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Hiding in Groups:
On the Expressiveness of Privacy Distributions

Karsten Nohl and David Evans

Abstract Many applications inherently disclose information because perfect privacy
protection is prohibitively expensive. RFID tags, for example, cannot be equipped
with the cryptographic primitives needed to completely shield their information
from unauthorized reads. All known privacy protocols that scale to the anticipated
sizes of RFID systems achieve at most modest levels of protection. Previous anal-
yses found the protocols to have weak privacy, but relied on simplifying attacker
models and did not provide insights into how to improve privacy. We introduce a
new general way to model privacy through probability distributions, that capture
how much information is leaked by different users of a system. We use this metric
to examine information leakage for an RFID tag from the a scalable privacy pro-
tocol and from a timing side channel that is observable through the tag’s random
number generator. To increase the privacy of the protocol, we combine our results
with a new model for rational attackers to derive the overall value of an attack.
This attacker model is also based on distributions and integrates seamlessly into
our framework for information leakage. Our analysis points to a new parameteriza-
tion for the privacy protocol that significantly improves privacy by decreasing the
expected attack value while maintaining reasonable scalability at acceptable cost.

1 Introduction

RFID labels in consumer products promise a world of new, convenient applications
such as smart homes and automated checkout, but also raise serious privacy con-
cerns. Among the many privacy intruding uses of RFID technology are corporate
spying and customer profiling. The profiles encode information similar to Internet
traces and, hence, have a certain monetary value.
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Privacy protocols can protect a tag’s identity from an attacker, but incur extra
cost that grows with the degree of privacy; the cost becomes prohibitive for perfect
privacy. Thus, practical protocols must trade some privacy for lower cost and higher
scalability. Previous analyses of scalable protocols concluded that the privacy loss
is high [5, 9]. In these analyses, the attacker is not assumed to be rational. Further-
more, although these analyses reveal a lack of privacy, they do not provide practical
insights into how to improve the protocols.

We present a new way of measuring privacy that not only captures the privacy
of the whole system but also the variance in privacy experienced by different users.
Unlike previous approaches that represent privacy in a single value (e.g., the aver-
age group size), our analysis measures privacy loss as a distribution of how much
information is leaked by different tags. We use our new privacy metric to derive
distributions of information leakage for two example cases: an RFID random num-
ber generator that encodes a timing side channel and the tree protocol. Our metric
works equally well in modeling these two very different sources of information and
can further be used to model almost any source of deterministic or probabilistic
information [10].

To derive a better understanding about the economics of privacy attacks and how
to improve protection against them, we model a realistic attacker who attempts to
collect traces because of their potential financial value. Our attacker is modeled as
a function that maps traces to their value. We derive an upper bound on the shape
of this function that allows us to model the most capable, yet rational attacker. An-
alyzing the privacy distribution of the tree-based hash protocol in light of this ratio-
nal attacker leads to an adjustment of the tree parameters that provides substantially
more privacy while incurring no extra tag cost and reasonable additional reader cost.
Restructuring the tree improves privacy significantly while preserving scalability.

Our main contribution is a new way of representing privacy in form of a probabil-
ity distributions which we demonstrate on a timing side channel in Section 3 and on
a privacy protocol in Section 4. We then use this metric to analyze the value that an
attack has to a rational attacker (Section 5), and propose a simple way for adjusting
the tree protocol to better trade-off attack value and protection cost (Section 6).

2 Background

This section provides background information and describes previous work on
defining privacy and measuring the privacy properties of RFID systems.

RFID Systems. The RFID tags we consider are small, cheap, passive radio-
readable labels. The tags have unique identification numbers that a reader can read
from the tag. The reader uses this ID to look up information from a back-end
database. Adding privacy protection to RFID tags leads to higher per-tag costs and
lower reading ranges (due to the increased power consumption), as well as increased
computational cost in the backend system. To support RFID systems with billions
of tags, this backend cost must grow sub-linearly with the size of the system.
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Privacy Protocols. Several RFID privacy protocols have been proposed, all of
which sacrifice at least one of scalability, availability, or strong privacy. The basic
hash protocol, in which a tag hashes a random nonce with a secret key, provides
strong privacy but does not scale well [16]. The database must try the keys of all
tags to find the one that matches. This computational overhead is prohibitive for
large systems.

A more scalable protocol assigns several secrets to each tag [9]. The secrets
are structured in a tree with the tags as the tree leaves. A tag ti is assigned
the secrets si,1,si,2, ...si,d where d is the depth of the tree (all secrets but the
last are shared with some of the other tags). When queried, tag ti responds with
H (si,1,r1) ,r1,H (si,2,r2) ,r2, · · · ,H

(
si,d ,rd

)
,rd where H (·, ·) is a strong one-way

function and the r j values are random nonces. The database executes the basic hash
protocol for each tree level to finds the secret used on each level. Once a leaf is
reached, the path from the root to the leaf uniquely identifies the tag. In the stan-
dard tree protocol, a tree with a constant branching factor at each level is used. This
tree-based hash protocol scales well beyond billions of tags. The drawback of the
protocol, however, is that secrets are shared among several tags and extracting the
secrets from some tags potentially allows tracking others. An attacker can uniquely
identify a tag with higher probability when more secrets of that tag are known. We
show in Section 6 that increasing the branching factor at the lowest tree level im-
proves privacy and that optimal trees for many scenarios have only two levels. In
previous proposals, a binary tree was discussed [9], which according to our analysis
has the least privacy of all possible trees.

Buttyan et al. also propose an algorithm for finding the optimal tree of secrets [4].
Their algorithm optimizes for a metric based on the average group size and generally
increases the depth of trees. In follow-up work, the same authors and Avoine propose
a new protocol that is equivalent to the two-level tree we propose [1]. They show
that even in the metric they optimize for, the two-level tree is always superior to the
trees their optimization algorithm finds. Our work provides the missing link between
measuring privacy and improving privacy within the same framework and explains
why trees with fewer levels provide more privacy.

Privacy Definition. The highest level of privacy possible in an identity system is
strong privacy as defined in [7]. Strong privacy requires that an attacker cannot dis-
tinguish between a pair of uncompromised tags after interacting with all the tags in
the system and extracting secrets from some tags. The only known way to efficiently
achieve strong privacy for large-scale systems is by using asymmetric cryptography.
Implementing the required public key ciphers on cheap RFIDs, however, is not pos-
sible [8].

The basic hash protocol can achieve strong privacy without asymmetric cryptog-
raphy, but it requires the reader to perform as many cryptographic hashing opera-
tions as there are tags in the system. Strong privacy cannot be achieved while also
matching the cost and scalability requirements of RFID systems [9, 11].

We define privacy as the state in which no rational attacker will attempt to com-
promise the system. Our definition of privacy acknowledges the fact that some
amount of information is always leaked in the real world and that any definition
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which is too strong cannot be fulfilled. A rational attacker will only attack a system
when the expected monetary (or other) return value exceeds the expected cost. Our
definition allows for some tags to have relatively weak privacy protection as long as
a large majority of tags experience strong protection and the attacker is very unlikely
to see many weakly protected tags. In our definition, privacy can be deduced from
information leakage, but the exact conversion between the two varies for different
attackers and systems. We present a general approach to estimating the value of an
attack from a distribution of information leakage in Section 5. Our model is abstract
in that we do not assume any specific value of readings, but rather show ways to
measure and improve privacy against any rational attacker.

Measuring Privacy. The privacy of the tree-based hash protocol has been es-
timated in several research papers. A first analysis calculated the probability that
two readings from the same tag can be linked [2]. The paper concluded that the
tree-based protocol provides insufficient privacy. We believe that this is too strong
a privacy definition, which cannot be achieved, and advocate that the ability of an
attacker to build whole traces should instead be considered. An alternative way of
calculating the privacy of a system is by measuring the average anonymity of all
tags. One such metric measures the average number of tags from which each tag
cannot be distinguished [4]. A more precise metric measures the entropy of these
groups [11]. Both approaches measure privacy as a single value, which is limiting in
two ways. First, condensing privacy into a singular value presumes how the attacker
will use the leaked information. Different attackers, however, use the information in
diverse ways and hence the privacy of a system depends on the attacker’s incentives
and capabilities. Secondly, when averaging the information leakage over all tags in
a system, information is lost about which parts of the system are mostly responsi-
ble for privacy deficits. Understanding the distribution of the information leakage
is crucial for reducing the amount of information leaked. In this paper, we use a
metric based on Shannon entropy from our previous work that measures the amount
of information disclosed by the tags [11]. We extend this metric to consider the dis-
tribution of information leaked by tag groups. The tags fall in different groups that
can be distinguished while tags within each group cannot. In a group of size g in a
system with N tags, log2(N

/
g) bits of information can be learned from each tag.

3 Side Channel Information Leakage

Privacy is potentially compromised at many layers including side channels. Side
Channels are often caused by physical variance across different tags and can be
observed as different timing, power consumption, or antenna characteristics. We
are analyzing the varying lag between the moment a tag is supplied with power
and when it starts operating. Because this latter time cannot be observed directly,
we measure it indirectly through the tag’s choice of random number that is used
during anti-collision. These random numbers are required to match certain statistical
randomness properties but do not guarantee randomness in a cryptographic sense
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[6]. In particular, an attacker can often bias the distribution of values, which, besides
breaking anti-collision, potentially compromises privacy.

Random number generators found on current tags (including cryptographic tags)
generate random numbers using a linear feedback shift register (LFSR) with con-
stant initial condition [12]. Each random value, therefore, only depends on the num-
ber of clock cycles elapsed between the time the tag is powered up (and the register
starts shifting) and the time the random number is extracted. The variation in the
choice of random number is hence a timing side channel that allows different groups
of tags to be distinguished. Since the random numbers on current tags are generated
deterministically, they are only unpredictable to attackers who cannot measure the
timing with accuracy smaller than the wrap-around time of the generator (which
for 16-bit random number is 0.6 seconds at 106 kHz [12]). Realistic attackers will
more likely measure with micro- or nano-second accuracy. An attacker can even
make a tag generate the same “random” number repeatedly by querying the tag at
exactly the right time. In theory, the numbers generated for a given timing should
be the same for all tags, because the circuitry that generates the numbers is the
same and no physical randomness is used. Therefore, no information about the tag
should be learned from the choice of number. In practice, however, we observe that
due to manufacturing differences, groups of tags can be distinguished based on how
quickly they start operating after the reader field is switched on. The distribution of
process variance follows a typical normal (Gaussian) distribution and so does the
average expected value generated by different tags. Most tags have too little vari-
ance to be distinguishable while few tags power up sufficiently slower or faster than
the average so that the expected random value is slightly before or after the aver-
age value in the LFSR sequence. Figure 1a shows a typical distribution of expected
average values for different tags that we estimated from our experiment. In this ex-
periment we queried several different cards for a random number after exactly the
same time. The average of each tag is slightly biased from the average of all tags.

The number and size of the groups that can are distinguishable due to their ran-
dom numbers depends on the amount of process variation and the measuring ac-
curacy of the attacker. The more variation exists among the tags and the better the
attacker can control the timing of the tag, the more groups can be distinguished. For
simplicity of our example, we assume the expected values to follow a normal dis-
tribution with standard deviation σ and an attacker with a timing resolution of 2σ .
Virtually all tags can be placed in one of four groups as shown in Figure 1: Those
having expected values slightly smaller or larger than the average, or significantly
smaller or larger than the average.

An attacker learns more information from tags in smaller groups. A group of
z tags corresponds to log2(N

/
z) bits of leaked information where N is the total

number of tags that an attacker potentially encounters (and is the total number of
tags in the system unless the attacker has extra knowledge to exclude some tags).
For the convenience of the following calculations, we calculate information in nats
rather than bits. Nats are similar to bits but computed with base e; 1 nat equals
1
/

ln(2) bits (approx. 1.33 bits). A group size z therefore corresponds to ln(N
/

z)
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(a) (b)

Fig. 1 Information disclosure of weak random number generator (a) distribution of varying ex-
pected value due to process variation; (b) distribution of information leakage.

nats of information. The distribution of information leakage for tags equipped with
the weak random number generator is shown in Figure 1b.

In our example, each of the two groups around the average value holds 47.7% of
the tags. The information leakage from tags in these two large groups is ln(1

/
0.477)=

0.74nats = 0.98bits. The leakage from tags in the two smaller groups that divert
more from the average value is consequently much higher at 3.84 nats (5.10 bits).

The privacy of a system is directly related to the distribution of information leak-
age. For the analyzed random number generator, privacy is therefore also directly
related to the amount of process variation. Privacy can be significantly increased by
lowering the process variation or by excluding a small number of outliers from the
system. A better lesson still to be learned from this analysis is that any RNG de-
sign that gives control over the generated numbers to the attacker is clearly flawed,
especially when also used for purposes other than anti-collision.

4 Tree Protocol Information Leakage

In the same way that we found the distribution of information leakage for the num-
ber generator, we can find similar distributions for most other sources. To analyze
the privacy of the tree protocol, we need to know the distribution of group sizes and
the likelihood that a randomly chosen tag falls into a group of a certain size. Tags
are indistinguishable to the attacker if they use the same subset of the secrets known
to the attacker. The larger the group of indistinguishable tags is, the more privacy is
provided for the tags in the group. The distribution of group sizes depends on the
tree parameterization and the set of secrets known to the attacker.

The tree protocol provides strong privacy if none of the secrets are known to the
attacker: all N tags in circulation are in one large group of size N. As the attacker
learns secrets from the tree, however, smaller groups of tags can be distinguished
and strong privacy is lost. For example, in a tree of size N = 256 with spreading
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factor k = 4 with one compromised tag, an attacker can group the tags into groups
of sizes 3, 12, 48, and 192 tags [11].

For z = 3,12,48,192 there are z tags in a group of size z and z
/

k tags in smaller
groups. In our example, there are 48 tags in a group of size 48 and 12+3+1 tags in
smaller groups. For all other values of z there are less than z + z

/
k tags in groups

smaller or equal to z. Therefore, the probability that a randomly chosen tag falls into
a group of size z or smaller after the secrets on a single tag have been captured is
upper-bounded by

Pr(Z ≤ z)≤ k
k−1

· z
N

. (1)

The one broken tag is no longer considered part of the system and Equation 1 is
defined over the range of group sizes actually found in the tree; that is, k−1≤ z≤
N · k−1

k .
To simplify the following calculations, we consider only the upper bound of

Equation 1. This bound corresponds to the case where one group for each possi-
ble size (1,2,3, ...) exists. These groups each hold k

/
(k−1) tags. While this case is

impossible to achieve in reality because a group of size z should have z members, it
provides a close enough upper bound on the real distributions of groups.

This upper bound on the cumulative distribution is shown in Figure 2a along
with the values of the real distribution. Note that the upper bound diverges most
from the real distribution for those groups that leak the least information, and least
for the more important groups that leak the most information. In our example tree
of 256 tags with one broken tag, there are 4/(4-1) = 1.33 tags in a group of size one,
another 1.33 tags in a group of size 2, and so forth. This configuration never appears
in reality but provides a close upper bound on the real distribution; and unlike the
real values, this bound can be expressed in a closed-form probability distribution.

The probability that x or more nats are leaked (as defined in Section 3) by a
randomly chosen tag is upper bounded by:

Pr(X ≥ x)≤ k
k−1

· 1
ex .

This is defined over the range of inputs that correspond to group sizes actually found
in the tree; that is, ln

( k
k−1

)
≤ x≤ ln

( N
k−1

)
.

So far, we only considered the case of a single broken tag. Assuming tags are
evenly distributed, each additional broken tag adds the same number of members
to each group (with the exception of the largest group which shrinks in size). For b
broken tags1, the probability that at least x nats of information for a given tag are
disclosed becomes

Pr(X ≥ x)≤ b · k
k−1

· 1
ex (2)

for the range ln
( k

k−b

)
≤ x≤ ln

( N
k−1

)
.

The probability that the system defeats an attacker who requires at least x nats
of information to be successful is: Pr(X < x) = 1− Pr(X ≥ x). Figure 2b shows

1 Our approximation is closest if b<k, but still valid otherwise.
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(a) (b)

Fig. 2 Probability that for a tree with b broken tags less than x nats of information are leaked by a
randomly selected tag, k is large. (a) real value vs. upper bound, one broken tag; (b) upper bound
for different numbers of broken tags.

this probability for different numbers of broken tags. Note that the distribution is
independent of the number of tags in the system and for large trees it is essentially
independent of the spreading factor, k. A realistic attacker will certainly behave
more complex than this simple threshold. We address this concern in the Section
5 with an extended model that acknowledges the rational and adaptive behavior of
realistic attackers.

Multi-Tag Attack. A sophisticated attacker will use all available information
to distinguish individuals. In particular, all tags that a person carries will be used
to track that person. Suppose each individual carries m tags that are randomly se-
lected from the tree. To create an identifier for a person, the attacker simply concate-
nates the information learned from the various tags the person carries. The different
identifier that can be build this way separate all individuals into separate groups,
which can again be reflected by a distribution of information leakage. The informa-
tion learned from each of the tags follows the exponential distribution described by
Equation 2. Summing several exponential distributions leads to a gamma distribu-
tion. Hence, the probability that a total of x nats of information are leaked from a
person that carries m tags is:

Pr(X = x) =
xm−1

(m−1) !
·b · k

k−1
· 1

ex .

This distribution is shown in Figure 3a for different m. The probability that not more
than c nats of information are leaked from a randomly chosen tag can be calculated
as the integral of this function up to c, which is shown in Figure 3b. Note that the
graph shows the probability that the system is not compromised, so lower values
indicate a higher probability of privacy compromise.
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(a) (b)

Fig. 3 (a) Distribution of information leaked by collection of m tags. (b) Probability that informa-
tion leaked by m tags is smaller than x nats.

5 Distinguishing Traces

Privacy-intruding uses of RFIDs include surveillance of individuals, corporate espi-
onage, and profiling of consumers. Rogue customer profiling is the most frequently
discussed scenario in the context of RFID privacy. Traces collected by a rogue reader
could be used in ways similar to Internet traces to build customer profiles and enable
price discrimination [13], and therefore constitute a certain value. In many scenar-
ios, RFIDs primary purpose is to build such profiles and customers are often pro-
vided with price incentives to participate in loyalty schemes. But while legitimate
collecting of consumer data is transparent and provides incentives to the customer,
rogue readers will try to read the same information from the tags without owner
consent. Another rational attack scenario is corporate espionage where information
is collected from RFID labels on products to learn their internal business informa-
tion of competitors. Lastly, tracking attackers keep individuals under surveillance
through RFID readings. Our analysis of the expected attack value in this section and
the proposed modification of the tree protocol in Section 6 apply equally to all three
types of attacker. In this analysis, we avoid making restrictive assumptions about
the actual use of collected traces or attempt to quantify their value. Instead, we as-
sume that in any attack, the attackers’ objective is to distinguish tags in order to
build traces, which is more likely when the attacker has more information about the
tags. Our privacy metric, therefore, measures the amount of information the attacker
learns about different tags. Privacy is achieved when the expected cost of any attack
exceeds the expected return.

Other Information Sources. Attackers are not limited to information from the
tree protocol or random number generator. Our approach of modeling informa-
tion leakage as a probability distribution applies just as well to all other informa-
tion sources such as physical side channels. Sources that might be used in an at-
tack include the physical characteristics of the tag (e.g., radio fingerprint), meta-
information (e.g., location and time of read), and information from other detection
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systems, such as biometric identification systems like face and voice recognition.
The exact distribution of many of these sources is as of yet unknown. In the next
section we show how all these additional sources can be modeled as attacker strat-
egy.

Threat Model. We are considering an attacker that mines RFID data sets for
profitable traces, where a trace is a set of readings from the same tag. In order to
build traces, an attacker wants to link the different RFID readings collected from the
same individual. Each reading consists of time, place, the randomized tag identifier,
and potentially further metadata. The attacker’s goal is to extract individual traces
form a collection of many intermingled traces. The likelihood that the attacker will
be successful grows with the amount of information leaked by the tags the indi-
vidual carries. Readings have higher value to the attacker when they carry more
information.

The data set the attacker collects is composed of many intermingled traces from
different tags. We assume that each individual trace becomes valuable only when
it can be separated from all other traces thus identifying a set of readings from a
single tag (or a conjoined group of tags). Whether a trace can be separated using data
from the protocol level depends on the secrets known to the attacker. The previous
section derives the expected sizes of tag groups distinguishable on the protocol level
for an attacker with a given number of compromised tags. To separate those traces
that are indistinguishable at the protocol level, the attacker will further employ data
mining techniques, use additional information sources such as the weak random
numbers from Section 3, other side channel information, or contextual information
such as place and time of read to distinguish traces. To capture the success of the
attacker in doing so, we introduce two functions: the attacker strategy function,
which describes the sophistication of the attack, and the binning function, which
captures the clustering of traces.

The attacker strategy function encodes the probability with which an attacker
can distinguish traces that are indistinguishable at the protocol level. The function
captures the side channel information and data mining techniques that are available
to the attacker, and varies widely for different attackers. Even though the function is
generally unknown—even to the attacker—we can derive an upper bound on it.

First, we define P as the average probability that a set containing two traces can
be distinguished. This average probability is closely related to the success of our at-
tacker who is interested in collecting a large number of traces with high probability.
Previous analyses measure the least privacy experienced by any of the tags [3]. In
contrast, privacy in our model is achieved if the average protection is high enough to
discourage all rational attackers from attacking a system while the actual protection
experienced by different users depends on the set of secrets an attacker possesses.

Given a set of any number of readings known to come from two different tags,
the attacker can separate the readings into two groups based on the tag from which
they were generated with probability P. It follows that traces cannot be separated
from groups of three intermingled traces with average probability better than P2. If
the chances of extracting a trace from a set of three traces were higher, an attacker
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could distinguish two traces with a probability higher than P by intermingling an
additional trace. We can generalize to any number of intermingled traces:

Trace Extraction Theorem: Let the average probability over all traces that two
traces can be distinguished be P. Then a trace cannot be extracted from a set with
g > 1 traces with an average probability better than P(g−1).

To prove this theorem we show that when a trace is added to a set of traces,
extracting that trace from the set is at least as difficult as distinguishing the trace
from every member of the set. We further show that this probability is always max-
imized when, given the average probability of distinguishing two traces, P, all pairs
of traces can be distinguished with the same probability. The strategy function is,
hence, upper-bounded by: S(g) = P(g−1). The proof is given in the full version of
this paper.

Second, the binning function describes the distribution of traces into the different
groups that can be distinguished in the tree using protocol information leakage.
Given a distribution of groups as derived in Section 4, a system with size N, and a
data set with t + 1 intermingled traces, the probability that at most g traces from a
group of size z are included in the data set is:

B(z,g)≤
(

t
g

)
·
(

1− z
N

)t−g
.

Expressed in terms of encoded information, the probability that g indistinguishable
traces with x nats of entropy (that is, traces from a group with size z = N

/
ex) are

found in the set is:

B(x,g) =
(

t
g

)
·
(

1− 1
ex

)t−g

·
(

1
ex

)g

.

The binning function is shown in Figure 4a for traces with different entropies.
Last, the success function encodes the probability that a trace with given entropy

can be extracted. This is the likelihood that the trace is intermingled with (g−1)
other traces, B(x,g), multiplied by the probability that the attacker can extract a
trace from a set of g traces, S(g), and summed over all possible mixes (g = 0,1, ..., t;
where g = 0 is a single, not intermingled trace):

Su(x) =
t

∑
g=0

(B(x,g) ·S(g)) .

The success function is shown in Figure 4b. To determine whether an attack is
successful, the success function needs to be interpreted in light of the attacker’s
requirements. The value of an attack to the attacker depends on the likelihood that
traces can be extracted from the collected data, which is encoded in the success
function. Multiplying the success function with the likelihood that a trace with given
entropy occurs (from Section 4), and integrating over all possible entropies (that is,
the entropies from that largest to the smallest group) gives us the expected value of
the attack:
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Fig. 4 Binning Function: probability that a trace with x nats of entropy is intermingled with g
other traces; data set with t = 100 traces. (b)Success Function: probability that a trace with x nats
of entropy can be extracted; t = 100.

Value =
∫ ent(sm)

ent(lrg)
(Su(x) ·Pr(X = x))dx (3)

where ent(lrg) and ent(sm) are the entropies of the largest and smallest groups in
the system. As shown in Figure 3b, only certain group sizes have a high likelihood
to contain useable information. In both the random number generator and the tree
protocol, this is due to the fact that a large majority of the tags hides in few large
groups, but only the few tags in small groups can easily be distinguished. Hence,
the majority of the attack value is generated by these groups of the smaller sizes
while the majority of tags contributes only very little. In the next section, we use
this insight to design a protocol modification that decreases the attack value and
defeats a rational attacker.

6 Minimizing Attack Value

We assume rational attackers have financial goals. Such an attacker will only attack
a system if the expected value of the traces acquired exceeds the cost of the attack.
The value of an attack is given by Equation 3. The insight that the bulk of the
attack value is generated by the tags in smaller groups points to a simple but very
effective improvement of the tree protocol: restructure the tree so that no tags fall
in groups smaller than some threshold. Moving tags from these smallest groups to
larger groups decreases the attack value significantly.The most scalable tree for a
given tree depth, d is a balanced, fixed-k tree that has a constant spreading factor
of k = N1/d . We assume that d is fixed because it is limited by the tag memory and
by the maximum reading time. Varying the spreading factor for the whole tree does
not provide an effective trade-off. Varying the spreading factor only at the last level
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of the tree, however, preserves most of the scalability, while significantly improving
privacy.

The privacy-improved tree is constructed by dividing the tags into groups of some
threshold size c and constructing a balanced, fixed-k tree with these groups as the
leaves. The threshold is chosen to be larger than the largest group size that still
carries a high value to the attacker. The computational time required to find a tag is
the time to find the correct leaf plus the time to identify the correct tag within that
leaf:

Cost =
(

N
c

) 1
d−1
· (d−1)+ c.

In comparison, the balanced tree has a maximal cost of N1/dd. Increasing c increases
privacy and computational cost. The attack value of the modified tree is computed
using Equation 3 but with a larger minimum group size. The attack value is:

Vall (c) =
∫ ln( N

c−1 )

ln( k
k−b )

Vgen.

For each choice of the minimum group size, c, we get a different point on the
trade-off curve between privacy and cost that is depicted in Figure 5 for an example
scenario. A fixed-k tree for the example setup requires a spreading factor of 56.
Increasing the size of the groups on the last level beyond 56 decreases the attack
value. It falls to 40% of the maximum value at a group size of 1100 tags while
increasing the reader cost 9 times. Limiting the attack value to 20% leads to a 30-
fold cost increase. These correspond to 1139 and 3729 hashing operations, which
is still orders of magnitude below the 107 operations required to reduce the attack
value to zero using the basic hashing scheme with no shared keys.

For a large group of attackers and for virtually all RFID systems, minimal group
sizes of

√
N will provide sufficient privacy. The resulting tree has only two levels,

Fig. 5 Trade-off between attacker value and protection cost. Scenario of a large system with many
broken tags and many tags per person, specifically N = 107, d = 4, b = 50, m = 10, P = 1

2 , and t =
100.
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which requires smaller memories on the tag and leads to quicker reading times when
compared to a deeper tree. The computational cost is still not prohibitive even for
very large systems. In a system with one billion tags, each read requires about 6000
hashing operations, which takes only a fraction of a second on a general-purpose
processor.

The attacker value can be further reduced by decreasing k on the first level and
increasing it on the second level. A hashing computer build from FPGAs can execute
on the order of a billion hashing operations per second at reasonable cost [14]. For
a system with a billion tags, this would support authenticating more than 100,000
tags per second on a single such server. The appropriate tree for many RFID privacy
scenarios therefore has only two levels and is hence the opposite configuration from
the initially proposed binary tree [9].

7 Conclusions

Modeling information disclosure as a probability distribution of leaked information
exposes the parts of a system responsible for most of the privacy lost. Analyzing
secret-trees and side channels using such distributions helps to identify a small sub-
set of tags as the source of most of the privacy loss and provides new insights into the
trade-off between cost and privacy. The privacy distribution of secret trees and many
other sources can be approximated by an exponential distribution. When informa-
tion from several tags or other sources is combined by an attacker, the overall in-
formation leakage can be modeled using a single gamma distribution. Our approach
of expressing all privacy leaks in the form of probability distributions enables de-
signers of privacy protection to identify the weakest link and thereby estimate the
privacy of the overall system, which has not previously been possible.

When combined with a rational attacker model, identifying the weakest part of
the tree protocol enabled us to find new parameters for the tree with much improved
privacy. Our attacker model takes into account the value of different traces and as-
sumes that an attack is successful only if the overall value exceeds the attack cost.
Attackers can be modeled by a function that assigns values to different amounts
of information leakage. Without making restrictive assumptions on the actual in-
centives of the attacker we can prove an upper bound on the value function that
corresponds to the most capable attacker. This overall value is mostly generated by
the tags in the smallest groups at the last level of the tree. Varying the size of these
groups trades increased computational cost for decreased attack value. Although
our parameterization might seem obvious in retrospect, it was not stated prior to
our analysis. In fact, the previously proposed binary tree appears to provide the
least privacy of all possible setups. This underlines that good models for informa-
tion leakage and a good understanding of the attacker’s incentives are needed when
designing new privacy protocols.
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