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Abstract. Many applications inherently disclose information because perfect
privacy protection is prohibitively expensive. RFID tags, for example, cannot be
equipped with the cryptographic primitives needed to completely shield their in-
formation from unauthorized reads. All known privacy protocols that scale to
the anticipated sizes of RFID systems achieve at most modest levels of protec-
tion. Previous analyses found the protocols to have weak privacy, but relied on
simplifying attacker models and did not provide insights into how to improve
privacy. We introduce a new general way to model privacy through probability
distributions, that capture how much information is leaked by different users of a
system. We use this metric to examine information leakage for an RFID tag from
the a scalable privacy protocol and from a timing side channel that is observable
through the tag’s random number generator. To increase the privacy of the pro-
tocol, we combine our results with a new model for rational attackers to derive
the overall value of an attack. This attacker model is also based on distributions
and integrates seamlessly into our framework for information leakage. Our anal-
ysis points to a new parameterization for the privacy protocol that significantly
improves privacy by decreasing the expected attack value while maintaining rea-
sonable scalability at acceptable cost.

1 Introduction

RFID labels in consumer products promise a world of new, convenient applications
such as smart homes and automated checkout, but also raise serious privacy concerns.
Among the many privacy intruding uses of RFID technology are corporate spying
and customer profiling. The profiles encode information similar to Internet traces and,
hence, have a certain monetary value.

Privacy protocols can protect a tag’s identity from an attacker, but incur extra cost
that grows with the degree of privacy; the cost becomes prohibitive for perfect privacy.
Thus, practical protocols must trade some privacy for lower cost and higher scalability.
Previous analyses of scalable protocols concluded that the privacy loss is high [5, 9]. In
these analyses, the attacker is not assumed to be rational. Furthermore, although these
analyses reveal a lack of privacy, they do not provide practical insights into how to
improve the protocols.

We present a new way of measuring privacy that not only captures the privacy of
the whole system but also the variance in privacy experienced by different users. Unlike



previous approaches that represent privacy in a single value (e.g., the average group
size), our analysis measures privacy loss as a distribution of how much information
is leaked by different tags. We use our new privacy metric to derive distributions of
information leakage for two example cases: an RFID random number generator that
encodes a timing side channel and the tree protocol. Our metric works equally well in
modeling these two very different sources of information and can further be used to
model almost any source of deterministic or probabilistic information [10].

To derive a better understanding about the economics of privacy attacks and how to
improve protection against them, we model a realistic attacker who attempts to collect
traces because of their potential financial value. Our attacker is modeled as a function
that maps traces to their value. We derive an upper bound on the shape of this function
that allows us to model the most capable, yet rational attacker. Analyzing the privacy
distribution of the tree-based hash protocol in light of this rational attacker leads to
an adjustment of the tree parameters that provides substantially more privacy while
incurring no extra tag cost and reasonable additional reader cost. Restructuring the tree
improves privacy significantly while preserving scalability.

Our main contribution is a new way of representing privacy in form of a probability
distributions which we demonstrate on a timing side channel in Section 3 and on a
privacy protocol in Section 4. We then use this metric to analyze the value that an attack
has to a rational attacker (Section 5), and propose a simple way for adjusting the tree
protocol to better trade-off attack value and protection cost (Section 6).

2 Background

This section provides background information and describes previous work on defining
privacy and measuring the privacy properties of RFID systems.

2.1 RFID Systems

The RFID tags we consider are small, cheap, passive radio-readable labels. The tags
have unique identification numbers that a reader can read from the tag. The reader uses
this ID to look up information from a back-end database.

The basic tags in circulation today provide no privacy protection; any reader can
read the unique ID of the tag and look up information from often-public databases.
A first step towards more privacy is to restrict access to these databases, but even a
random but static identifier on the cards can be used to track people and therefore com-
promises privacy. Adding privacy protection to tags leads to higher per-tag costs and
lower reading ranges (due to the increased power consumption), as well as increased
computational cost in the backend system. To support RFID systems with billions of
tags, this backend cost must grow sub-linearly with the size of the system.

2.2 Privacy Protocols

Several RFID privacy protocols have been proposed, all of which sacrifice at least one
of scalability, availability, or strong privacy. The basic hash protocol, in which a tag



hashes a random nonce with a secret key, provides strong privacy but does not scale
well [16]. The database must try the keys of all tags to find the one that matches. This
computational overhead is prohibitive for large systems.

A more scalable protocol assigns several secrets to each tag [9]. The secrets are
structured in a tree with the tags as the tree leaves. A tag ti is assigned the secrets
si,1,si,2, ...si,d where d is the depth of the tree (all secrets but the last are shared with
some of the other tags). When queried, the tag responds with where H (·, ·) is a strong
one-way function and the ri values are random nonces. The database executes the basic
hash protocol for each tree level to finds the secret used on each level. Once a leaf is
reached, the path from the root to the leaf uniquely identifies the tag. In the standard
tree protocol, a tree with a constant branching factor at each level is used. This tree-
based hash protocol scales well beyond billions of tags. The drawback of the protocol,
however, is that secrets are shared among several tags and extracting the secrets from
some tags potentially allows tracking others. An attacker can uniquely identify a tag
with higher probability when more secrets of that tag are known. We show in Section
6 that increasing the branching factor at the lowest tree level improves privacy and that
optimal trees for many scenarios have only two levels. In previous proposals, a binary
tree was discussed [9], which according to our analysis has the least privacy of all
possible trees.

Buttyan et al. also propose an algorithm for finding the optimal tree of secrets [4].
Their algorithm optimizes for a metric based on the average group size and generally
increases the depth of trees. In follow-up work, the same authors and Avoine propose a
new protocol that is equivalent to the two-level tree we propose [1]. They show that even
in the metric they optimize for, the two-level tree is always superior to the trees their
optimization algorithm finds. Our work provides the missing link between measuring
privacy and improving privacy within the same framework and explains why trees with
fewer levels provide more privacy.

Variations of the tree protocol include the matrix protocol that replicates the same
secrets over different tree branches and hence offers less privacy [5]. Other proposed
protocols provide strong protection only when rogue reads are rare [15]. If rogue reads
occur frequently, these protocols can render the tags disfunctional and leak some infor-
mation [7].

2.3 Privacy Definition

The highest level of privacy possible in an identity system is strong privacy as defined
in [7]. Strong privacy requires that an attacker cannot distinguish between a pair of
uncompromised tags after interacting with all the tags in the system and extracting
secrets from some tags. The only known way to efficiently achieve strong privacy for
large-scale systems is by using asymmetric cryptography. Implementing the required
public key ciphers on cheap RFIDs, however, is not possible [8].

The basic hash protocol can achieve strong privacy without asymmetric cryptogra-
phy, but it requires the reader to perform as many cryptographic hashing operations as
there are tags in the system. Strong privacy cannot be achieved while also matching the
cost and scalability requirements of RFID systems [9, 11].



We define privacy as the state in which no rational attacker will attempt to compro-
mise the system. Our definition of privacy acknowledges the fact that some amount of
information is always leaked in the real world and that any definition which is too strong
cannot be fulfilled. A rational attacker will only attack a system when the expected mon-
etary (or other) return value exceeds the expected cost. Our definition allows for some
tags to have relatively weak privacy protection as long as a large majority of tags expe-
rience strong protection and the attacker is very unlikely to see many weakly protected
tags. In our definition, privacy can be deduced from information leakage, but the exact
conversion between the two varies for different attackers and systems. We present a
general approach to estimating the value of an attack from a distribution of information
leakage in Section 5. Our model is abstract in that we do not assume any specific value
of readings, but rather show ways to measure and improve privacy against any rational
attacker.

2.4 Measuring Privacy

The privacy of the tree-based hash protocol has been estimated in several research pa-
pers. A first analysis calculated the probability that two readings from the same tag can
be linked [2]. The paper concluded that the tree-based protocol provides insufficient pri-
vacy. We believe that this is too strong a privacy definition, which cannot be achieved,
and advocate that the ability of an attacker to build whole traces should instead be con-
sidered. An alternative way of calculating the privacy of a system is by measuring the
average anonymity of all tags. One such metric measures the average number of tags
from which each tag cannot be distinguished [4]. A more precise metric measures the
entropy of these groups [11]. Both approaches measure privacy as a single value, which
is limiting in two ways. First, condensing privacy into a singular value presumes how
the attacker will use the leaked information. Different attackers, however, use the in-
formation in diverse ways and hence the privacy of a system depends on the attacker’s
incentives and capabilities. Secondly, when averaging the information leakage over all
tags in a system, information is lost about which parts of the system are mostly respon-
sible for privacy deficits. Understanding the distribution of the information leakage is
crucial for reducing the amount of information leaked. In this paper, we use a metric
based on Shannon entropy from our previous work that measures the amount of infor-
mation disclosed by the tags [11]. We extend this metric to consider the distribution of
information leaked by tag groups. The tags fall in different groups that can be distin-
guished while tags within each group cannot. In a group of size g in a system with N
tags, log2(N

/
g) bits of information can be learned from each tag.

3 Side Channel Information Leakage

Privacy is potentially compromised at many layers including side channels. Side Chan-
nels are often caused by physical variance across different tags and can be observed
as different timing, power consumption, or antenna characteristics. We are analyzing
the varying lag between the moment a tag is supplied with power and when it starts
operating. Because this latter time cannot be observed directly, we measure it indirectly



through the tag’s choice of random number that is used during anti-collision. These ran-
dom numbers are required to match certain statistical randomness properties by current
RFID standards. The EPC standard, for example, requires all numbers to be gener-
ated with approximately the same frequency; every number must be generated with a
frequency of 80%-125% the average frequency [6]. Note, that these requirements do
not guarantee randomness in a cryptographic sense. In particular, an attacker can often
bias the distribution of values, which, besides breaking anti-collision, potentially com-
promises privacy. Random number generators found on current tags (including crypto-
graphic tags) generate random numbers using a linear feedback shift register (LFSR)
with constant initial condition [12]. Each random value, therefore, only depends on the
number of clock cycles elapsed between the time the tag is powered up (and the register
starts shifting) and the time the random number is extracted. The variation in the choice
of random number is hence a timing side channel that allows different groups of tags to
be distinguished.

One type of commonly found tags, for instance, generates 16-bit random numbers
using an LFSR of the form x16 + x14 + x13 + x11 + 1 [12]. The register is clocked at
106 kHz and wraps around every 0.6 seconds after generating all 216 possible output
values. The numbers are, therefore, only unpredictable if an attacker cannot measure or
control the timing with accuracy smaller than 0.6 seconds. Realistic attackers will more
likely measure with micro- or nano-second accuracy. Since the generated number only
depends on timing, which is controlled by the reader, an attacker has a large degree of
control over which number will be generated. Using custom-built reader firmware, we
were able to make tags generate the same “random” number repeatedly by querying the
tag at exactly the same time after switching on the reader field. In theory, the numbers
generated for a given timing should be the same for all tags, because the circuitry that
generates the numbers is the same and no physical randomness is used. Therefore, no
information about the tag should be learned from the choice of number. In practice,
however, we observe that due to manufacturing differences, groups of tags can be dis-
tinguished based on how quickly they start operating after the reader field is switched
on. The distribution of process variance follows a typical normal (Gaussian) distribu-
tion and so does the average expected value generated by different tags. Most tags have
too little variance to be distinguishable while few tags power up sufficiently slower or
faster than the average so that the expected random value is slightly before or after the
average value in the LFSR sequence. Figure 1a shows a typical distribution of expected
average values for different tags that we estimated from our experiment. In this exper-
iment we queried several different cards for a random number after exactly the same
time. The average of each tag is slightly biased from the average of all tags.

The number and size of the groups that can are distinguishable due to their random
numbers depends on the amount of process variation and the measuring accuracy of
the attacker. The more variation exists among the tags and the better the attacker can
control the timing of the tag, the more groups can be distinguished. For simplicity of our
example, we assume the expected values to follow a normal distribution with standard
deviation σ and an attacker with a timing resolution of 2σ . Virtually all tags can be
placed in one of four groups as shown in Figure 1: Those having expected values slightly
smaller or larger than the average, or significantly smaller or larger than the average.



(a) (b)

Fig. 1. Information disclosure of weak random number generator (a) distribution of varying ex-
pected value due to process variation; (b) distribution of information leakage.

An attacker learns more information from tags in smaller groups. A group of z tags
corresponds to log2(N

/
z) bits of leaked information where N is the total number of tags

that an attacker potentially encounters (and is the total number of tags in the system
unless the attacker has extra knowledge to exclude some tags). For the convenience of
the following calculations, we calculate information in nats rather than bits. Nats are
similar to bits but computed with base e; 1 nat equals 1

/
ln(2) bits (approx. 1.33 bits).

A group size z therefore corresponds to ln(N
/

z) nats of information. The distribution
of information leakage for tags equipped with the weak random number generator is
shown in Figure 1b.

In our example, each of the two groups around the average value holds 47.7% of
the tags. The information leakage from tags in these two large groups is ln(1

/
0.477) =

0.74nats = 0.98bits. The leakage from tags in the two smaller groups that divert more
from the average value is consequently much higher at 3.84 nats (5.10 bits).

The privacy of a system is directly related to the distribution of information leakage.
For the analyzed random number generator, privacy is therefore also directly related to
the amount of process variation. Privacy can be significantly increased by lowering the
process variation or by excluding a small number of outliers from the system. A better
lesson still to be learned from this analysis is that any RNG design that gives control
over the generated numbers to the attacker is clearly flawed, especially when also used
for purposes other than anti-collision.

4 Tree Protocol Information Leakage

In the same way that we found the distribution of information leakage for the num-
ber generator, we can find similar distributions for most other sources. To analyze the
privacy of the tree protocol, we need to know the distribution of group sizes and the
likelihood that a randomly chosen tag falls into a group of a certain size. Tags are in-
distinguishable to the attacker if they use the same subset of the secrets known to the
attacker. The larger the group of indistinguishable tags is, the more privacy is provided
for the tags in the group. The distribution of group sizes depends on the tree parameter-
ization and the set of secrets known to the attacker.



The tree protocol provides strong privacy if none of the secrets are known to the
attacker: all N tags in circulation are in one large group of size N. As the attacker learns
secrets from the tree, however, smaller groups of tags can be distinguished and strong
privacy is lost. When considering a tree with a depth of D and a spreading factor of k,
the first broken tag gives the attacker d secrets, one on each tree level. These secrets help
to distinguish the broken tag from its (k−1) immediate neighbors, from their (k2− k)
immediate neighbors, and so on. For example, Figure 2 depicts a tree of size N = 256
with spreading factor k = 4. After the bottom left tag is compromised, an attacker can
group the tags into groups of sizes 3, 12, 48, and 192 tags.

For z = 3,12,48,192 there are z tags in a group of size z and z
/

k tags in smaller
groups. In our example, there are 48 tags in a group of size 48 and 12+3+1 tags in
smaller groups. For all other values of z there are less than z+z

/
k tags in groups smaller

or equal to z. Therefore, the probability that a randomly chosen tag falls into a group of
size z or smaller after the secrets on a single tag have been captured is upper-bounded
by

Pr(Z ≤ z)≤ k
k−1

· z
N

. (1)

The one broken tag is no longer considered part of the system and (1) is defined
over the range of group sizes actually found in the tree; that is:

k−1≤ z≤ N · k−1
k

.

To simplify the following calculations, we consider only the upper bound of (1).
This bound corresponds to the case where one group for each possible size (1,2,3, ...)
exists. These groups each hold k

/
(k−1) tags. While this case is impossible to achieve

in reality because a group of size z should have z members, it provides a close enough
upper bound on the real distributions of groups.

This upper bound on the cumulative distribution is shown in Figure 3a along with
the values of the real distribution. Note that the upper bound diverges most from the
real distribution for those groups that leak the least information, and least for the more
important groups that leak the most information. In our example tree of 256 tags with
one broken tag, there are 4/(4-1) = 1.33 tags in a group of size one, another 1.33 tags in
a group of size 2, and so forth. This configuration never appears in reality but provides
a close upper bound on the real distribution; and unlike the real values, this bound can
be expressed in a closed-form probability distribution.

Fig. 2. Groups of tags that an attacker can distinguish after one tag compromise.



(a) (b)

Fig. 3. Probability that for a tree with b broken tags less than x nats of information are leaked by a
randomly selected tag, k is large. (a) real value vs. upper bound, one broken tag; (b) upper bound
for different numbers of broken tags.

The probability that x or more nats are leaked (as defined in Section 3) by a ran-
domly chosen tag is upper bounded by:

Pr(X ≥ x)≤ k
k−1

· 1
ex .

This is defined over the range of inputs that correspond to group sizes actually found
in the tree; that is:

ln
(

k
k−1

)
≤ x≤ ln

(
N

k−1

)
.

So far, we only considered the case of a single broken tag. Assuming tags are evenly
distributed, each additional broken tag adds the same number of members to each group
(with the exception of the largest group which shrinks in size). For b broken tags1, the
probability that at least x nats of information for a given tag are disclosed becomes

Pr(X ≥ x)≤ b · k
k−1

· 1
ex (2)

for the range

ln
(

k
k−b

)
≤ x≤ ln

(
N

k−1

)
.

The probability that the system defeats an attacker who requires at least x nats of
information to be successful is: Pr(X < x) = 1−Pr(X ≥ x). Figure 3b shows this prob-
ability for different numbers of broken tags. Note that the distribution is independent of
the number of tags in the system and for large trees it is essentially independent of the
spreading factor, k. A realistic attacker will certainly behave more complex than this
simple threshold. We address this concern in the Section 5 with an extended model that
acknowledges the rational and adaptive behavior of realistic attackers.

1Our approximation is closest if b<k, but still valid otherwise.
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Fig. 4. (a) Distribution of information leaked by collection of m tags. (b) Probability that infor-
mation leaked by m tags is smaller than x nats.

Multi-Tag Attack. A sophisticated attacker will use all available information to
distinguish individuals. In particular, all tags that a person carries will be used to track
that person. In previous work, we showed how such a multi-tag attack can be used
to distinguish individuals in large systems despite protection measures [11]; here we
extend those results using distributions of information leakage.

Suppose each individual carries m tags that are randomly selected from the tree.
To create an identifier for a person, the attacker simply concatenates the information
learned from the various tags the person carries. The different identifier that can be
build this way separate all individuals into separate groups, which can again be reflected
by a distribution of information leakage. The information learned from each of the
tags follows the exponential distribution described by (2). Summing several exponential
distributions leads to a gamma distribution. Hence, the probability that a total of x nats
of information are leaked from a person that carries m tags is:

Pr(X = x) =
xm−1

(m−1) !
·b · k

k−1
· 1

ex .

This distribution is shown in Figure 4a for different m. The probability that not more
than c nats of information are leaked from a randomly chosen tag can be calculated as
the integral of this function up to c, which is shown in Figure 4b. Note that the graph
shows the probability that the system is not compromised, so lower values indicate a
higher probability of privacy compromise.

5 Distinguishing Traces

The information learned through RFID traces can be used in many different applications
where profiling, tracking, or monitoring of goods or individuals is required. Privacy-
intruding uses of RFIDs include surveillance of individuals, corporate espionage, and
profiling of consumers.



Rogue customer profiling is the most frequently discussed scenario in the context of
RFID privacy. Traces collected by a rogue reader could be used in ways similar to Inter-
net traces to build customer profiles and enable price discrimination [13], and therefore
constitute a certain value. In many scenarios, RFIDs primary purpose is to build such
profiles and customers are often provided with price incentives to participate in loyalty
schemes. But while legitimate collecting of consumer data is transparent and provides
incentives to the customer, rogue readers will try to read the same information from
the tags without owner consent. Another rational attack scenario is corporate espionage
where information is collected from RFID labels on products to learn their internal
business information of competitors. Lastly, tracking attackers keep individuals under
surveillance through RFID readings. Our analysis of the expected attack value in this
section and the proposed modification of the tree protocol in Section 6 apply equally
to all three types of attacker. In this analysis, we avoid making restrictive assumptions
about the actual use of collected traces or attempt to quantify their value. Instead, we
assume that in any attack, the attackers’ objective is to distinguish tags in order to build
traces, which is more likely when the attacker has more information about the tags. Our
privacy metric, therefore, measures the amount of information the attacker learns about
different tags. The magnitude of the expected attack value and the effectiveness of our
proposed defense will vary among the different attackers and depend on the expected
pay-off and the cost of substitute tracking techniques. Privacy is consequently achieved
when the expected cost of any attack exceeds the expected return. As long as informa-
tion from RFID traces is an essential source in the attack, however, our analysis covers a
substantial portion of the attack economics and our protocol improvement significantly
improves privacy.

Other Information Sources. Attackers are not limited to information from the tree
protocol or random number generator. Our approach of modeling information leakage
as a probability distribution applies just as well to all other information sources such
as physical side channels. Sources that might be used in an attack include the physical
characteristics of the tag (e.g., radio fingerprint), meta-information (e.g., location and
time of read), and information from other detection systems, such as biometric iden-
tification systems like face and voice recognition. The exact distribution of many of
these sources is as of yet unknown. In the next section we show how all these additional
sources can be modeled as attacker strategy.

Threat Model. We are considering an attacker that mines RFID data sets for prof-
itable traces, where a trace is a set of readings from the same tag. In order to build traces,
an attacker wants to link the different RFID readings collected from the same individ-
ual. Each reading consists of time, place, the randomized tag identifier, and potentially
further metadata. The attacker’s goal is to extract individual traces form a collection
of many intermingled traces. The likelihood that the attacker will be successful grows
with the amount of information leaked by the tags the individual carries. Readings have
higher value to the attacker when they carry more information. The exact value function
that maps information to value is unknown and will be different for different attackers.
We can, however, model the approximate shape of such a function and find an upper
bound that corresponds to the strongest attacker that is most skilled in using additional
information to distinguish traces.



An attacker wants to extract information from data collected by reading RFID tags.
The data set the attacker collects is composed of many intermingled traces from differ-
ent tags. We assume that each individual trace becomes valuable only when it can be
separated from all other traces thus identifying a set of readings from a single tag (or
a conjoined group of tags). Whether a trace can be separated using data from the pro-
tocol level depends on the secrets known to the attacker. The previous section derives
the expected sizes of tag groups distinguishable on the protocol level for an attacker
with a given number of compromised tags. To separate those traces that are indistin-
guishable at the protocol level, the attacker will further employ data mining techniques,
use additional information sources such as the weak random numbers from Section 4,
other side channel information, or contextual information such as place and time of read
to distinguish traces. To capture the success of the attacker in doing so, we introduce
two functions: the attacker strategy function, which describes the sophistication of the
attack, and the binning function, which captures the clustering of traces.

The attacker strategy function encodes the probability with which an attacker can
distinguish traces that are indistinguishable at the protocol level. The function captures
the side channel information and data mining techniques that are available to the at-
tacker, and varies widely for different attackers. Even though the function is generally
unknown—even to the attacker—we can derive an upper bound on it.

First, we define P as the average probability that a set containing two traces can be
distinguished. This average probability is closely related to the success of our attacker
who is interested in collecting a large number of traces with high probability. Other ap-
proaches to modeling the privacy of RFID systems have only considered the probability
that the privacy of any of the tags in a data set can be compromised [3]. These analyses,
hence, measure the least privacy experienced by any of the tags rather than the average,
and consequently conclude that sufficient protection cannot be achieved for all users of
a system. In contrast, privacy in our model is achieved if the average protection is high
enough to discourage all rational attackers from attacking a system while the actual
protection experienced by different users can vary.

Given a set of any number of readings known to come from two different tags, the
attacker can separate the readings into two groups based on the tag from which they
were generated with probability P. The actual probability also depends on the number
of readings for each tag in the set. The attacker, however, does not control the number
of readings collected form a specific tag in different locations, but only the total number
of readings collected from all tags. Hence, our definition of P does not depend on the
number of readings, just on the number of different tags which could have generated
the readings. This models an attacker who tries to extract traces from a data set without
having detailed knowledge of the composition of the data.

Given this definition of P for separating two traces, it follows that traces cannot
be separated from groups of three intermingled traces with average probability better
than P2. If the chances of extracting a trace from a set of three traces were higher, an
attacker could distinguish two traces with a probability higher than P by intermingling
an additional trace. We can generalize to any number of intermingled traces:



Trace Extraction Theorem: Let the average probability over all traces that two
traces can be distinguished be P. Then a trace cannot be extracted from a set with g > 1
traces with an average probability better than P(g−1).

To prove this theorem we show that when a trace is added to a set of traces, extract-
ing that trace from the set is at least as difficult as distinguishing the trace from every
member of the set. We further show that this probability is always maximized when,
given the average probability of distinguishing two traces, P, all pairs of traces can be
distinguished with the same probability. The proof is given in the Appendix.

Hence, the strategy function is upper-bounded by:

S(g) = P(g−1).

Second, the binning function describes the distribution of traces into the different
groups that can be distinguished in the tree using protocol information leakage. Given a
distribution of groups as derived in Section 4, a system with size N, and a data set with
t +1 intermingled traces, the probability that at most g traces from a group of size z are
included in the data set is:

B(z,g)≤
(

t
g

)
·
(

1− z
N

)t−g
.

Expressed in terms of encoded information, the probability that g indistinguishable
traces with x nats of entropy (that is, traces from a group with size z = N

/
ex) are found

in the set is:

B(x,g) =
(

t
g

)
·
(

1− 1
ex

)t−g

·
(

1
ex

)g

.

The binning function is shown in Figure 5a for traces with different entropies.
Last, the success function encodes the probability that a trace with given entropy

can be extracted. This is the likelihood that the trace is intermingled with (g−1) other
traces, B(x,g), multiplied by the probability that the attacker can extract a trace from a
set of g traces, S(g), and summed over all possible mixes (g = 0,1, ..., t; where g = 0 is
a single, not intermingled trace):

Su(x) =
t

∑
g=0

(B(x,g) ·S(g)) .

The success function is shown in Figure 5b. To determine whether an attack is suc-
cessful, the success function needs to be interpreted in light of the attacker’s require-
ments. The value of an attack to the attacker depends on the likelihood that traces can
be extracted from the collected data, which is encoded in the success function. Multi-
plying the success function with the likelihood that a trace with given entropy occurs
(from Section 4), and integrating over all possible entropies (that is, the entropies from
that largest to the smallest group) gives us the expected value of the attack:

Value =
∫ ent(sm)

ent(lrg)
(Su(x) ·Pr(X = x))dx (3)



Fig. 5. Binning Function: probability that a trace with x nats of entropy is intermingled with g
other traces; data set with t = 100 traces. (b)Success Function: probability that a trace with x nats
of entropy can be extracted; t = 100.

where ent(lrg) and ent(sm) are the entropies of the largest and smallest groups in the
system. As shown in Figure 4b, only certain group sizes have a high likelihood to con-
tain useable information. In both the random number generator and the tree protocol,
this is due to the fact that a large majority of the tags hides in few large groups, but only
the few tags in small groups can easily be distinguished. Hence, the majority of the
attack value is generated by these groups of the smaller sizes while the majority of tags
contributes only very little. In the next section, we use this insight to design a protocol
modification that decreases the attack value and defeats a rational attacker.

Most information sources are fuzzy; items with RFID tags get swapped, physical
characteristics often depend on the environment and face recognition produces false
matches. Further research is needed to understand how data mining techniques can be
used to overcome this intrinsic noise and refine the true information. The attack value
will depend on how well an attacker can do this.

Regardless of which other information sources are integrated into a large-scale pri-
vacy attack, the RFID data will be an essential source in any such attack unless the tags
are better protected. Limiting the leakage from RFID tags can significantly decrease the
attack value, even when all the other (unknown) information sources are left unchanged.
Hence, we focus next on limiting the information leaked from this protocol and propose
a simple modification that significantly decreases the generated expected attack value.

6 Minimizing Attack Value

We assume rational attackers have financial goals. Such an attacker will only attack a
system if the expected value of the traces acquired exceeds the cost of the attack. The
value of an attack is given by (3). The insight that the bulk of the attack value is gen-
erated by the tags in smaller groups points to a simple but very effective improvement
of the tree protocol: restructure the tree so that no tags fall in groups smaller than some



Fig. 6. Trade-off between attacker value and protection cost. Scenario of a large system with
many broken tags and many tags per person, specifically N = 107, d = 4, b = 50, m = 10, P =
1
2 , and t = 100.

threshold. Moving tags from these smallest groups to larger groups decreases the attack
value significantly.The most scalable tree for a given tree depth, d is a balanced, fixed-k
tree that has a constant spreading factor of k = N1/d . We assume that d is fixed because it
is limited by the tag memory and by the maximum reading time. Varying the spreading
factor for the whole tree does not provide an effective trade-off. Varying the spreading
factor only at the last level of the tree, however, preserves most of the scalability, while
significantly improving privacy.

The privacy-improved tree is constructed by dividing the tags into groups of some
threshold size c and constructing a balanced, fixed-k tree with these groups as the leaves.
The threshold is chosen to be larger than the largest group size that still carries a high
value to the attacker. The computational time required to find a tag is the time to find
the correct leaf plus the time to identify the correct tag within that leaf:

Cost =
(

N
c

) 1
d−1
· (d−1)+ c.

In comparison, the balanced tree has a maximal cost of N1/dd. Increasing c increases
privacy and computational cost. The attack value of the modified tree is computed using
(3) but with a larger minimum group size. The attack value is:

Vall (c) =
∫ ln( N

c−1 )

ln( k
k−b )

Vgen.

A fixed-k tree for this setup requires a spreading factor of 56. Increasing the size of
the groups on the last level beyond 56 decreases the attack value. It falls to 40% of the
maximum value at a group size of 1100 tags while increasing the reader cost 9 times.
Limiting the attack value to 20% leads to a 30-fold cost increase. These correspond to
1139 and 3729 hashing operations, which is still orders of magnitude below the 107
operations required to reduce the attack value to zero using the basic hashing scheme
with no shared keys.



For a large group of attackers and for virtually all RFID systems, minimal group
sizes of

√
N will provide sufficient privacy. The resulting tree has only two levels,

which requires smaller memories on the tag and leads to quicker reading times when
compared to a deeper tree. The computational cost is still not prohibitive even for very
large systems. In a system with one billion tags, each read requires about 6000 hashing
operations, which takes only a fraction of a second on a general-purpose processor.

The attacker value can be further reduced by decreasing k on the first level and
increasing it on the second level. The additional computational overhead could be offset
by using custom designed hardware. State of the art implementations of standard hash
functions provide a throughput of hundreds of Mbit/s [14], which equals millions of
hashing operations per second. A hashing computer build from many of these chips can
execute on the order of a billion hashing operations per second at reasonable cost. For
the system with a billion tags, this would support authenticating more than 100,000 tags
per second on a single server. The appropriate tree for many RFID privacy scenarios
therefore has only two levels and is hence the opposite configuration from the initially
proposed binary tree [9].

7 Conclusions

Modeling information disclosure as a probability distribution of leaked information ex-
poses the parts of a system responsible for most of the privacy lost. Analyzing secret-
trees and side channels using such distributions helps to identify a small subset of tags
as the source of most of the privacy loss and provides new insights into the trade-off be-
tween cost and privacy. The privacy distribution of secret trees and many other sources
can be approximated by an exponential distribution. The distribution for the tree proto-
col depends on the number of broken tags, but not on the system size or the spreading
factor. Good designs can hence be found that apply to a wide range of applications.
When information from several tags or other sources is combined by an attacker, the
overall information leakage can be modeled using a single gamma distribution. Our ap-
proach of expressing all privacy leaks in the form of probability distributions enables
designers of privacy protection to identify the weakest link and thereby estimate the
privacy of the overall system, which has not previously been possible.

When combined with a rational attacker model, identifying the weakest part of the
tree protocol enabled us to find new parameters for the tree with much improved pri-
vacy. Our attacker model takes into account the value of different traces and assumes
that an attack is successful only if the overall value exceeds the attack cost. Attackers
can be modeled by a function that assigns values to different amounts of information
leakage. Without making restrictive assumptions on the actual incentives of the attacker
we can prove an upper bound on the value function that corresponds to the most capable
attacker. This overall value is mostly generated by the tags in the smallest groups at the
last level of the tree. Varying the size of these groups trades increased computational
cost for decreased attack value. Lowering the attack value by up to 80% incurs no cost
on the tag and only a small overhead in the backend. Even though our parameterization
might seem obvious in retrospect, it was not stated prior to our analysis. In fact, the pre-
viously proposed binary tree appears to provide the least privacy of all possible setups.



This underlines that good models for information leakage and a good understanding of
the attacker’s incentives are needed when designing new privacy protocols.
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Appendix: Trace Extraction Theorem Proof

A trace is a series of readings of the same RFID tag, where each reading is a data
item consisting of time, place, a randomized identifier, and potentially further metadata.
Traces are denoted ti. A set of traces, T = {ti, t j}, is an intermingled collection of traces
from different tags that are indistinguishable on the protocol level. The event that trace
ti can be extracted from set {ti, t j} is denoted {ti, t j}→ ti. The probability of this event,
Pr [{ti, t j}→ ti], will be denoted pi, j. It follows that pi, j = 1 and pi, j = p j,i.

Denote by Sk the set of all sets of k traces. n = |S1| is the number of traces in the
system. The average probability that any two traces can be distinguished, denoted as P,
is:

P =
1(
n
2

) · ∑
i, j,i< j

pi j

We assume that P is known and show how the maximum average probability of distin-
guishing more than two intermingled traces depends on P.

Lemma: If a trace ti cannot be extracted from {ti, t j} then the trace cannot be ex-
tracted from {ti, t j, tz} for any z.

Proof: Suppose ti was extractable from {ti, t j, tz} but not from {ti, t j}. By adding tz
to {ti, t j}, ti becomes extractable from {ti, t j}.

Corollary: Trace ti can be extracted from set T only if it can be distinguished from
each member of T, hence:

Pr [T → ti]≤ ∏
t j∈T

pi, j

Trace Extraction Theorem: Let P be the average probability that two traces can be
distinguished. A trace cannot be extracted from a set with g > 1 traces with an average
probability better than P(g−1).

Proof: The value Pr(g) is the average probability of extracting any member from
any set of g traces:

Pr(g) =
1

k ·
(

n
k

) · ∑
G∈Sk

∑
b∈G

Pr [G→ b]

Following the Corollary, this is at most:

Pr(g) =
1

k ·
(

n
k

) · ∑
a∈S1

∑
G∈(Sk−1/a)

∏
b∈G

pa,b

Assume towards contradiction that Pr(g) was maximized for a distribution where not
all pi, j values are equal:

∃pa,b, pc,d ,α > 0 : pa,b = pc,d +2 ·α



Assuming, for now, that all other pairs are in equilibrium, shifting weight from pa,b
to pc,d decreases those summands of Pr(g) that contain only pa,b, but increases those
summands that only contain pc,d by the same amount. Those summands that contain
both pairs increase by a factor of:(

pa,b−α
)(

pc,d +α
)

pa,b pc,d
= 1+

α2

pa,b pc,d

For any distribution of the pi, j values, starting at the largest gap and successively shift-
ing weights from larger to smaller values, constantly increases Pr(g) up until all pi, j
are equal. The probability of extracting traces from sets of any size is hence maximized
when all pi, j are in equilibrium distribution and is at most:

Pr(g)≤∏
g−1

pi, j = P(g−1)


