
ava i lab le a t www.sc iencedi rec t .com

journa l homepage : www.e l sev i er . com/ loca te /cose

c o m p u t e r s & s e c u r i t y 2 5 (2 0 0 6) 3 3 8 – 3 5 0
Comparing Java and .NET security: Lessons learned
and missed

Nathanael Paul*, David Evans*

University of Virginia, Department of Computer Science, VA, USA

a r t i c l e i n f o

Article history:

Received 24 February 2005

Revised 27 December 2005

Accepted 6 February 2006

Keywords:

Virtual machine security

Java security

.NET security

Security design principles

Bytecode verifier

Malicious code

Code safety

a b s t r a c t

Many systems execute untrusted programs in virtual machines (VMs) to mediate their ac-

cess to system resources. Sun introduced the Java VM in 1995, primarily intended as a light-

weight platform for executing untrusted code inside web pages. More recently, Microsoft

developed the .NET platform with similar goals. Both platforms share many design and

implementation properties, but there are key differences between Java and .NET that

have an impact on their security. This paper examines how .NET’s design avoids vulnera-

bilities and limitations discovered in Java and discusses lessons learned (and missed) from

experience with Java security.

ª 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Java and .NET are both platforms for executing untrusted pro-

grams with security restrictions. Although they share similar

goals and their designs are similar in most respects, there ap-

pear to be significant differences in the likelihood of security

vulnerabilities in the two platforms.

Fig. 1 shows the number of major security vulnerabilities

reported for each platform. As of December 2005, the Common

Vulnerabilities and Exposures (CVE) database contains 150

entries concerning Java vulnerabilities (Mitre Corporation,

Common Vulnerabilities), 38 of which we classify as major

Java platform security vulnerabilities (we do not include appli-

cation-specific bugs unrelated to the VM itself). The remaining

vulnerabilities included in Fig. 1 but not in the CVE are from

Sun (Sun Microsystems, 2002) (9 vulnerabilities) and McGraw

and Felten (1999) (5 vulnerabilities). The contrast with the
.NET platform, in which no major security vulnerabilities

have yet been found, appears striking. This paper considers

whether or not the difference in the number of security vul-

nerabilities found in the two platforms stems from fundamen-

tal differences in their designs.

Table 1 summarizes Java security vulnerabilities reported

in the past 10 years. Hopwood (1996), Princeton’s Secure Inter-

net Programming team (Dean et al., 1996; Wallach et al., 1997;

Wallach and Felten, 1998) and McGraw and Felten (1999) iden-

tified several vulnerabilities in early Java implementations.

The rest are those documented in Sun’s chronology (Sun

Microsystems, 2002; Sun Microsystems Sun Alert) and the

CVE database (Mitre Corporation, Common Vulnerabilities).

By contrast, no security vulnerabilities in the .NET virtual

machine platform have been reported to date. The most widely

publicized security issue in .NET was W32.Donut, a virus that

took control of the executable before the .NET runtime had
* Corresponding authors.
E-mail addresses: nate@cs.virginia.edu (N. Paul), evans@cs.virginia.edu (D. Evans).

0167-4048/$ – see front matter ª 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cose.2006.02.003

mailto:nate@cs.virginia.edu
mailto:evans@cs.virginia.edu
http://www.elsevier.com/locate/cose

c o m p u t e r s & s e c u r i t y 2 5 (2 0 0 6) 3 3 8 – 3 5 0 339
control (Szor). Since the vulnerability occurs before the .NET

runtime takes control, we consider this a problem with the

way the operating system transfers control to .NET and not

with the .NET platform. Eight other security issues that have

been identified in the .NET are listed in Microsoft’s Knowledge

Base (Farkas) and the CVE database (Mitre Corporation, Com-

mon Vulnerabilities), but none of them are platform security

vulnerabilities by the standard we use in this paper. Appendix

A explains these issues and why we do not count them.

There are many possible explanations for the .NET plat-

form’s apparent lack of security vulnerabilities. One possibil-

ity is that .NET is a less desirable platform for attackers to

compromise than Java so it has not received the scrutiny nec-

essary to reveal vulnerabilities. This is unlikely, however,

since the .NET framework is now provided as a Windows

update. Since Windows has over 90% of the desktop market

with a large number of machines using .NET, the .NET plat-

form presents an attractive target.

Another possibility is that more vulnerabilities have been

found in Java implementations because there are several

50

40

30

20

10

0 2 4 6 8 10

Java VM

Vu
ln

er
ab

ilit
ie

s
R

ep
or

te
d

Years Since First Release

.NET VM

Fig. 1 – Major security vulnerabilities reported. The value

plotted is the cumulative number of major security vulner-

abilities reported in each platform since the first official re-

lease (Java 1.0 in January 1996 (Sun Microsystems, Java);

.NET 1.0 in January 2002 (Microsoft Corporation, Technology

Overview)).
different Java VM implementations whereas .NET’s number

is from Microsoft’s sole implementation. From the available

information, the one implementation that did have many of

its own unique vulnerabilities was Microsoft’s Java implemen-

tation, and this is largely due, in part, to 10 vulnerabilities

reported in November 2002 by Pynnonen. As early as March

1996, both Microsoft and Netscape had licensed Java, two

months after the 1.0 release date (Sun Microsystems, Java).

As Java licensees, both Microsoft and Netscape implementa-

tions are based on the Sun implementation (Sun Microsys-

tems, 2002) so much of the code and design are shared

across the three implementations. The first 9 reported Java

vulnerabilities did affect all three implementations, including

the first 5 of 13 total verifier vulnerabilities. Although popular

open source .NET platform implementations exist, such as

Mono, and dotGNU, neither has fully implemented code ac-

cess security to enable the execution of partially trusted code.

Another possibility is that .NET just avoided the specific

security vulnerabilities that were already known because of pre-

vious experience with Java. This may be true in a few cases, but

in general it is not the case. There are enough differences be-

tween the platforms that most security vulnerabilities would

not have a direct analog. Further, vulnerabilities continue to

be found in new versions of Java even after .NET’s release.

In this paper we explore the more optimistic hypothesis

that .NET’s design is fundamentally more secure than Java’s,

and in particular, that it benefits from following general secu-

rity principles that have been learned and reinforced from

experience with Java. The general lessons to be learned from

experience with Java are not new. Most of them go back at

least to Saltzer and Schroeder’s (1973) classic paper, and

none should be surprising to security analysts. In particular:

economy of mechanism, least privilege, and fail-safe defaults

are design principles that enhance security, but can often con-

flict with other goals including usability and complexity.

Other lists of security principles, including Viega and

McGraw’s (2001), include similar properties such as defense

in depth and securing the weakest link. Viega and McGraw

emphasize that security principles should be followed within

an application’s context and following these universal secu-

rity principles allows a programmer to weigh different design
Table 1 – Java security vulnerabilities

Category Count Instances

API bugs 12 CVE-2000-0676, CVE-2000-0711, CVE-2000-0563, CVE-2002-0865,

CVE-2002-0866, CVE-2002-1260, CVE-2002-1293, CVE-2002-1290,

CVE-2002-1288, CVE-2002-0979, CVE-2005-3905, CVE-2005-3906

Verification 13 Sun Chronology (4), McGraw and Felten (2), CVE-1999-0766, CVE-1999-0141,

CVE-1999-0440, CVE-2000-0327, CVE-2002-0076, CVE-2003-0111, CVE-2004-2627

Class loading 8 Sun Chronology (5), CVE-2002-1287, CVE-2003-0896,a CVE-2004-0723

Other or unknown 3 CVE-2001-1008, CVE-2002-1325, CVE-2005-3907

Missing policy checks 3 CVE-1999-0142, CVE-1999-1262, McGraw and Felten (1)

Configuration 5 CVE-2000-0162, CVE-2002-0058, CVE-2005-0471, McGraw and Felten (2)

DoS attacks (crash) 4 CVE-2002-0867, CVE-2002-1289, CVE-2003-0525, CVE-2004-0651

DoS attacks (consumption) 4 CVE-2002-1292, CVE-2004-2540, CVE-2005-3583, CVE-2004-1503

Vulnerabilities reported in Java platform in CVE database (Mitre Corporation, Common Vulnerabilities), Sun’s web site (Sun Microsystems, 2002;

Sun Microsystems, Sun Alert), and McGraw and Felten (1999).

Vulnerabilities reported in more than one source were counted once.
a Revealed under keyword search for JVM vulnerabilities instead of Java vulnerabilities.

c o m p u t e r s & s e c u r i t y 2 5 (2 0 0 6) 3 3 8 – 3 5 0340
trade-offs while preparing for unknown attacks that may not

fit past attack patterns (Viega and McGraw, 2001). The con-

crete experience with Java shows how failure to apply these

well known principles has lead to vulnerabilities in a particu-

lar, security-critical system.

Previous work, including Pilipchuk’s article, has compared

security mechanisms and features in Java and .NET from an op-

erational perspective. In this paper, we consider how they differ

from the perspective of what has and has not been learned from

experience with Java. The primary contributions of this paper

are as follows: (1) an illustration of how the history of Java secu-

rity vulnerabilities reveals failures to follow established security

principles; (2) an identification of how .NET’s security mecha-

nisms have addressed the vulnerabilities and limitations of

Java; and (3) a discussion on how differences in the design of

.NET and Java are likely to impact their security properties.

Next, we provide an overview of both platforms. Section 3

describes low-level code safety highlighting the importance of

simplicity. Section 4 examines policy definition and permis-

sions emphasizing the principles of fail-safe defaults, least

privilege, and complete mediation. Associating policies with

code according to the code attributes is discussed in Section 5.

Next, Section 6 describes how the JVM and CLR enforce poli-

cies on executions evaluating them in their application of

the principles of least privilege, fail-safe defaults, and com-

plete mediation. Section 7 discusses the shortcomings of

both platforms with respect to psychological acceptability.

2. Platform overview

Both Java and .NET use a virtual machine to enforce policies

on executing programs as depicted in Fig. 2. The term Java is

used to refer to both a high-level programming language and

a platform. We use Java to refer to the platform consisting of

everything used to execute the Java class containing Java vir-

tual machine language code (JVML, also known as ‘‘Java bytec-

odes’’) in the left part of Fig. 1 except the operating system and

the protected resource. A Java archive (JAR) file encapsulates

Java classes and may also contain other resources such as

a digital signature or pictures. Java was designed primarily

to provide a trusted environment for executing small pro-

grams embedded in web pages known as applets.

Security

exception

Assembly

PolicyManager

ClassLoader

JIT Verifier
Verify

Exception

CLR

Operating System

Protected Resource

Security

exception

.NET

Java VM

Operating System

Protected Resource

ClassLoader

Security

exception

Verify

Exception

JAR

Verifier

Java

Fig. 2 – Architecture overview.
The .NET platform includes the .NET part of the figure

involved in executing an assembly except for the operating

system and the protected resource. A .NET assembly, analo-

gous to Java’s JAR file, is an executable or dynamically linked

library containing Microsoft intermediate language instruc-

tions (MSIL), some metadata about the assembly, and some

optional resources. .NET differentiates between managed

(safe) and unmanaged (unsafe) codes. Since a security policy

cannot be enforced on unmanaged code, we only consider

managed code.

Both Java and .NET have large trusted computing bases

(TCBs) allowing many possible points of failure. The TCB in-

cludes everything in Fig. 1 except for the external untrusted

program (the Java class or .NET assembly). In Java, a flaw in

the bytecode verifier, class loader, JVM or underlying operat-

ing system can be exploited to violate security properties.

With .NET, a flaw in the policy manager, class loader, JIT ver-

ifier, CLR, or underlying operating system can be exploited to

violate security properties. The size of the TCB makes it infea-

sible to make formal claims about the overall security of either

platform; instead, we can analyze individual components

using the assumption that other components (in particular,

the underlying operating system) behave correctly.

The JVML or MSIL code may be generated by a compiler

from source code written in a high-level program such as

Java or C#, but these files can be created in other ways.

Although high-level programming languages may provide

certain security properties, there is no way to ensure that

the delivered JVML or MSIL code was generated from source

code in a particular language with a trusted compiler. Hence,

the only security provided against untrusted code is what the

platform provides. This paper does not consider the relative

merits of the Java and C# programming languages but only

compares the security properties of the two execution

platforms.

Since the Java platform was introduced in 1995, Java’s se-

curity model has evolved to incorporate additional security

mechanisms including code signing and increasingly flexible

policies. When specific implementation issues are considered,

we address the current standard implementations of each

platform: the Java 2 Software Development Kit 1.4.2 and the

.NET Framework 1.1.

Both Java and .NET use a combination of static analysis and

dynamic checking to enforce policies on executing programs.

The bytecode verifier in Java and the just-in-time (JIT) verifier

in .NET statically verify some low-level code properties neces-

sary (but not sufficient) for type safety, memory safety and

control-flow safety before allowing programs to execute.

Other properties must be checked dynamically to ensure

low-level code safety. Section 3 describes the principle of sim-

plicity in low-level code safety properties. Six of the 30 Java

platform security vulnerabilities in the Common Vulnerabil-

ities and Exposures database (Mitre Corporation, Common

Vulnerabilities), and 6 of the earlier vulnerabilities (McGraw

and Felten, 1999; Sun Microsystems, 2002) are directly attrib-

uted to flaws in implementations of the Java bytecode verifier.

Programs that pass the verifier are executed in the Java virtual

machine (JVM) or .NET Common Language Runtime (CLR).

Both virtual machines use a reference monitor to mediate ac-

cess to protected system resources.

c o m p u t e r s & s e c u r i t y 2 5 (2 0 0 6) 3 3 8 – 3 5 0 341
3. Low-level code safety

Low-level code safety comprises the properties of code that

make it type, memory, and control-flow safe. Without these

properties, applications could circumvent nearly all high-level

security mechanisms (Yellin, 1995). The primary lesson learnt

from Java’s experience with low-level code safety goes back to

one of the earliest security principles: keep things simple.

Type safety ensures that objects of a given type will be used

in a way that is appropriate for that type. In particular, type

safety prevents a non-pointer from being dereferenced to ac-

cess memory. Without type safety, a program could construct

an integer value that corresponds to a target address, and then

use it as a pointer to reference an arbitrary location in mem-

ory. Memory safety ensures that a program cannot access

memory outside of properly allocated objects. Buffer overflow

attacks violate memory safety by overwriting other data by

writing beyond the allocated storage (AlephOne, 1996). Con-

trol safety ensures that all jumps are to valid addresses. With-

out control safety, a program could jump directly to system

code fragments or injected code, thereby bypassing security

checks.

Java and .NET achieve low-level code safety through static

verification and runtime checks. In typical Java implementa-

tions, static verification is done by the Java bytecode verifier

at load time. An entire class is verified before it is executed

in the virtual machine. In .NET, parts of the verification are

done as part of the JIT compilation. All code must pass the ver-

ifier, however, before it is permitted to execute.

3.1. Verification

The first step in the verification process is the validation of the

file format of the code (ECMA International, 2002; Lindholm

and Yellin, 1999). The file is checked according to the Java class

file or .NET PE/COFF file specifications (Lindholm and Yellin,

1999; Microsoft Corporation, Microsoft Portable Executable).

Following the verification of the file format, the verifier also

checks some static rules to ensure that the objects, methods,

and classes are well formed.

Next, the verifier simulates each instruction along each po-

tential execution path to check for type and other violations.

Since JVML and MSIL are stack-based languages, executions

are simulated by modeling the state of the stack while track-

ing information about each instruction to help ensure low-

level code safety. Verification fails if a type violation could

occur, or a stack operation could cause underflow or overflow.

In addition, control-flow safety is ensured by checking that all

branch instructions target valid locations.

The general problem of verifying type safety is undecidable

(Pierce, 1992), so certain assumptions must be made to make

verification tractable. Both verifiers are conservative: if a pro-

gram passes verification it is guaranteed to satisfy prescribed

safety properties, however, programs exist that are type safe

but fail verification. A more sophisticated verifier could accept

more of the safe programs (still rejecting all unsafe programs),

but increasing the complexity of the verifier is likely to intro-

duce additional vulnerabilities.
Code passing the verifier is permitted to run in the virtual

machine, but additional runtime checks are needed that could

not be checked statically. Runtime checks are required to en-

sure that array stores and fetches are within the allocated

bounds, elements stored into array have the correct type

(because of covariant typing of arrays in both JVML and MSIL

this cannot be checked statically (Cook, 1989)), and down

cast objects are of the correct type.

A bug in the Java bytecode verifier or Microsoft’s JIT verifier

can be exploited by a hostile program to circumvent all secu-

rity measures, so complexity in the verifier should be avoided

whenever possible.

The JVML and MSIL verifiers are both relatively small, but

complex, programs. Sun’s 1.4.2 verifier (Sun Microsystems,

Java 2 SDK) is 4077 lines of code (not including code for check-

ing the file format). For .NET, we examined Rotor, the shared

source code that is a beta version of Microsoft’s implementa-

tion of the ECMA CLI standard (Stutz). The JIT verifier in the

production .NET release is either very similar or identical to

the Rotor verifier (Lewin, 2004). Rotor’s integrated verifier

and JIT compiler total about 9400 lines, roughly 4300 of which

are needed for verification.

3.2. Instruction sets

Since the verifier’s complexity is directly tied to the instruc-

tion set of the virtual machine, examining the instruction

sets provides some measure of the verifier’s complexity.

Each platform uses about 200 opcodes, but some important

differences in their instruction sets impact on the complexity

of their verifiers. This section considers the differences be-

tween the JVML and MSIL instruction sets from the perspec-

tive of how complex it is to verify low-level code safety

properties.

Table 2 summarizes the instruction sets for each platform.

One obvious difference between the instruction sets is that

JVML has separate versions of instructions for each type,

whereas .NET uses a single instruction to perform the same

operation on different types. For example, Java has four differ-

ent add instructions depending on the type of the data (iadd

adds integers, fadd adds floats, etc.) where .NET has one in-

struction that works on different types. Using generic instruc-

tions to perform an operation with multiple types instead of

just two types makes verification slightly more difficult, but

means that .NET has more instruction opcodes available for

other purposes. .NET uses some of these instructions to pro-

vide overflow and unsigned versions of the arithmetic opera-

tions. The overflow versions of arithmetic operations throw

exceptions if the calculation overflows, enabling applications

to better handle overflows and avoid security vulnerabilities

related to arithmetic overflows (such as the Snort TCP Stream

Reassembly Integer Overflow Vulnerability reported in Core

Security Technologies Advisory).

3.2.1. Function calls
Complex, multi-purpose instructions further increase verifi-

cation complexity. For example, the invokespecial instruction

in JVML serves three purposes: calling a superclass method,

invoking a private method, and invoking an initialization

method. The multiple uses of this instruction make it difficult

c o m p u t e r s & s e c u r i t y 2 5 (2 0 0 6) 3 3 8 – 3 5 0342
Table 2 – Instruction sets comparison

Type JVML MSIL

Number Examples Number Examples

arithmetic 36 iadd, fadd, ladd, iand 21 add, add_ovf, xor

stack 11 pop, dup2, swap 2 pop, dup

compare 21 ifeq, ifnull, if_icmpeq 29 ceq, beq, brfalse

load 51 Ldc, iload, iaload 65 Ldarg, ldftn, ldstr

store 33 Istore, lstore_1, castore 27 Starg, stloc_s, stelem_R8

conversions 15 i2f, d2i, l2d 33 conv_i2, conv_ovf_u8, conv_u2

method calls 4 invokevirtual, invokestatic,

invokespecial, invokeinterface

3 callvirt, call, calli

object creation 4 new, newarrary, anewarray,

multianewarray

2 newobj, newarr

exceptions 3 athrow, jsr, ret 5 leave, leave_s, rethrow, endfilter,

endfinally
to verify correctly. Sun’s verifier uses 260 lines to verify the

invokespecial instruction (counting major methods used for

verification). A 2001 verifier bug involving the invokespecial

instruction (Sun Microsystems, Sun Security) affected many

implementations of the JVM, and could be exploited to violate

type safety (Last Stage of Delirium Research Group).

.NET has two main instructions for calling methods: call

and callvirt (another MSIL calling instruction, calli, is used

for calling functions indirectly through a pointer to native

code). The call instruction is similar to Java’s invokespecial

and invokestatic instructions. The callvirt instruction is

similar to Java’s invokeinterface and invokevirtual instruc-

tions. The main difference between the call and callvirt in-

structions is how the target address is computed. The address

of a call is known at link-time while callvirt determines the

method to call based on the runtime type of the calling object.

Combining Java’s four different calling instructions into two

instructions may make it easier for a compiler writer (Meijer

and Gough), but given Java’s history of trouble it may have

been better to have several single-purpose call instructions

rather than a few instructions with multiple functions. The

call and callvirt instructions each have their own method

for JIT compilation and verification totaling approximately

200 lines in the Rotor implementation.

To efficiently support tail recursion, the MSIL call instruc-

tions may also be preceded by a tail prefix which is treated

as a special case by the verifier (ECMA International, 2002).

The tail prefix reuses the same activation record on the stack

instead of creating a new record every time a call is made.

About 250 extra lines are required for verification and compila-

tion of the tail prefix including the extra lines needed to deal

with call, calli, and callvirt. It is too soon to judge whether

the performance advantages of supporting tail outweigh the

additional security risks associated with the added complexity.

3.2.2. Object creation
Sometimes a complex single instruction is better than using

many separate instructions. For example, a Java program cre-

ates a new object by using new to allocate memory for the new

object, dup to place an additional reference to the newly cre-

ated object on the stack, and then invokespecial to call the

object’s initializing constructor. After returning from the con-

structor, a reference to the (now initialized) object is on top of
the stack because of dup. In MSIL, the single newobj instruction

calls a constructor, creating and initializing a new object in

one step. This sacrifices flexibility, but verification of newobj

is much easier than Java’s sequence of instructions since the

verifier knows that the object is initialized as soon the instruc-

tion is executed.

A Java verifier must check whether any new object is ini-

tialized before use (Leroy, 2001). Java’s verifier has difficulty

with two areas in object creation. In cases where the new,

dup and invokespecial instructions are separated by instruc-

tions, this can pose problems for the verifier. The second prob-

lematic area is the complexity of the invokespecial

instruction. Microsoft and Netscape’s Java verifiers have

both had vulnerabilities relating to improper object initializa-

tion. The Microsoft verifier bug involved calling a constructor

within an exception handler inside a child class (Last Stage of

Delirium Research Group). Once the code called the construc-

tor from inside the child class, the parent class constructor

would be called to create a ClassLoader object, but the child

class had not been given permission to instantiate a class

loader. The resulting exception was caught by the exception

handler in the constructor of the child class, and the initializa-

tion was incorrectly assumed to have completed.

3.2.3. Exception handling
Java’s exception handling instructions impose additional

complexity compared to MSIL’s simpler approach. The JVML

instruction jsr is used to implement the Java programming

language try-finally construct that transfers execution to a

finally block (Lindholm and Yellin, 1999) and is one of the

most complex instructions to verify. To jump to a finally

block, control transfers to an offset from the address of the

jsr instruction, and the return address of the next instruction

after the jsr instruction is pushed onto the stack. The main

problem is the use of the operand stack to store the return

address since this makes an attractive target for an attacker

who may try to insert a different address while fooling the

verifier. With the return address on the operand stack,

more difficulty exists in a finally block’s verification in the

multiple ways one could execute a finally block: a jsr called

after execution of the try clause, a jsr used upon a break/

continue within the try clause, or a return executed within

the try block.

c o m p u t e r s & s e c u r i t y 2 5 (2 0 0 6) 3 3 8 – 3 5 0 343
Several vulnerabilities have been found in Java verifiers

due to the complexity of the jsr instruction. One relating to

subroutines in exception handling was found in 1999 in the

Microsoft JVM (Last Stage of Delirium Research Group). To ex-

ploit this flaw, two return addresses are placed on top of the

stack using different jsr instructions. Next, a swap instruction

is executed. The verifier failed to account for the change of

return addresses on the stack (ignoring the swap since the

return addresses are of the same type). The switched return

address is used by the ret instruction to return to the instruc-

tion that is now referenced by the address. The verifier con-

tinues to verify the method as if the swap had not executed,

thus breaking type safety.

.NET avoids the complexity associated with Java’s jsr

instruction by providing a simpler instruction. The leave in-

struction used to exit a try or catch clause clears the operand

stack and uses information stored in an exception handling

clause for control flow.

Recently, Sun has announced a radical redesign of its byte-

code verifier. The new verifier that is part of the new Java SE

Mustang release will have two very important simplifications:

the separation of the type inferencing process and the re-

moval of any code that generates a jsr or ret instruction (Sun

Microsystems, JSR 202; Sun Microsystems, New Java SE).

The verifier can now use type information embedded in the

class file represented as a code attribute instead of having to

infer the type information. To ease this transition to the

new verifier, the verification process reverts to using the old

verifier if a class file is not recognized as a newer version

50.0 class file (Sun Microsystems, New Java SE).

Disabling the JVM from running older class files can be

done by passing a flag to the JVM. This design can break back-

ward compatibility for the benefit of the simplicity of verifica-

tion, but users should have more confidence in the security of

the Java verifier. This is an encouraging step towards simplic-

ity, in contrast to nearly all of the modifications to the Java

platform since 1995 that increased complexity.

3.2.4. Summary
We tested .NET to check that the verifier was behaving correctly

according to the ECMA specification and attempted to carry out

exploits that have previously worked on the Java verifier, but

were unable to construct any successful exploits. Of course,

this does not mean that there are no exploitable bugs in the

.NET verifier, but it is encouraging that no verifier bugs have

been reported to date. .NET’s designers avoided many of the pit-

falls in early Java implementations benefiting from Java’s his-

tory of problems with exception handling, creating objects,

and calling methods. The MSIL instruction set design simplifies

the verification process by avoiding instructions similar to the

most complex instructions to verify in JVML.

4. Defining policies

Low-level code safety mechanisms prevent hostile applets

from circumventing the high-level code safety mechanisms,

but security depends on high-level mechanisms to enforce

a policy on program executions. A policy specifies what
actions code may perform. If a program attempts an action

contrary to the policy, a security exception is raised.

4.1. Permissions

The amount of control possible over system resources depends

on the available permissions. Except for those permissions that

are platform specific, Java and .NET provide similar permis-

sions for controlling access to the file system, network, display,

system properties and clipboard (Microsoft Corporation, Secu-

rity Briefs; Sun Microsystems, Permissions). The permissions

provided by each platform are summarized in Table 3.

The platforms differ in which resources are protected by per-

missions, and in the granularity of control over specific

operations and resources the available permissions provide. In

general, .NET and Java protect the same set of resources with

permissions, except for platform-specific resources. For in-

stance, Java must provide permissions that protect some

resources that are not exposed in .NET including the Security-

Manager and AccessControlContext (see Section 6.2). Although

.NET has a registry permission to protect the Windows registry,

Java does not expose this resource through their API by default.

Similarly, Java has an AudioPermission for restricting access to

audio system resources, but .NET’s API provides no access to

audio resource. Microsoft’s DirectX 9.0 SDK provides access

to audio resources, and adds the SoundPermission to control

access to those resources.

In general, .NET provides permissions with finer granularity

of control. For example, both platforms provide permissions to

restrict access to the file system. But, whereas in Java the same

permission controls deleting, writing to, and appending to files,

in .NET it is possible to provide just append access to a file.

Table 3 reveals that both platforms suffer from the lack of a

systematic design in their permissions. Many of these permis-

sions are based on protecting methods provided by the plat-

form API, rather than protecting security-critical resources.

For example, Java’s SQLPermission allows a program to set the

logging stream that may contain private SQL data; it is checked

before setLogWriter methods in several classes. Java’s AWTPer-

mission.createRobot permission protects java.awt.Robot ob-

jects that allow the creation of low-level mouse and keyboard

events. .NET’s PerformanceCounterPermissionprotects diagnos-

tic information exposed by the API. These permissions do not

correspond well to security properties a user could relate to,

but rather correspond to dangerous API methods.

Designing permissions around API methods rather than

security-critical resources is dangerous since it means grant-

ing a permission may provide unexpected capabilities. For ex-

ample, Java’s ReflectPermission indirectly allows a program to

access private methods and fields; effectively, this allows

a program to circumvent other security checks and is equiva-

lent to granting most other permissions. .NET provides a sim-

ilar ReflectionPermission, but allows a finer granularity of

control over what can be accessed. Other permissions pro-

vided by Java that effectively grant code arbitrary access

include FilePermission.execute (which allows a program to

execute a system command) and SecurityPermission.setPolicy

(which allows a program to change the security policy).

Knowing the resulting policy after granting certain permis-

sions is an area of difficulty common to both architectures. A

c o m p u t e r s & s e c u r i t y 2 5 (2 0 0 6) 3 3 8 – 3 5 0344
Table 3 – Permissions summary (Meijer and Gough; .NET Framework Developer’s Guide)

Resource Restricted operations Java permissions .NET permissions

File system Read/write/execute/delete files FilePermission FileIOPermission, SecurityPermission

Append access information on

path itself

No separate permissions

(append¼write)

FileIOPermissionAccess (Append,

PathDiscovery)

Access data in current directory

from executing program

Can read any file in current

directory or sub-directory of

current directory

IsolatedStoragePermission

Network Accept/connect/listen/resolve a

host at an optional port range

SocketPermission SocketPermission

Display Show an applet-created window

without warning, restrict access to

event queue

AWTPermission Events handled differently without

special permissions

Controlling different properties of a

window (e.g., setting caption, hiding

cursor)

Not provided UIPermission.Window

Reflection Use of reflection ReflectPermission ReflectionPermission

Reflection on visible or invisible

members of a type

Level of control not provided

(all or nothing)

ReflectionPermission, different flag

values control the level of use

System clipboard Read/write clipboard (all or nothing) AWTPermission UIPermission.Clipboard

Read clipboard (write unrestricted) Level of control not provided

(all or nothing)

UIPermission.Clipboard (OwnClipboard)

Threading Control threads RuntimePermission SecurityPermission

Control any thread, code’s own threads,

control a group of threads

RuntimePermission, different

target values

control level of privileges

Threadpool provides safety through

implementation

Database Set the logging stream of SQL actions SQLPermission Logging can be configured through

registry or provided tools (Meier et al.)

Allow blank passwords for a database

user, access databases

Specific database API not included

by default

OdbcPermission, OleDbPermission,

OraclePermission, SqlClientPermission

Printer Print RuntimePermission PrintingPermission

Printing to any printer (default only) and

through restricted print dialog boxes

All or nothing restriction by

RuntimePermission

PrintingPermission

Platform specific Read/write/delete registry keys/values Resource not exposed (no

permission needed)

RegistryPermission
developer may not understand that granting file execute or re-

flection permissions to any code that asks for it is essentially

the same as fully trusting the code. An attacker also has an ad-

ditional method of attack to compromise a system if a permis-

sion can give higher privileges in a different way.

Neither platform supports complete mediation: only ac-

tions associated with an associated predefined permission

are checked and many resources (for example, allocating

memory) have no associated permission. Further, there is no

support to restrict the amount of a resource that is consumed,

so many denial-of-service attacks are possible without cir-

cumventing the security policy. These limitations are serious

(LaDue), but more complete mediation is possible through the

reference monitoring framework only by significantly reduc-

ing performance. Richer policy expression and efficient en-

forcement is an active research area (Erlingsson, 2003; Evans

and Twyman, 1999; Walker, 2000).

4.2. Policies

Policies associate sets of permissions with executions. For se-

curity, policies should follow the principle of least privilege

and fail-safe defaults, however, these principles often conflict

with convenience and are not always followed.

In Java, policies are defined by specifying the permissions

granted in a policy file based on properties of an execution:
the origin of the code, the digital code signers (if any), and the

principal executing the code. Java’s policies are also affected

by a system-wideproperties file,java.security, whichspecifies

paths to other policy files, a source of randomness for the ran-

dom number generator, and other important properties.

A Java policy file contains a list of grant entries. Each entry

specifies a context that determines when the grant applies

and lists a set of granted permissions in that context. The con-

text may specify the code signers (a list of names, all of whom

signed the code for the context to apply), the code origin (code

base URL), and one or more principals (on whose behalf the

code is executing). If no principals are listed, the context ap-

plies to all principals.

Java is installed with one system-wide policy file, but a user

can augment this policy with her/his own policy file. The

granted permission set is the union of the permissions

granted in all the policy files. This is dangerous since it means

more permissions are granted than those that appear in the

user’s policy file. Further, it means a user can make the policy

less restrictive than the system policy, but cannot make the

policy more restrictive. Java users may not exclude permis-

sions a system administrator allows unless they are able to

edit java.security, the Policy implementation, or the policy

file granting the unwanted permissions.

.NET provides policy definition mechanisms that overcome

these limitations by providing flexible, multi-level policies,

c o m p u t e r s & s e c u r i t y 2 5 (2 0 0 6) 3 3 8 – 3 5 0 345
but at the cost of greater complexity. A .NET policy is specified

by a group of policy levels: Enterprise (intended for the system

administrator), Machine (machine administrator), User, and

Application Domain (AppDomain). The permissions granted to

an assembly are the intersection of the permissions granted

at the four policy levels. .NET’s policies grant permissions

based on evidences within an assembly (see Section 5.2). The

AppDomain policy is created at runtime, and there is no associ-

ated configuration file for this policy level. If no AppDomain

exists at runtime, then the policy is the intersection of the

Enterprise, Machine, and User policy levels. .NET’s policy levels

are similar to Java having a system-wide policy file and a user

policy file, however, they are much more flexible. Importantly,

in .NET the principle of fail-safe defaults is followed by setting

the final permission set to the intersection of all policy levels,

whereas in Java it is the union.

Typical users will execute code found on untrusted web

sites, so the Internet default policy is extremely important to

protect users and resources. If the policy is too permissive,

the granted privileges may be used to compromise the system.

Java’s default policy allows an untrusted process to read some

environment properties (e.g., JVM version, Java vendor), stop

its own threads, listen to unprivileged ports, and connect to

the originating host. All other controlled actions, such as file

I/O, opening sockets (except to the originating host), and audio

operations are forbidden. The default Java policy disallows the

most security-critical operations, but does not prevent

untrusted applets from annoying the user. Many examples

of disruptive applets exist, such as the one that stops and kills

all current and future applets and another one that consumes

the CPU (LaDue; McGraw and Felten, 1999).

The .NET default permissions are given by the intersection

of the four policy levels expressed in three separate files

(AppDomains exist only at runtime). At runtime, the CLR looks

for the three XML policy files representing the Enterprise,

Machine, and User policy levels. By default, .NET allows all

code to have all the permissions in the Enterprise and User

policy levels, and the Machine policy level’s granted permis-

sions determine the resulting permission set. The default pol-

icy grants permissions based on the zone evidence. Local code

is given full trust along with any strong-named Microsoft or

ECMA assemblies. Code from the local intranet is granted

many permissions including printing, code execution, assert-

ing granted permissions (see Section 6.2), and reading the

username. Internet assemblies are given the Internet permis-

sion set which includes the ability to connect to the originat-

ing host, execute (itself), open file dialogs, print through

a restricted dialog box, and use its own clipboard. The trusted

zone will receive the Internet permission set. No permissions

are granted to the restricted zone. These defaults are more

consistent with the principle of least privilege than Java’s de-

faults. But their strictness may encourage users to assign too

many code sources to more trusted zones.

5. Associating policies with code

Since programs with different trust levels may run in the same

VM,VMsneedsecuremechanismsfor determiningwhichpolicy

should be enforced for each access to a controlled resource. The
ability to assign different policies to different codes within the

same VM follows the principle of least privilege: every module

(class or assembly) can be assigned the minimum permissions

needed to do its job, but this added flexibility does cost addi-

tional complexity and decreased performance. Section 5.1 ex-

plains how granted permissions are associated with code.

Section 5.2 describes how code properties determine which pol-

icy should be applied. There are important differences of how

Java and .NET accomplish this. Java’s initial design was a simple

model where code was either completely trusted or untrusted,

and all untrusted code ranwith thesamepermissions.Later ver-

sions of Java extended this model, but were constrained by the

need to maintain backwards compatibility with aspects of the

original design. .NET was designed with a richer security model

in mind from the start, so it incorporates an extensible policy

mechanism in a consistent way.

5.1. Code permissions

Both Java and .NET support two types of permissions: static

and dynamic. Static permissions are known and granted at

load time. Dynamic permissions are unknown until runtime.

When Java loads a class, an instance of the abstract class,

ClassLoader, is responsible for creating the association be-

tween the loaded class and its protection domain. These static

permissions are associated with the class at runtime through

a protection domain (PD). Each Java class will be mapped to

one PD, and each PD encapsulates a set of permissions. A PD

is determined based on the principal running the code, the

code’s signers, and the code’s origin. If two classes share the

same context (principal, signers and origin), they will be

assigned to the same PD, since their set of permissions will

be the same. Prior to J2SE 1.4, permissions were assigned stat-

ically at load time by default, but dynamic security permis-

sions have been supported since J2SE 1.4 (Sun Microsystems,

2003). This provides more flexibility, but increases complexity

and makes reasoning about security policies difficult.

To assign static permissions at load time in Java, a class

loader will assign permissions to a PD based on properties of

the code and its source, and the loaded class will be associated

with that single PD for the duration of the class’ lifetime (Sun

Microsystems, 2003; Lindholm and Yellin, 1999). Several flaws

have been reported in Java’s class loading mechanisms, in-

cluding 8 documented from Sun Microsystems, Sun Alert and

Mitre Corporation, Common Vulnerabilities (see Table 1). It is

important to note that these static permissions do not depend

upon the dynamic permissions as specified in the Java policy

files but rather depends on the class loader loading a class.

.NET uses a similar approach to associate permission sets

with assemblies. The role of the ClassLoader in Java is divided

between the PolicyManager and ClassLoader in .NET. The

PolicyManager first resolves the granted permission set

(LaMacchia et al., 2002, p. 173–5). Then the CLR stores the per-

missions in a cached runtime object before passing the code

onto the ClassLoader which loads the class.

5.2. Code attributes

Both Java and .NET grant permissions based on attributes of

the executing code.

c o m p u t e r s & s e c u r i t y 2 5 (2 0 0 6) 3 3 8 – 3 5 0346
The Java VM examines the CodeSource and Principal and

grants permissions based on the values found in these objects.

The CodeSource is used to determine the location or origin of

the code and signing certificates (if used), and the Principal

represents the entity executing the code. The associated

PD of a class encapsulates these objects along with the Class

Loader and static permissions granted at load time. To extend

the default policy implementation, the Policy class may need

to be rewritten, or a different SecurityManager may need to be

implemented. It is questionable if this level of extensibility is

actually a good idea – it introduces significant security risks,

but the benefits in practice are unclear. Problems with class

loading were found in early Java implementations (Dean

et al., 1996), and continue to plague Java today. In one recent

classloader vulnerability (CVE-2003-0896 in Table 1), arbitrary

code could be executed by skipping a call to a SecurityManager

method. The corresponding code characteristics in .NET are

known as evidences. .NET’s PolicyManager uses two types of ev-

idences, host evidences and assembly evidences, to determine

the permissions granted to an assembly. Assembly evidences

are ignored by default. Evidences include the site of origin,

zone (corresponding to Internet Explorer zones), publisher

(X.509 certificate) and strong name (a cryptographic code sig-

nature). .NET’s design incorporates the ability to extend not

only the permissions that may be granted, but also to add

new evidences as well. Any serializable class can be used as

evidence (Freeman and Jones, 2003).

Java and .NET both provide complex policy resolution

mechanisms and a bug in the policy resolution could open

a significant security hole. There are difficult issues to con-

sider in introducing new permissions including XML serializa-

tion, and declarative/imperative testing of a new permission

(see Section 6, LaMacchia et al., 2002, p. 534–44). Although

.NET does not provide the same level of extensibility as Java

in customizing security policy enforcement, a developer cre-

ating a new permission must still be careful to avoid errors.

5.3. Bootstrapping

Both platforms need some way of bootstrapping to install

the initial classes and loading mechanisms. Java 1.0 used

a trusted file path that gave full trust to any class stored on

the path. Code on the system CLASSPATH was fully trusted, so

problems occurred when untrusted code could be installed

on the CLASSPATH (Hopwood, 1996). Java 2 treats code found

on the CLASSPATH as any other code, but maintains backwards

compatibility by using the bootclasspath to identify com-

pletely trusted code necessary to bootstrap the class loader.

Hence, the same risks identified with installing untrustworthy

code on the CLASSPATH now apply to the bootclasspath. Having

exceptions based on the location of code is not wise, since an

attacker who can modify the trusted path or trick a web

browser into storing code in a location on the trusted path

will be able to execute a program with full permissions.

.NET uses full-trust assemblies to break the recursive load-

ing of policies since all referenced assemblies must also be

loaded (LaMacchia et al., 2002, p. 112). .NET did not completely

abandon the notion of a trusted path, but it has added some
security. .NET uses a global assembly cache (GAC) where

assemblies in this cache are signed and then shared among
different assemblies. The GAC acts as a trusted repository,

similar to the bootclasspath in that an assembly within the

GAC will be fully trusted (Microsoft Corporation, Security

Briefs). If an attacker can successfully modify an assembly in

the GAC, then the attacker may have full control of the ma-

chine. Sometimes fully trusted assemblies across all policy

levels are needed; for example, the default assemblies used

for policy resolution that is fully trusted by default.

As an illustration, the .NET default policy trusts all signed

Microsoft assemblies, and this is checked by examining the

strong name evidence of each assembly. If all four policy

levels fully trust signed Microsoft assemblies, then any as-

sembly from Microsoft is fully trusted on that machine.

6. Enforcement

By allowing partially trusted code to execute, policy enforce-

ment becomes more complicated. Policy enforcement is

chiefly done at runtime by the virtual machine. Unlike Java,

.NET can perform some policy enforcement statically by

allowing the programmer to specify static or dynamic policy

enforcement. Declarative security permissions are statically

known and contained within the assembly manifest. Impera-

tive security permissions are compiled to MSIL and evaluated

at runtime. The declarative permissions can be class-wide or

method-wide and can be used for some actions that cannot

be expressed using imperative permissions. When runtime in-

formation is needed to evaluate a request (e.g., a filename),

imperative permissions must be used.

Runtime enforcement mechanisms share many similari-

ties across the two platforms. Both platforms implement a ref-

erence monitor designed to follow the principle of complete

mediation by checking the necessary permissions before

allowing any sensitive operation. In Java, the SecurityManager

checks code permissions. Programmers can implement Secur-

ityManager subtypes to customize security checking, and pro-

grams with sufficient permission can change the security

manager. This makes it especially easy to exploit a type safety

break in Java, since the security manager can be set to null to

turn off all access control. .NET’s design does not allow pro-

grammers to implement their own SecurityManager class,

but the reduced flexibility provides stronger security.

6.1. Checking permissions

When a Java program attempts a restricted operation, the

called Java API method first calls the SecurityManager’s appro-

priate checkPermission method which calls the AccessControl-

ler to determine if the necessary permission is granted. When

deciding to grant a permission to execute a requested action,

the AccessController checks that the current executing thread

has the needed permission.

The 12 API bugs in Table 1 illustrate the difficulty in imple-

menting permission checks correctly. Many of these vulnera-

bilities involve an API method that allows access to

a protected resource without the necessary security checks.

CVE-2000-0676 and CVE-2000-0711 both bypass calls using

SecurityManager by exploiting the java.net.ServerSocket

and netscape.net.URLInputStream classes. Another flaw,

c o m p u t e r s & s e c u r i t y 2 5 (2 0 0 6) 3 3 8 – 3 5 0 347
CVE-2000-0563, used browser redirection to gain sensitive data

in java.net.URLConnection. Two vulnerabilities, CVE-2002-0866

and CVE-2002-1260, involve bugs in the Java Database Connec-

tivity (JDBC) classes with the former allowing an attacker to ex-

ecute any local Dynamic Link Library (DLL) through a JDBC

constructor and the latter allowing access to a database

through a JDBC API call. CVE-2002-1290 and CVE-2002-1293

were bugs in Microsoft’s JVM that exposed interfaces to the

INativeServices and CabCracker classes allowing access to the

clipboard or local file system, respectively. CVE-2002-0865,

CVE-2002-0979 and CVE-2002-1288 exposed various resources

including XML interfaces, logging, and directory information.

The last API bugs, CVE-2005-3905 and CVE-2005-3906, are

both related to errors in the Reflection API enabling an attacker

to read and write local files or execute applications on the local

machine.

Java’s AccessController must not only verify that the cur-

rent stack frame has the required permission, but also that

the calling stack frames do. In this way, previously called

methods cannot gain privileges by calling higher privileged

code. Since every method belongs to a class and a class to

a PD, each stack frame’s permissions are checked through

the associated PD in addition to any dynamic permissions

granted by the policy. If any stack frame has not been granted

the permission for the requested access, then the request will

be denied by throwing an exception. The AccessController ac-

complishes permission checks by calling a method to indi-

rectly return an object encapsulating the current PDs on the

stack (i.e., current context) and then checking those PDs’ per-

missions. The act of gathering the current permissions from

each stack frame is called a stack walk.

.NET performs a similar stack walk with Frame objects rep-

resenting the call frames on the stack. To support multiple

languages (including type unsafe languages like Cþþ), the

stack has frames that are managed and unmanaged. The man-

aged frames are frames that are verified for type safety while

the unmanaged frames have no safety guarantees. As the

stack is traversed, the managed code’s permissions are

checked with a security object contained in each JIT-compiled

method on the stack (Stutz et al., 2003).

6.2. Modifying the stack walk

In both platforms, programmers can modify the stack walk.

This should be done to enforce the principle of least privilege

by explicitly denying permissions to called methods, but pro-

grammers must be careful to not allow more permissions

when changing stack walk behavior.

A Java program can modify the stack walk to deny certain

permissions past a specific stack frame or to simply stop check-

ing permissions at a specific point. If a method invokes doPri-

vileged (PrivilegedAction), the stack walk will not look at any

frames further up the call stack. Attacks have occurred where

the caller gains access to some protected resource by calling

code that has higher privileges which indirectly provides ac-

cess to that resource (for example, CVE-2002-1288). To deny

permissions to a method in Java, a method can invoke doPrivi-

leged (PrivilegedAction, AccessControlContext). This creates

a new context that is the same as the stack’s current execution

context without the denied permissions. The stack walk will
then use this context to check permissions. However, using

doPrivilegedcan introduce access modifier issues when imple-

mented with an inner class (Gong et al., 2003; Sun Microsys-

tems, Permissions).

.NET has extended Java’s stack walk design with the Per

mission methods PermitOnly(), Assert(), and Deny(). A stack

walk is done when a demand() call is made, similar to Java’s

checkPermission(). .NET provides slightly better interfaces

for the programmer to alter the stack walk since many of

the mechanisms involve only one method call after construct-

ing the specified permissions. Calling the PermitOnly()

method means a stack walk will continue only if the permis-

sion is granted. After a Deny() call, if any of the specified per-

missions are requested an exception is thrown to terminate

the stack walk. Assert() terminates the stack walk success-

fully if the current stack frame has the asserted permission.

Although stack inspection is complex in both models,

.NET’s added flexibility using these new Permission methods

can be used to help programmers improve security by writing

code that does not expose protected resources unnecessarily.

7. Psychological acceptability

Saltzer and Shroeder (1973) identified ‘‘Psychological Accept-

ability’’ as their final security principle, and emphasized the

importance of protection mechanisms fitting the user’s pro-

tection goals. This principle is often overlooked (Clear, 2002),

and challenging to follow even when it is considered, and

Java and .NET are not exceptions.

Both VMs have extensible policies, but their policies are still

difficult for typical users to configure and understand. Since

the permissions do not clearly show what resources they

may protect, the user may grant access to resources uninten-

tionally. Even if a machine is properly configured, a user may

be faced with a situation where the policy is violated, a security

exception is raised, and the application terminates. In order to

get the application to run, the user needs to understand what

security violation happened, how to configure the machine to

permit the security sensitive operation, and what security

implications are there in granting the requested operation. If

a certificate has been revoked or expired, exceptions will occur

that a normal user will have trouble in understanding. Most

likely, the user may grant full trust in both of these situations

if the application is important enough. When a security excep-

tion or other similar exception occurs, more guidance is

needed, so the user can take the correct action.

In Sun’s Java Development Kit (JDK) 1.0 the security model

treated all applets as untrusted and confined them to a limited,

albeit inflexible, environment known as the Java sandbox. JDK

1.1 introduced signed applets, so the user could choose to

execute the applet with full permissions based on the entity

associated with the applet’s signature. Just prior to the release

of JDK 1.2, Microsoft and Netscape introduced a more flexible

security model, the Java model in this paper, that allowed

users to execute partially untrusted code with limited permis-

sions. Unfortunately, Netscape’s model (Netscape Capabilities

Model) had drawbacks to its initial implementation. In the

Netscape Capabilities Model, whenever an applet needs per-

mission to access a protected resource, the user is presented

c o m p u t e r s & s e c u r i t y 2 5 (2 0 0 6) 3 3 8 – 3 5 0348
with a dialog box. Once the user grants the permission, the ap-

plication can perform the requested operation until the user

terminates Netscape Communicator (Netscape Communica-

tions Corporation). Although the user can click a button for

further details, another dialog box is presented to help. If the

user runs the applet again after restarting Netscape, then

he/she again goes through the same process with the alterna-

tive options of denying permission, or he/she can perma-

nently grant the requested permissions to the applet.

Bombarding the user with dialog boxes that require a quick se-

curity decision to be made in order for execution to continue is

a bad idea (McGraw and Felten, 1999). Luckily this behavior

has changed in current Java security models, and security ex-

ceptions do not encourage the user to make a hasty decision.

Another problem area is the default permissions. The de-

signers took steps to protect certain API functions, but it can

be difficult to determine which permissions to grant by looking

only at the permission (and not the resource). With a higher

granularity of protection in some permissions, .NET helps

the user to choose safe and usable permissions. For example,

the clipboard permission is not a binary decision where the

code has all or nothing access to a resource. Instead, code

can have unlimited write access to the clipboard, but it cannot

have read access. Since this permission model allows finer-

grained protection, this allows the user to safely execute

code while not having to grant full read/write access to the

clipboard. Since a user only wants to protect his/her private

data, this model conforms to the user’s understanding. An-

other example is the window permissions that protect the

user from fake dialog boxes and phishing attacks by enforcing

restrictions on specific window components (e.g., Forms,

DataGrids, and Cursors) (Microsoft Visual Studio). Users inter-

act with GUI programs through these types of window compo-

nents, so the user is better able to evaluate implications on

security by granting access to these familiar resources.

8. Conclusion

Java and .NET have similar security goals and mechanisms.

.NET’s design benefited from past experience with Java. Exam-

ples of this cleaner design include the MSIL instruction set,

code access security evidences, and the policy configuration.

.NET has been able to shield the developer from some of the

underlying complexity through their new architecture.

Where Java evolved from an initial platform with limited se-

curity capabilities, .NET incorporated more security capability

into its original design. With age and new features, much of

the legacy code of Java still remains for backwards compatibility

including the possibility of a null SecurityManager, and the

absolute trust of classes on the bootclasspath. However, Java is

applying a learned lesson as it makes the verifier simpler (at

a costofcompatibility). Hence, inseveralareas .NEThas security

advantages over Java because of its simpler and cleaner design.

Most of the lessons to learn from Java’s vulnerabilities echo

Saltzer and Schroeder’s classic principles, especially economy

of mechanism, least privilege and fail-safe defaults. Of course,

Java’s designers were aware of these principles, even though in

hindsight it seems clear there were occasions where they could

(and should) have been followed more closely than they were.
Some areas of design present conflicts between security and

other design goals including fail-safe defaults vs. usability

and least privilege vs. usability and complexity. For example,

the initial stack walk introduced in Java has evolved to

a more complex stack walk in both architectures to enable de-

velopers limit privileges. In addition, both platforms default

policies could be more restrictive to improve security, but re-

strictive policies hinder the execution of programs. .NET’s

use of multi-level policies with multiple principals provides

another example of showing the principles of least privilege

and fail-safe defaults in contention with usability and com-

plexity. Several of the specific complexities that proved to be

problematic in Java have been avoided in the .NET design,

although .NET introduced new complexities of its own. Despite

.NET’s design certainly not being perfect, it does provide en-

couraging evidence that system designers can learn from

past security vulnerabilities and develop more secure systems.

We have no doubts, however, that system designers will con-

tinue to relearn these principles for many years to come.

Acknowledgements

This work was funded in part by the National Science Founda-

tion (through grants NSF CAREER CCR-0092945 and NSF ITR

EIA-0205327) and DARPA (SRS FA8750-04-2-0246). The authors

thank Somesh Jha, Jane Prey, and Elizabeth Strunk for helpful

comments on this paper.

Appendix A.
.NET security issues

There have been 8 security issues identified in the .NET frame-

work listed in Microsoft’s Knowledge Base (Farkas), only one

(KB327523) of which appears to be exploitable. Because this

problem appears to be in an ASP.NET HTTP module’s parsing

of an HTML request (also included in the CVE database as

CAN-2004-0847) and not in the .NET framework (Baier), we

do not count this as a .NET platform security vulnerability.

However, this is still a significant security vulnerability that

could be exploited by an attacker to obtain arbitrary .aspx files

from an ASP.NET web server. Notably, similar issues (CAN-

2002-1258, CAN-2002-1295, CAN-2002-1291, CVE-2002-1257,

CAN-2002-1286) appeared in parsing URLs and HTML content

in Microsoft’s Java implementation in the past (Clear, 2002)

(these are not included in the count of Java security vulnera-

bilities either).

Of the remaining seven issues, two (KB836989, KB828295)

are not security vulnerabilities, but false positives in which

a security exception prevents a safe operation from proceed-

ing. Two more bugs (KB324488, KB321562), also false posi-

tives, do not throw a security exception, but still prevent

a normally safe operation. Two of the remaining bugs are

in system classes that were implemented incorrectly. The

first (KB327132) ignores a parameter for Passport authentica-

tion in ASP.NET incorrectly authenticating users without re-

quiring a PIN. The other (KB839289) is a GC heap corruption

exhibited in a cryptography provider class when the class

constructor is called during garbage collection. The last

c o m p u t e r s & s e c u r i t y 2 5 (2 0 0 6) 3 3 8 – 3 5 0 349
Microsoft knowledge base bug (KB323683) is an optimization

fix for NLTM authentication that does not require re-authen-

tication on multiple calls over the same connection. Although

these are legitimate security issues, none of them are at the

level of the .NET platform itself.

r e f e r e n c e s

AlephOne. Smashing the stack for fun and profit. Phrack
November 1996;7(49).

Baier Dominick. Security Bug in .NET forms authentication,
<http://sourceforge.net/mailarchive/forum.php?thread_
id¼5671607&forum_id¼24754>; November 1996.

Clear Tony. Design and usability in security systems – daily life as
a context of use? ACM SIGCSE Bulletin December 2002;4(34).

Cook WR. A proposal for making Eiffel type-safe. In: Third European
conference on object-oriented programming (ECOOP); July 1989.

Core Security Technologies Advisory. Snort TCP stream reas-
sembly integer overflow vulnerability, <http://www.security
focus.com/advisories/5294>; December 2002.

Dean Drew, Felten Edward W, Wallach Dan S. Java security: from
HotJava to Netscape and beyond. IEEE Symposium on Security
and Privacy May 1996.

Directx 9.0 SDK Update. Sound permission, <http://msdn.micro
soft.com/library/default.asp?url¼/library/en-us/directx9_m/
directx/ref/ns/microsoft.directx.security/c/soundpermission/
soundpermission.asp>; May 1996.

ECMA International. Standard ECMA-335: common language
infrastructure. 2nd ed. <http://www.ecma-international.org/
publications/standards/Ecma-335.htm>; December 2002.

Erlingsson Úlfar. The inlined reference monitor approach to
security policy enforcement. Ph.D. thesis, Cornell University
Department of Computer Science (Technical Report 2003–
1916); 2003.

Evans David, Twyman Andrew. Policy-directed code safety. IEEE
Symposium on Security and Privacy May 1999.

Farkas Shawn. List of bugs that are fixed in the .NET Framework
1.1 Service Pack 1 (SP1), <http://blogs.msdn.com/shawnfa/
archive/2004/09/02/224918.aspx>; May 1999.

Freeman Adam, Jones Alan. Programming .NET security. O’Reilly;
June 2003.

Gong Li, Ellison Gary, Dageforde Mary. Inside Java 2 platform
security. 2nd ed. Sun Microsystems; June 2003.

Hopwood David. Java security bug (applets can load native
methods). Risks Forum March 1996.

LaDue Mark. A collection of increasingly hostile applets, <http://
www.cigital.com/hostile-applets/>; March 1996.

LaMacchia Brian A, Lange Sebastian, Lyons Matthew,
Martin Rudi, Price Kevin T. NET framework security. Addison-
Wesley; April 2002.

Last Stage of Delirium Research Group. Java and virtual machine se-
curity vulnerabilities and their exploitation techniques,<http://
www.lsd-pl.net/documents/javasecurity-1.0.0.pdf>; April 2002.

Leroy Xavier. Java bytecode verification: an overview. In: Computer
aided verification, vol. 2101. Springer Verlag; 2001. p. 265–85.

Lewin Mark. Email communication; January 2004.
Lindholm Tim, Yellin Frank. The Java virtual machine specifica-

tion. 2nd ed. Addison-Wesley; April 1999.
McGraw Gary, Felten Edward W. Securing Java. John Wiley and

Sons; January 1999.
Meier JD, Mackman Alex, Dunner Michael, Vasireddy Srinath.

Building secure ASP .NET applications: authentication, au-
thorization, and secure communication, <http://msdn.micro
soft.com/library/default.asp?url¼/library/en-us/dnnetsec/
html/SecNetch13.asp>; January 1999.
Meijer Erik, Gough John. Technical overview of the common
language runtime, <http://research.microsoft.com/wemeijer/
Papers/CLR.pdf>; January 1999.

Microsoft Corporation. Microsoft portable executable and com-
mon object file format specification, <http://www.microsoft.
com/whdc/system/platform/firmware/PECOFF.mspx>; Janu-
ary 1999.

Microsoft Corporation. Security briefs: strong names and security
in the .NET framework, <http://msdn.microsoft.com/netfra
mework/?pull¼/library/en-us/dnnetsec/html/strongNames.
asp>; January 1999.

Microsoft Corporation. Technology overview, <http://msdn.mi
crosoft.com/netframework/previous/v1.0/overview/default.
aspx>; January 1999.

Microsoft Visual Studio. Additional security considerations in
Windows forms, <http://msdn.microsoft.com/library/en-us/
vbcon/html/vbconadditionalsecurityconsiderationsinwin
dowsforms.asp>; January 1999.

Mitre Corporation. Common vulnerabilities and exposures (ver-
sion 20040901), <http://www.cve.mitre.org/>; January 1999.

Netscape Communications Corporation. Netscape object signing,
<http://web.archive.org/web/20040221120620/http://devel-
oper.netscape.com/docs/manuals/signedobj/trust/owp.htm>;
January 1999.

Pierce Benjamin C. Bounded quantification is undecidable. In:
ACM SIGPLAN symposium on principles of programming
languages (POPL); January 1992.

Pilipchuk Denis. Java vs. .NET security, <http://www.onjava.com/
pub/a/onjava/2003/11/26/javavsdotnet.html>; January 1999.

Pynnonen Jouko. Vulnerabilities in Microsoft’s Java implemen-
tation, <http://www.securityfocus.com/archive/1/290966>;
January 1999.

Saltzer Jerome, Schroeder Michael. The protection of information
in computer systems. In: Fourth ACM symposium on operat-
ing system principles; October 1973 [revised version in Com-
munications of the ACM, July 1974].

Stutz Daivd, Neward Ted, Shilling Geoff. Shared source CLI
essentials. O’Reilly; March 2003.

Stutz David. The Microsoft shared source CLI implementation,
<http://msdn.microsoft.com/library/default.asp?url¼/library/
en-us/Dndotnet/html/mssharsourcecli.asp>; March 2003.

Sun Microsystems. JSR 202: Java Class File Specification Update,
<http://www.jcp.org/en/jsr/detail?id=202>.

Sun Microsystems. New Java SE Mustang Feature: Type Checking
Verifier, <https://jdk.dev.java.net/verifier.html>.

Sun Microsystems. Chronology of security-related bugs
and issues, <http://java.sun.com/sfaq/chronology.html>;
November 2002.

Sun Microsystems. Java 2 platform, standard edition: 1.4.2 API
specification, <http://java.sun.com/j2se/1.4.2/docs/api/>;
November 2002.

Sun Microsystems. Java 2 SDK 1.4.2 SCSL source, <http://www.
sun.com/software/communitysource/j2se/java2/download.
html>; November 2002.

Sun Microsystems. Java: the first 800 days, <http://web.archive.
org/web/20000815090553/http://java.sun.com/events/jibe/
timeline.html>; November 2002.

Sun Microsystems. Permissions in the Java 2 SDK, <http://java.
sun.com/j2se/1.4.2/docs/guide/security/permissions.html>;
November 2002.

Sun Microsystems. Sun alert notifications, <http://sunsolve.sun.
com/pub-cgi/search.pl,category: security java>; November
2002.

Sun Microsystems. Sun security bulletins article 218, <http://
sunsolve.com/pub-cgi/retrieve.pl?doctype¼coll&doc¼secbull/
218&type¼0&nav¼sec.sba>; November 2002.

Szor Peter. Tasting Donut, <http://www.peterszor.com/donut.
pdf>; November 2002.

http://sourceforge.net/mailarchive/forum.php%3Fthread_id%3D5671607%26forum_id%3D24754
http://sourceforge.net/mailarchive/forum.php%3Fthread_id%3D5671607%26forum_id%3D24754
http://sourceforge.net/mailarchive/forum.php%3Fthread_id%3D5671607%26forum_id%3D24754
http://sourceforge.net/mailarchive/forum.php%3Fthread_id%3D5671607%26forum_id%3D24754
http://www.securityfocus.com/advisories/5294
http://www.securityfocus.com/advisories/5294
http://msdn.microsoft.com/library/default.asp%3Furl%3D/library/en-us/cpguide/html/cpconpermissions.asp
http://msdn.microsoft.com/library/default.asp%3Furl%3D/library/en-us/cpguide/html/cpconpermissions.asp
http://msdn.microsoft.com/library/default.asp%3Furl%3D/library/en-us/cpguide/html/cpconpermissions.asp
http://msdn.microsoft.com/library/default.asp%3Furl%3D/library/en-us/cpguide/html/cpconpermissions.asp
http://msdn.microsoft.com/library/default.asp%3Furl%3D/library/en-us/cpguide/html/cpconpermissions.asp
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://blogs.msdn.com/shawnfa/archive/2004/09/02/224918.aspx
http://blogs.msdn.com/shawnfa/archive/2004/09/02/224918.aspx
http://www.cigital.com/hostile-applets/
http://www.cigital.com/hostile-applets/
http://www.lsd-pl.net/documents/javasecurity-1.0.0.pdf
http://www.lsd-pl.net/documents/javasecurity-1.0.0.pdf
http://msdn.microsoft.com/library/default.asp%3Furl%3D/library/en-us/cpguide/html/cpconpermissions.asp
http://msdn.microsoft.com/library/default.asp%3Furl%3D/library/en-us/cpguide/html/cpconpermissions.asp
http://msdn.microsoft.com/library/default.asp%3Furl%3D/library/en-us/cpguide/html/cpconpermissions.asp
http://msdn.microsoft.com/library/default.asp%3Furl%3D/library/en-us/cpguide/html/cpconpermissions.asp
http://research.microsoft.com/%7Eemeijer/Papers/CLR.pdf
http://research.microsoft.com/%7Eemeijer/Papers/CLR.pdf
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
http://msdn.microsoft.com/netframework/%3Fpull%3D/library/en-us/dnnetsec/html/strongNames.asp
http://msdn.microsoft.com/netframework/%3Fpull%3D/library/en-us/dnnetsec/html/strongNames.asp
http://msdn.microsoft.com/netframework/%3Fpull%3D/library/en-us/dnnetsec/html/strongNames.asp
http://msdn.microsoft.com/netframework/%3Fpull%3D/library/en-us/dnnetsec/html/strongNames.asp
http://msdn.microsoft.com/netframework/previous/v1.0/overview/default.aspx
http://msdn.microsoft.com/netframework/previous/v1.0/overview/default.aspx
http://msdn.microsoft.com/netframework/previous/v1.0/overview/default.aspx
http://msdn.microsoft.com/library/en-us/vbcon/html/vbconadditionalsecurityconsiderationsinwindowsforms.asp
http://msdn.microsoft.com/library/en-us/vbcon/html/vbconadditionalsecurityconsiderationsinwindowsforms.asp
http://msdn.microsoft.com/library/en-us/vbcon/html/vbconadditionalsecurityconsiderationsinwindowsforms.asp
http://www.cve.mitre.org/
http://web.archive.org/web/20040221120620/http%3A//developer.netscape.com/docs/manuals/signedobj/trust/owp.htm
http://web.archive.org/web/20040221120620/http%3A//developer.netscape.com/docs/manuals/signedobj/trust/owp.htm
http://www.onjava.com/pub/a/onjava/2003/11/26/javavsdotnet.html
http://www.onjava.com/pub/a/onjava/2003/11/26/javavsdotnet.html
http://www.securityfocus.com/archive/1/290966
http://msdn.microsoft.com/library/default.asp%3Furl%3D/library/en-us/cpguide/html/cpconpermissions.asp
http://msdn.microsoft.com/library/default.asp%3Furl%3D/library/en-us/cpguide/html/cpconpermissions.asp
http://msdn.microsoft.com/library/default.asp%3Furl%3D/library/en-us/cpguide/html/cpconpermissions.asp
http://www.jcp.org/en/jsr/detail?id=202
https://jdk.dev.java.net/verifier.html
http://java.sun.com/sfaq/chronology.html
http://java.sun.com/j2se/1.4.2/docs/api/
http://www.sun.com/software/communitysource/j2se/java2/download.html
http://www.sun.com/software/communitysource/j2se/java2/download.html
http://www.sun.com/software/communitysource/j2se/java2/download.html
http://web.archive.org/web/20000815090553/http%3A//java.sun.com/events/jibe/timeline.html
http://web.archive.org/web/20000815090553/http%3A//java.sun.com/events/jibe/timeline.html
http://web.archive.org/web/20000815090553/http%3A//java.sun.com/events/jibe/timeline.html
http://java.sun.com/j2se/1.4.2/docs/guide/security/permissions.html
http://java.sun.com/j2se/1.4.2/docs/guide/security/permissions.html
http://sunsolve.sun.com/pub-cgi/search.pl%2Ccategory%3A%20security%20java
http://sunsolve.sun.com/pub-cgi/search.pl%2Ccategory%3A%20security%20java
http://sunsolve.com/pub-cgi/retrieve.pl%3F%20doctype%3Dcoll%26doc%3D%20secbull/218%26type%3D0%26nav%3Dsec.sba
http://sunsolve.com/pub-cgi/retrieve.pl%3F%20doctype%3Dcoll%26doc%3D%20secbull/218%26type%3D0%26nav%3Dsec.sba
http://sunsolve.com/pub-cgi/retrieve.pl%3F%20doctype%3Dcoll%26doc%3D%20secbull/218%26type%3D0%26nav%3Dsec.sba
http://sunsolve.com/pub-cgi/retrieve.pl%3F%20doctype%3Dcoll%26doc%3D%20secbull/218%26type%3D0%26nav%3Dsec.sba
http://sunsolve.com/pub-cgi/retrieve.pl%3F%20doctype%3Dcoll%26doc%3D%20secbull/218%26type%3D0%26nav%3Dsec.sba
http://sunsolve.com/pub-cgi/retrieve.pl%3F%20doctype%3Dcoll%26doc%3D%20secbull/218%26type%3D0%26nav%3Dsec.sba
http://sunsolve.com/pub-cgi/retrieve.pl%3F%20doctype%3Dcoll%26doc%3D%20secbull/218%26type%3D0%26nav%3Dsec.sba
http://www.peterszor.com/donut.pdf
http://www.peterszor.com/donut.pdf

c o m p u t e r s & s e c u r i t y 2 5 (2 0 0 6) 3 3 8 – 3 5 0350
The DotGNU Project. DotGNU, <http://www.dotgnu.org/pnet.
html>; November 2002.

The Mono Project. What is Mono?, <http://mono-project.com/
about/index.html>; November 2002.

.NET framework developer’s guide. Permissions, <http://msdn.
microsoft.com/library/default.asp?url¼/library/en-us/
cpguide/html/cpconpermissions.asp>; November 2002.

Viega John, McGraw Gary. Building secure software. Addison-
Wesley Pub. Co.; September 2001.

Walker David. A type system for expressive security policies. In:
ACM SIGPLAN symposium on principles of programming
languages (POPL); January 2000.

Wallach Dan, Felten Edward. Understanding Java stack inspec-
tion. IEEE Symposium on Security and Privacy May 1998.

Wallach Dan, Balfanz Dirk, Dean Drew, Felten Edward. Extensible
security architectures for Java. In: Symposium on operating
systems principles; October 1997.

Yellin Frank. Low level security in Java. In: Fourth international
WWW conference; December 1995.
David Evans is an Assistant Professor at the University of

Virginia and Chair of the Computer Science BA committee.

He has SB, SM and PhD degrees in Computer Science from

MIT. His research interests include program analysis, exploit-

ing properties of the physical world for security, and applica-

tions of cryptography. He teaches courses on computer

science, software engineering, security, and cryptography.

For more, see http://www.cs.virginia.edu/evans/.

Nathanael Paul is a doctoral candidate at the University of

Virginia in Computer Science. In 2000, he received a B.S. in

Computer Science from Bob Jones University and a M.S. in

Computer Science from Clemson University in 2002. His

primary research interests in security includes electronic

voting, virtual machines and malware. He is a member of

ACM and USENIX.

http://www.dotgnu.org/pnet.html
http://www.dotgnu.org/pnet.html
http://mono-project.com/about/index.html
http://mono-project.com/about/index.html
http://msdn.microsoft.com/library/default.asp%3Furl%3D/library/en-us/cpguide/html/cpconpermissions.asp
http://msdn.microsoft.com/library/default.asp%3Furl%3D/library/en-us/cpguide/html/cpconpermissions.asp
http://msdn.microsoft.com/library/default.asp%3Furl%3D/library/en-us/cpguide/html/cpconpermissions.asp
http://msdn.microsoft.com/library/default.asp%3Furl%3D/library/en-us/cpguide/html/cpconpermissions.asp
http://www.cs.virginia.edu/evans/

	Comparing Java and .NET security: Lessons learned and missed
	Introduction
	Platform overview
	Low-level code safety
	Verification
	Instruction sets
	Function calls
	Object creation
	Exception handling
	Summary

	Defining policies
	Permissions
	Policies

	Associating policies with code
	Code permissions
	Code attributes
	Bootstrapping

	Enforcement
	Checking permissions
	Modifying the stack walk

	Psychological acceptability
	Conclusion
	Acknowledgements
	.NET security issues
	References

