Instead of arbitrarily
selecting an ε bound, we provide a way of measuring
privacy through information leakage [15]. Based on this
measure, the designer of a system will have to decide
what level of privacy is required (and affordable). The
metric enables protocol designers to trade-off between
scalability and privacy.

Information leakage measures how accurately an at-
tacker can distinguish groups of users. It is calculated
as the loss of entropy over perfect privacy (defined as:
ε = 0) averaged over all users of a system. The loss
in entropy is computed as the entropy of the sizes of
groups of users that are distinguishable:

I = ∑
i

pi ⋅ log2
(

p−1
i
)

where pi is the fraction of users in the ith group. If,
for example, an attacker can distinguish 3 groups of 25,
25, and 50 users, the average information leakage is
L = 2 ⋅ 1

4 ⋅ log2 (4)+
1
2 ⋅ log2 (2) = 1.5 bits.

3

The attacker advantage, ε , can be expressed in terms
of information leakage. If on average x bits of infor-
mation are learned from users of a system, the attacker
advantage of distinguishing two users is the probability
that these users do not share the same x bit identifier;
that is ε ≥ 1−2−x.

If N users are evenly distributed over 2x groups, each
user is in a group of size 2−xN and ε = 1− 2−x. If
the groups are distributed differently, ε is larger. If, for
example, there exist groups of two sizes, (2−x +α) ⋅N
and (2−x−α) ⋅N, then ε = 2−x +2 ⋅α2. As long as the
deviation from the uniform distribution, α , is small, the
attacker advantage is very close to the bound. Given this
conversion between information leakage and attacker
advantage, we can estimate the attacker advantage, ε ,
caused by an information source by measuring its in-
formation leakage. This paper uses information leakage
as the privacy measure since it converts to distinguisha-
bility as defined in the distinguishability game but is
usually more intuitive to calculate.

D. Protocols

Private identification protocols have been proposed
that provably provide polynomial privacy, but cause ex-
tensive computational overhead on the back-end server
since they require the back-end to try every possible
key [22]. Alternatives that are more scalable sacrifice ei-
ther availability or strong privacy. Those protocols with
limited availability maintain and synchronously update
some shared state on the tag and server [16]. Too many
unauthorized read attempts bring this state out of sync
and the tag is effectively lost from the database. The
other possible trade-off for more scalability sacrifices
some privacy by sharing secrets among different users.
While many of the ideas in this paper could be applied
to other protocols, we focus on extending Molnar and
Wagner’s tree-based hash protocol in which keys are
organized in a tree of secrets [12].

The tree-based hash protocol extends the basic hash
protocol. In the basic hash protocol, each user is as-
signed a single unique key [22]. When queried, the user
responds with a random nonce and the keyed hash of
that random number: ⟨H (s,r) ,r⟩ where H(⋅, ⋅) is a one-
way function, s is a secret key, and r is a random nonce.
To identify the user, the server hashes the nonce under
all keys in the database until it finds a match. Assuming
a strong one-way function, the basic hash protocol
provides polynomial privacy (e.g., ε < 1/p(n) over all
polynomial functions, p(n)) but does not scale well,
which results in computationally prohibitive overhead
for large systems.

In the more scalable tree protocol, several secrets are
assigned to each user [12]. The secrets are structured
in a tree with the users as the tree leaves. A user ti is

assigned the secrets si,1,si,2, ...,si,d where d is the depth
of the tree (all secrets but the last are shared with some
of the other users). When queried, user ti responds with:

⟨H (si,1,r1) ,r1,H (si,2,r2) ,r2, ⋅ ⋅ ⋅ ,H
(
si,d ,rd

)
,rd⟩

The server finds the matching secret on each level
in the same way it did it in basic hash protocol. By
identifying the correct branch on each tree level, a
leaf is reached which uniquely identifies the user. This
tree-based hash protocol scales well beyond billions of
users. The drawback of the protocol, however, is that
secrets are shared among several users and extracting
the secrets from some users potentially allows tracking
others. An attacker can uniquely identify a user with
higher probability when more secrets of that user are
known. In the standard tree protocol, a tree with a
constant branching factor at each level is used. Previous
work has shown that varying the branching factor for
the different levels improves privacy [11][1][15]. We as-
sume an already optimized tree protocol (typically with
only two levels) and further improve privacy through
randomization.

III. RANDOMIZED TREE PROTOCOL

The privacy of probabilistic privacy protocols derives
from the fact that an attacker only ever knows a small
fraction of the keys in a system while the legitimate
reader knows all keys. This gap in the ability to dis-
tinguish users can be amplified by adding noise to user
responses. The noise blurs the borders between groups
of users that the attacker would otherwise be able to
distinguish.

Our technique for improving the tree protocol’s pri-
vacy is simple: some bits of the user-generated hashes
are randomly flipped before being sent to the server. To
enable legitimate readers to still uniquely identify each
user with total correctness, the last level of the tree is
not randomized. Whereas before an attacker in posses-
sion of the relevant shared keys could deterministically
identify a user as being a member of a single group, the
randomization means an attacker can only determine the
probability that the user is in each group.

The randomization never leads to false identifications,
because the last round that uses the unique secret
of the tag is not randomized. The legitimate reader
will always be able to correctly identify a tag, but
some wrong tree branches might be evaluated before
the correct branch thereby increasing the identification
cost. Randomization enables privacy levels anywhere
between the deterministic tree-protocol and the basic
hash protocol at varying costs.

In a simple instantiation of our randomization tech-
nique, the user generates a nonce, then hashes that nonce
and a secret key, and finally flips every bit of the result

4

with some probability p. Any response could hence have
been generated by any user with some probability. If p is
chosen as 1

2 , even the legitimate reader has no advantage
in identifying the user over trying all keys on the lowest
tree level until the right one is found. If p is chosen
suitably, it can be close enough to 1

2 to provide little
information to an attacker operating a rogue reader, but
far enough from 1

2 to provide useful information to a
legitimate reader. The legitimate reader only has to try
a few groups to find the right user, while an attacker
is left with large uncertainty and cannot determine to
which of the groups a user belongs.

Section III-A analyzes the privacy properties of the
proposed scheme, and Section IV-A estimates the costs
a legitimate reader incurs for different choices of p. In
Section III-B, we present and analyze a variation on the
simple randomization technique that provides improved
privacy-cost tradeoffs by using selective randomization.
Our protocol is designed around the strong assumption
that an attacker cannot obtain multiple reads known to
be from the same tag. In Section III-C, we consider
how privacy is reduced when an attacker can perform
multiple reads.

A. Privacy Analysis

We analyze a two-level tree that has unique secrets on
the second level; hence, no information is leaked from
this level. We assume the strongest possible attacker
who knows all secrets on the first level but none of
the second level secrets (the secrets on the second level
are not shared among tags and hence not stealable).
A realistic attacker is not likely to get access to all
the first-level secrets, as that would involve physically
compromising tens of thousands of tags.

Figure 1 depicts the probability distribution that re-
flects where in the tree a given user resides as seen
by an attacker. Since the attacker knows all secrets on
the first level of the tree, each user can be placed into
one of the tree branches when using the deterministic
tree protocol. This decreases the number of possible
tree positions from N to N

k and leaks log2 k bits of
information, where k is the spreading factor on the first
tree level. When randomization is used, the attacker
only learns with what probability the user resides in
the different branches.

The amount of entropy (and information leakage)
depends on the probability that an attacker guesses that
the correct secret was used (marked as a1 in Figure 1)
and the probability that the attacker guesses that any
of the other secrets was used (a2 in the graph). These
correct guess and wrong guess probabilities are directly
related to the degree of randomization, p. The correct
guess probability is the chance that a received response
corresponds to the hash output using an assumed key

P
r[
X

=
x
]

N/k N-N/k

After randomized tree protocol
!"

#"

a
1

!"

#"

!"

#"

a
2

!"

#"

P
r[
X

=
x
]

N/k N-N/k

After determininistic tree protocol

!"

#"

!"

#"

!"

#"

!"

#"

P
r[
X

=
x
]

N/k N-N/k

A priori distibution of user identity
!"

#"

!"

#"

!"

#"

!"

#"

1/N

Figure 1. Change in probability distribution of user identity as seen
by attacker compared for deterministic and randomized tree protocol.
Tree with N users, spreading factor k.

plus randomization. The wrong guess probability cor-
responds to the case that the response corresponds to
the output from some other key. The closer these two
probabilities are, the more privacy is provided since an
attacker can no longer decide whether or not a certain
key is used.

The correct guess probability is calculated as the
likelihood that a given level of noise is the result of
randomization summed over all possible levels of noise.
Each such chance corresponds to the probability that
a certain level of noise was produced by a binomial
distribution, Binom(i,n, p), which stands for the chance
that i of n bits in the output are flipped for randomization
of degree p.

The wrong guess probability is conversely derived
from an unbiased distribution, Binom

(
i,n, 1

2

)
. The ratio

between correct and wrong guess probability, r = a1
a2

, is:

r =
n

∑
i=0

Binom(i,n, p)2

Binom
(
i,n, 1

2

)
Average Entropy. The average entropy of tags in the

randomized tree protocol as seen by an attacker is (see
the Appendix for a proof of this result):

E = log(N)− log(k)+ log(k+ r−1)− r
k+ r−1

⋅ log(r)

The first term is the maximum entropy of a group
of size N; the second term is the amount of entropy
given up by the deterministic tree protocol when the
attacker knows all secrets on the first level; and the
remaining two terms describe the entropy gain through
randomization. The border cases correspond to the
linear protocol (r = 1, no information leaked) and the
tree protocol (r = ∞, completely deterministic grouping
of users).

5

0.1 0.2 0.3 0.4 0.5 In
fo

rm
a

ti
o

n
 L

ea
k

a
g

e
[b

it
s]

Degree of Randomization, p

102!

101!

1!

10-1!

10-2!

10-3!

10-4!

10-5!

Figure 2. Information leakage decreases as randomization increases.

Figure 2 shows the different amounts of information
leakage achieved by varying the degree of randomiza-
tion. The amount of disclosed information decreases
roughly exponentially with the degree of randomiza-
tion (and the attacker advantage, ε , decreases roughly
linearly). In the range 0.2 ≤ p ≤ 0.4, the amount of
information leakage, I, drops exponentially as I =

4.7
(
1.78×10−24

)p−0.2. This exponential drop-off is a
conservative lower bound since we are assuming that
the attacker knows all secrets on the first tree level. For
high levels of randomization, the information leakage
drops to virtually zero. For a two-level tree with one
billion tags, for example, the information leakage drops
to 1/10,000th of its original value for r = 19.

B. Selective Randomization

To reach more points in the design space, most of
which are superior to what the simple randomization can
achieve, we introduce an extension to the randomization
scheme. In this selective randomization scheme, we first
select a fixed size subset of bits and then flip each bit
in this set with a certain probability. On each read,
the tag randomly selects a new set of p1n of the n
bits for randomization and then flips each of these bits
with probability p2. The simple randomization analyzed
previously corresponds to the case where p1 = 1.

Selective randomization leads to a distribution with
the same expected number of flipped bits as the simple
randomization with p= p1 p2, but the actual distribution
is more concentrated around this average. In particular,
no value with more than p1n flipped bits can be reached.
This constraint could help the attacker in that some users
are known to not have generated some responses. For
well-chosen p1 and p2, however, the probability that at
least a few of the wrong secrets could have generated
any given response is very high.

We still assume the worst-case scenario where the
attacker knows all secrets on a given tree level. The
best attacker strategy for identifying the correct secret
is to compute the probability for each of the secrets
that a certain deviation was caused by added noise and
choose the secret with the highest probability. For a

single read that deviates from the computed response in
x bits, the probability that the deviation was caused by
added noise is described by the binomial distribution:
Prright (x) = Binom(x,n ⋅ p1, p2).

Conversely, the probability that a response generated
under a different secret randomly matches in x bits is:
Prwrong (x) = Binom(x,n,0.5).

The ratio between the correct secret’s probability of
having a certain deviation and the probability that any
of the secrets have that deviation is:

Prright (x)
Prright (x)+(k−1) ⋅Prwrong (x)

The average probability that the correct secret is
chosen after a single read is this ratio multiplied by
the probability that this deviation occurs, Prcorrect (x).
Summing over all possible deviations:

Pridenti f ication =
n⋅p1

∑
i=0

(
Prcorrect (i)

2

Prcorrect (i)+(k−1) ⋅Prwrong (i)

)
The equation assumes independence of the different

secrets, which is approximately true when k is large.
As illustrated in Section IV-A, selective randomization
achieves a cost-privacy trade-off superior to that of
simple randomization.

C. Multiple Readings

Our analysis has so far assumes an attacker cannot
obtain multiple readings that are known to come from
the same tag. If an attacker can learn several such
responses, the effect of the randomization is diminished,
potentially to the point where the randomized tree
protocol provides no privacy advantage.

In order to calculate the probabilities for the case
where the attacker combines several readings, we first
have to convert the binomial distributions into more
flexible normal distributions. The binomial distributions
are closely approximated by normal distributions with
expected values µcorrect = np1 p2 and µwrong = n ⋅ 1

2 ;
and standard deviations σ2

correct = n ⋅ p2 ⋅ (1− p2) and
σ2

wrong = n ⋅ 1
4 .

The effect of multiple reads can be expressed as
the average sum of several such normal distributions
(one for each read). According to the weak law of
large numbers, the average sum of r equally distributed
normal distributions is also a normal distribution with
the same expected value, but r times smaller standard
deviation.

The probability that the correct secret matches in x
bits averaged over r reads is approximately:

Prright (x,r)=Normal(x,µ = np1 p2,σ
2 =

np2

r
(1− p2))

6

Assuming an incorrect secret, the probability that the
responses randomly match on average in x bits is:

Prwrong (x,r) = Normal
(

x,µ = n ⋅ 1
2
,σ2 =

1
r

n ⋅ 1
4

)
Substituting these probabilities in the average entropy

equation (from Section III-A) provides the average
probability that an attacker can identify the correct
secret (and hence the correct group) as a function of
the number of reads.

0!

0.2!

0.4!

0.6!

0.8!

1!

0! 5! 10! 15!

P
r.

 o
f

id
en

ti
fy

in
g

 c
o

rr
ec

t
k

ey
!

Number of Reads!

!!"#$%"#!&"#$'()

!!"#$%"#!&"#$&()

Figure 3. Effect of multiple readings on the level of privacy
provided by the selective randomization tree protocol relative to the
identification success when only a single reading is considered.

The probability of successfully identifying the correct
group when combining multiple reads is depicted in
Figure 3 for the two example parameterizations of the
selective randomization. For both parameterizations, the
effect of multiple reads quickly amortizes the privacy
benefits of the randomization; over half of the benefits
are lost after 4-6 reads. After a larger number of reads,
the effect of randomization is completely lost. Note, that
these are worst-case estimates, where the attacker knows
all secrets on one tree level and only a single RFID tag
is present in the reader field. If the attacker does not
know some of the secrets or multiple tags are present
at the same time, the negative effect of multiple reads is
much less dramatic. As argued in Section II-A, limiting
the number of unique reads in each location can be
achieved for RFIDs.

IV. COST ANALYSIS

The computational cost of each legitimate identifica-
tion grows with the level of randomization. Hence, our
protocols provide an easy way to trade-off privacy and
cost: increasing the degree of randomization increases
privacy at the cost of increased server workload. In
Section IV-A, we simulate protocol runs to estimate
the cost of various parameterizations of the proposed
protocols. In Section IV-B, we provide a closed-form
approximation of the cost of randomization.

A. Simulated Experiments

Adding noise increases the reader cost of each iden-
tification. This verification overhead grows as more bits
of the user’s responses are randomized, as shown in
Figure 4. In the unmodified tree protocol with a tree
of height d and spreading factor k, an average of 1

2 kd
hashing operations are needed for every identification.
When adding randomization, in the very unlikely worst
case, the entire tree is evaluated for a single identi-
fication (a sensible implementation would cut off the
search once the probability drops below some threshold
to avoid searching the entire tree on a misread).

1E+4

1E+5

1E+6

1E+7

1E+8

1E+9

0.05 0.15 0.25 0.35 0.45

W
o
rk

lo
a
d

 [
#
 o

f
H

a
sh

es
]

Degree of Randomization, p

linear rand. tree, max

randomized tree, average rand. tree, min

deterministic tree

109!

108!

107!

106!

105!

104!

Figure 4. Workload required by different protocols for each iden-
tification. System with 1 billion users, tree with depth 2. Values are
averaged over 100k simulations each.

To estimate the expected cost of the randomization,
we simulated the server workload for a large number of
possible parameters. The server follows a simple depth-
first search strategy in which the branches are evaluated
in order of their initial probability of containing the
match. We choose this search strategy merely for its
simplicity, while more adaptive strategies may lead to
lower costs. For the two-level tree, which is optimal
for many applications [1][15], there is no difference
between the simple and adaptive strategies.

The average cost grows roughly exponentially with
the degree of randomization as depicted in Figure 4
and information leakage decreases exponentially with
randomization. Therefore, the trade-off between infor-
mation leakage and cost is roughly linear.

The randomized tree protocol provides design options
spanning the whole range of privacy and scalability
options between the linear protocol and the determin-
istic tree protocol. The design space is described by
the tradeoff between randomization and information
leakage as depicted in Figure 2 and the tradeoff be-
tween randomization and cost in Figure 4. The resulting
tradeoff curve is shown in Figure 5. All figures are for a
system with one billion users and a tree with two levels
for which the attacker has acquired all first-level keys.

7

0x

500x

1000x

1500x

2000x

0% 10% 20% 30% 40%

W
o
rk

lo
a
d

 (
re

la
ti

v
e)

Information Leakage (relative)

!!"#$!%&

!!"#$!&

!!"#$'&

Figure 5. Design space for simple randomization (p1 = 1). System
with one billion users, two-level tree. Values are averaged over 100k
simulations each.

Selective randomization provides more points in the
design space, many of which are more useful than those
provided by simple randomization. We calculated the
amounts of entropy that the selective randomization
preserves and simulated the expected cost for many
choices of p1 and p2. The resulting options of additional
cost versus decreased information leakage is depicted in
Figure 6. The design space includes one design point,
p1 = 0.8, p2 = 0.25, where only 1

50
th

as much infor-
mation is leaked when compared to the deterministic
tree (i.e., information leakage is 98% lower) and cost
increases 22 times; another design point, p1 = 0.8, p2 =

0.35, decreases information leakage to 1
2500

th
of its

original value and increases cost by a factor of 304.

0x

200x

400x

600x

800x

1000x

0% 1% 2% 3% 4% 5%

W
o

rk
lo

a
d

 (
re

a
lt

iv
e)

Information Leakage (relative)

p2=0.25 p2=0.3

p2=0.35

p1=0.8

simple randomization

(p1=1.0)

Figure 6. Design space for selective randomization. Each cross
corresponds to one p1, p2 choice. The lower line corresponds to
p1 = 0.8 and various choices for p2, while the upper line corresponds
to the simple randomization (p1 = 1). System with one billion users,
two-level tree. Values are averaged over 100k simulations each.

B. Closed-Form Analysis

To find the overall cost of an identification, we
calculate the number of leaf groups that need to be
evaluated until the correct leaf group is found. Note,
that we are not considering the small cost of evaluating

the higher tree levels (typically, just one level) to further
simplify the analysis.

For a received response that deviates in x bits from
the n-bit hash of the correct secret, the probability that
a wrong secret matches in more bits is calculated as
the cumulative distribution function (CDF) of random
matching, (1−BinomCDF (x,n,1/2)). The number of
secrets evaluated in each group before the right secret
is evaluated for a given deviation, is therefore this
probability multiplied with the number of wrong secrets
in the group, (k−1).

The average number of evaluated secrets is this num-
ber multiplied by the chance that the assumed deviation
occurs, Binom(x,n ⋅ p1, p2), summed over all possible
deviations. Finally, the total number of groups that need
to be evaluated is calculated as the number of groups
that need to be evaluated on each level exponentiated
by the number of levels:

Cost = [∑
n⋅p1
i=0 BinomPDF (i,n ⋅ p1, p2) ⋅ (k−1) ⋅

(1−BinomCDF (i,n,0.5))](d−1) ⋅ klast

This gives the expected number of hashes that must
be performed by a legitimate reader to identify a tag
using the selective randomization protocol.

C. Feasibility

We consider a system with one billion tags (e.g.,
RFID tags in credit cards), each of which knows two
secrets: one from the first level of a tree that is shared
with some of the other tags and a unique secret on
the second level. For simplicity, we assume that the
spreading factor is the same on both levels at about
32,000. The attacker is conservatively assumed to know
all the secrets on the first level. In the deterministic key
protocol, the reader computes 32,000 hashes on average
for each read. Randomization with p1 = 0.8, p2 = 0.35
increases this workload by a factor by 304 to 10 million
hashing operations and lowers the information leakage
by 99.96%.

State of the art implementations of hash functions
such as SHA-1 and MD6 provide several Gbit/s [21] [6]
of throughput, which corresponds to tens of millions
of hashing operations per second. A hashing computer
built from many of these chips can execute several
billion hashing operations per second. For the system
with a billion tags, this would support authenticating
several 100,000 tags per second on a single server. At
these speeds the bottleneck of the authentication process
moves from cryptography to database access. Smaller
cryptographic functions such as EnRUPT may well pro-
vide the cryptographic strength needed for probabilistic
privacy and can save another order of magnitude in
server cost [6]. Another alternative is to use probabilistic

8

hash functions such as HB protocols [10] that can
potentially build a very low-cost one-way function.

Public key cryptography that could also be used to
provide privacy compares unfavorably to all symmetric-
key alternatives (besides exceeding the implementation
cost of RFID tags). In comparison to symmetric one-
way functions, public key cryptography such as Elliptic
Curve Cryptography or RSA is much more expensive
in hardware. FPGA implementations of RSA are six to
seven orders of magnitude less efficient per area and
time than symmetric-key alternatives [20]. On the other
hand, only a single RSA operation is required for each
identification.

A novel low-cost public key cipher specifically de-
signed for RFID is based on the Rabin scheme [17].
The scheme can be implemented on RFID tags much
smaller than alternatives like RSA while the server
cost is comparable to that of RSA. The implementation
size on an RFID tag is still much larger than that
of a one-way function as needed in our protocol. In
particular, the scheme requires a one-way function and
a random number generator as building blocks. The
scheme enables an elegant public key management, but
has higher implementation cost and server cost.

V. RELATED WORK

The challenge of scalable cryptography has previ-
ously been addressed in several contexts such as pre-
venting piracy in multicast networks such as Pay-TV.
Multicast security has a different threat model but is
conceptually close to the question we consider. For
one protocol based on a tree of secrets that allows for
counterfeit Pay-TV cards to be linked to the subscriber
that leaked access credentials, Poovendran and Baras
derive an optimal setup using an entropy-based metric
similar to the one we use [18].

Randomizing user responses was previously used to
achieve privacy in RFID systems by the HB family
of protocols that were originally developed by Hopper
and Blum to support authentication by humans without
computer assistance [8]. These protocols use only very
basic mathematical operations to create a hash function
and achieve one-wayness by randomly flipping some of
the response bits. The security of the HB hash functions
relies on the hardness of the learning parity with noise
(LPN) problem that has not conclusively been shown to
be hard. A first attempt to make the HB protocols secure
against active attackers was proved secure in a limited
attacker model [10], but later shown to be vulnerable
against very practical attacks that are outside of the
scope of the proofs [4].

None of the existing attacks, however, apply to the
use of hash function in our protocol and to private
identification protocols in general where the hash input

is randomly chosen by the user and therefore cannot
be influenced by an attacker. Improved variants of the
function have been proposed that also defeat these
attacks [13][5]. Since HB hash functions only require
very basic arithmetic operations, the implementation
overhead on an RFID tag is virtually zero. All of the HB
protocol variants, however, require a significant number
of rounds for each hashing operation and hence have
a high communication overhead. This overhead may
be acceptable in applications such as building access
control where identification can take up to a second,
but is not acceptable for item-level product tags. Using
an HB hash function in our protocol leads to a very
low-cost identification protocol for RFIDs.

VI. CONCLUSIONS

The proliferation of tiny devices incorporating unique
identities with limited computing capabilities motivates
the need for cheap private identification protocols. We
present one such protocol that can be implemented
cheaply on small devices. The randomization of user
responses in our protocol provides an effective design
trade-off that lowers the amount of information leak-
age in exchange for a reasonable increase in server
workload. Levels of information leakage close to zero
can be achieved at modest server cost (i.e., 99.8%
privacy increase at 150x cost increase), while staying
much below the cost of alternatives such as public-key
protocols.

REFERENCES

[1] Gildas Avoine and Tamás Holczer István Vajda
Levente Buttyán. Group-Based Private Authentication.
In International Workshop on Trust, Security, and
Privacy for Ubiquitous Computing, 2007.

[2] Gildas Avoine and Philippe Oechslin. RFID
Traceability: A Multilayer Problem. In Financial
Cryptography, 2005.

[3] Daniel Bailey, Dan Boneh, Eu-Jin Goh, and Ari Juels.
Covert Channels in Privacy-Preserving Identification
Systems. In ACM Computer and Communications
Security Conference (CCS), 2007.

[4] Henri Gilbert, Matthew Robshaw, and Hervé Sibert.
An Active Attack Against HB+ - A provably Secure
Lightweight Authentication Protocol. In IEE Electronic
Letters, 2005.

[5] Henri Gilbert, Matthew J.B. Robshaw, and Yannick
Seurin. HB#: Increasing the Security and Efficiency of
HB+. In EuroCrypt, 2008.

[6] Luca Henzen, Flavio Carbognani, JPA, Sean O’Neil,
and Wolfgang Fichtner. Vlsi implementations of the
cryptographic hash functions md6 and irrupt. In IEEE
ISCAS, 2009.

9

[7] Thomas Heydt-Benjamin, Daniel Bailey, Kevin Fu, Ari
Juels, and Tom O’Hare. Vulnerabilities in
First-Generation RFID-enabled Credit Cards. In
International Conference on Financial Cryptography
and Data Security, 2007.

[8] Nicholas J. Hopper and Manuel Blum. A Secure
Human-Computer Authentication Scheme. In
ASIACRYPT, 2001.

[9] Xu Huang. Quantifying Information Leakage in RFID
Systems. In 10th International Conference on
Advanced Communication Technology, 2008.

[10] Ari Juels and Stephen Weis. Authenticating Pervasive
Devices with Human Protocols. In Advances in
Cryptology (CRYPTO), 2005.

[11] Tamás Holczer István Vajda Levente Buttyán. Optimal
Key-Trees for Tree-Based Private Authentication. In
Workshop on Privacy Enhancing Technologies (PET),
2006.

[12] David Molnar and David Wagner. Privacy and Security
in Library RFID: Issues, Practices, and Architectures.
In ACM Computer and Communications Security
Conference (CCS), 2004.

[13] J. Munilla and A. Peinado. HB-MP: A Further Step in
the HB-family of Lightweight Authentication Protocols.
In Computer Networks: The International Journal of
Computer and Telecommunications Networking, 2007.

[14] Karsten Nohl and David Evans. Quantifying
Information Leakage in Tree-Based Hash Protocols. In
International Conference on Information and
Communications Security (ICICS), 2006.

[15] Karsten Nohl and David Evans. Hiding in Groups: On
the Expressiveness of Privacy Distributions. In
International Information Security Conference (SEC),
2008.

[16] Miyako Ohkubo, Koutarou Suzuki, and Shingo
Kinoshita. Cryptographic Approach to
“Privacy-Friendly” Tags. In RFID Privacy Workshop,
2003.

[17] Yossef Oren and Martin Feldhofer. A Low-Resource
Public-Key Identification Scheme for RFID Tags and
Sensor Nodes. In Second ACM Conference on Wireless
Network Security, WiSec, 2009.

[18] Radha Poovendran and John S. Baras. An
Information-Theoretic Approach for Design and
Analysis of Rooted-Tree-Based Multicast Key
Management Schemes. In IEEE Transactions on
Information Theory, 2001.

[19] T. Scott Saponas, Jonathan Lester, Carl Hartung, and
Tadayoshi Kohno. Devices That Tell On You: The
Nike+iPod Sport Kit. Technical Report 2006-12-06,
University of Washington, 2006.

[20] Helion Technology. RSA and Modular Exponentiation
Cores. www.heliontech.com/modexp.htm, 2009.

[21] Helion Technology. SHA-1 Hashing Cores.
http://www.heliontech.com/sha1.htm, 2009.

[22] Stephen Weis, Sanjay Sarma, Ronald Rivest, and
Daniel Engels. Security and Privacy Aspects of
Low-Cost Radio Frequency Identification Systems. In
International Conference on Security in Pervasive
Computing, 2003.

APPENDIX: PROOF OF TAG ENTROPY THEORY

Theorem: The average entropy of tags in the random-
ized tree protocol as seen by an attacker is:

E = log(N)− log(k)+ log(k+ r−1)− r
k+ r−1

⋅ log(r)

Proof: Information leakage is defined as the av-
erage amount of lost entropy in the distribution of
probabilities with which different users could have
generated a given response. In the linear hash protocol
and in public key protocols, this entropy is logN and
the information leakage is virtually zero because all
users could have generated a response with probability
very close to 1

N , where N is the number of users in
the system. For the deterministic tree protocol with
two levels of secrets, the first of which is completely
disclosed to an attacker, the entropy is logN− logk and
the information leakage is logk, where k is the number
of branches of the first tree level.

In the randomized protocol, an attacker never learns
the exact branch a user resides in but rather a probability
distribution over the different branches as was illustrated
in Figure 1. On average, the correct branch will have
a higher probability than any of the wrong branches
(which all have the same probability). The amount of
lost entropy (i.e., information leakage) only depends on
the difference of these two probabilities and the tree
parameters N and k.

The entropy of the overall distribution is the weighted
sum of the entropies of the tree branch that contains the
user (E1) and of all other branches (E2):

E1 =−a1 ⋅ log(a1) E2 =−a2 ⋅ log(a2) r =
a1

a2

E = N
k ⋅E1 +N ⋅

(
1− 1

k

)
⋅E2

= k
k+r−1 ⋅

(1
k log(a1)− log(a1)− r

k log(r ⋅a1)
)

=− log(a1)+
r

k+r−1 ⋅ log(r)
=− log

(1
N ⋅

k
k−r−1

)
+ r

k+r−1 ⋅ log(r)
= log(N)− log(k)+ log(k+ r−1)− r

k+r−1 ⋅ log(r)

10

