
EnviroTrack: Towards an Environmental Computing Paradigm for Distributed
Sensor Networks �

Abdelzaher T., Blum B., Cao Q., Chen Y., Evans D., George J., George S., Gu L., He T., Krishnamurthy S.,
Luo L., Son S., Stankovic J., Stoleru R., Wood A.

Department of Computer Science, University of Virginia, Charlottesville, VA 22904

Abstract

Distributed sensor networks are quickly gaining recognition as
viable embedded computing platforms. Current techniques for
programming sensor networks are cumbersome, inflexible, and
low-level. This paper introduces EnviroTrack, an object-based
distributed middleware system that raises the level of program-
ming abstraction by providing a convenient and powerful inter-
face to the application developer geared towards tracking the
physical environment. EnviroTrack is novel in its seamless in-
tegration of objects that live in physical time and space into the
computational environment of the application. Performance re-
sults demonstrate the ability of the middleware to track realistic
targets.

Keywords: sensor networks, programming paradigms, track-
ing, QoS, distributed systems

1 Introduction

The work reported in this paper is prompted by the increas-
ing importance of large-scale wireless sensor networks [15] as
a future platform for a growing number of applications such
as habitat monitoring [7, 21], intrusion detection [28], defense,
and scientific exploration. Advances in hardware miniaturiza-
tion [10] have made it economically viable to develop embed-
ded systems of massively distributed disposable sensor nodes,
characterized by coordination of a very large number of tiny
wireless computing elements. A great impediment to rapid de-
ployment of such systems lies in the lack of distributed soft-
ware and programming support for sensor network applica-
tions. A new distributed computing paradigm is needed that
exports appropriate abstractions and implements efficient infor-
mation management protocols in large-scale sensor networks.
EnviroTrack is an attempt to develop such a paradigm.

EnviroTrack is a middleware layer that exports a new ad-
dress space in the sensor network. In this space, physical events
in the external environment are the addressable entities. This
type of addressing is convenient for applications that need to

�The work reported in this paper was supported in part by the National
Science Foundation grants EHS-0208769, CCR-0205327, and CCR-0092945,
DARPA grant F33615-01-C-1905, and MURI grant N00014-01-1-0576.

monitor environmental events. For example, a surveillance ap-
plication that monitors vehicle movement behind enemy lines
may assign labels to individual vehicles. Their state can then
be addressed by reference to these labels. Moreover, comput-
ing or actuation objects can be attached to individual addresses
in much the same way computation is assigned to IP hosts in
an Internet-like environment. Such attached computation or
actuation is then performed in the physical neighborhood of
the named entity. Hence, for example, a microphone could
be turned on at some network address (e.g., one that names
a vehicle in the external environment) to listen-in on the corre-
sponding environmental object. As the named vehicle moves,
the middleware will turn on the appropriate nearby node micro-
phones such that a non-interrupted audio stream is delivered to
the receiver despite the mobile nature of the source. Commu-
nication can also occur between two mobile endpoints. For ex-
ample, a walking soldier with a PDA may track the position of
a suspect vehicle detected elsewhere in the network. In short,
we (i) export a novel logical address space in which external
environmental objects are the labeled entities, and (ii) allow
arbitrary data, computation, or actuation to be attached to such
logical network addresses. These data, computation, and actua-
tion are encapsulated in an abstraction we call tracking objects.

A test version of EnviroTrack has been implemented on a
popular sensor network platform based on MICA motes [16].
Our initial implementation of this infrastructure uses compiled
NesC [13] programs on TinyOS [15], an operating system for
sensor networks. We present evaluation results, which illustrate
how typical sensor-network applications that use EnviroTrack
perform on the current hardware platform. The reader is cau-
tioned that the results presented here are preliminary in that
they are based only on a very small-scale implementation. We
defer quantitative comparisons between EnviroTrack and other
programming-in-the-large systems for sensor networks until a
more mature implementation is available. Yet, the evaluation
shown in this paper does present a proof of concept for the new
paradigm.

The rest of this paper is organized as follows. Section 2
defines the tracking problem in more detail, elaborates on
the main abstractions provided by EnviroTrack, and illustrates
what a sample tracking application might look like in the new



paradigm. Section 3 details the software architecture and pro-
tocols. Section 4 presents a performance evaluation of a test
prototype. An overview of related work is presented in Sec-
tion 5. The paper concludes with Section 6.

2 Programming Model

The programmer’s view of an application written in Enviro-
Track is depicted in Figure 1. Sensors which detect certain
user-defined entities in the physical environment form groups,
one around each entity. A network abstraction layer associates
a context label with each such group to represent the corre-
sponding tracked entity in the computing system. Context la-
bels can be thought of as logical addresses of virtual hosts (con-
texts) which follow the external tracked entity around in the
physical environment. In the following, we use contexts and
context labels interchangeably. Objects can be attached to con-
text labels to perform context-specific computation. These at-
tached objects are called tracking objects. They are executed
on the sensor group of the context label. Since the actual loca-
tion of the tracking object is the nodes in the physical vicinity
of the target, the object can perform local sensing and actuation
to interact directly with the target’s locale. For completeness,
EnviroTrack also supports conventional static objects that are
not attached to context labels.

Sensor Network Abstraction Layer

Aggreg.
State

Aggreg.
State

Sensing CAR Sensing FIRE
GroupGroup

Context type: CAR
Context Label: Car02 Context Label: Fire01

Vehicle
Tracking
Objects

Fire

Objects
Tracking

Context type: FIRE

Figure 1. Programming Model

Context labels have types depending on the entity tracked.
For example, a context label of type CAR is created wherever
a car is observed. To declare a context label of some type e

(named after the tracked event type), the programmer must sup-
ply three pieces of information. First, the programmer supplies
a function sensee�� that describes the sensory signature iden-
tifying the tracked environmental target. For example, if the
context type is to identify moving vehicles, sensee�� might be

a function of magnetometer and motion sensor readings. The
middleware watches for the specified sensory pattern in the en-
vironment and creates a sensor group around the detected target
when the pattern occurs. This function is also used to maintain
the membership of the sensor group around the tracked target
when the target moves. Group membership, in this case, is re-
stricted to those nodes that sense the given target (i.e., for which
sensee�� is true).

Second, the programmer declares what constitutes the envi-
ronmental state to be encapsulated in the context label. This
state is shared by all tracking objects attached to this label.
State is declared by defining an aggregation function statee��
that acts on the readings of all sensors for which sensee�� is
true or was true within a recent past defined by a freshness
constraint. The aggregation is carried out locally by a sen-
sor node that acts as the group leader of all sensors sensing
the named target. The aggregation function can also include
a critical mass constraint that specifies the minimum number
of sensors that must be involved in the aggregation for the re-
sult to be statistically meaningful. EnviroTrack provides a li-
brary of the most common distributed aggregation functions
to choose from, such as addition, averaging, and median com-
putation. These functions can also be location-aware, for ex-
ample, to compute the center of gravity of the measurements.
The underlying infrastructure includes a data collection proto-
col executed by the leader to collect, timestamp, and log sensor
data (i.e., the arguments for the statee�� function) from sen-
sor group members satisfying sensee��. The statee�� function
is then applied on the collected data in a way that satisfies the
freshness and critical mass conditions. Finally, the program-
mer specifies which objects are to be attached to the context
label. Attached object code can reference the aggregate state
maintained by the leader in this context.

In the following, we describe in more detail the network
abstraction layer, tracking objects, and aggregate state, then
present an application example.

2.1 Network Abstraction Layer

Context labels abstract sensor groups for the programmer. The
programmer is aware that a distributed computation, associ-
ated with the context label, is executed on multiple sensors in
the vicinity of a tracked entity. The programmer, however, is
not involved in managing the membership, leader election, and
leader handoff in the sensor group.

A sensor node joins the sensor group of a particular con-
text when its local sensor readings satisfy the boolean condition
sensee��. It leaves the group when this condition is no longer
satisfied.1 A sensor node can be part of multiple groups at one
time. Programs running for different groups are effectively in-
dependent. The sensor group associated with a context label
maintains two invariants. First, all members of a group at time

1Alternatively, a separate deactivation condition may be written.



t satisfy the condition sensee��. Second, the group is not parti-
tioned. All members of a sensor group can communicate with
each other possibly using multiple hops through other members
of the same group. This physical continuity constraint is intro-
duced to ensure that groups formed around different entities of
the same type remain distinct and do not merge as long as the
tracked entities are physically separated.

2.2 Tracking Objects

The tracking objects attached to a context label consist of
methods that are invoked either by the passage of time (time-
triggered), or by the arrival of messages that carry method in-
vocation requests. Object code is executed on a single node.
In the current implementation, this node is the sensor group
leader of the enclosing context. Object code may make refer-
ences to the aggregate state maintained by the enclosing con-
text, returned by the statee�� function. This state is collected
by a distributed data collection protocol which constitutes the
distributed part of the objects’ computation. Note that the code
is independent of the number and identity of participants of
the distributed data collection protocol. It can assume, how-
ever, that the aggregation results always satisfy the semantics
of aggregate state (i.e., they are in accordance with the specified
freshness and critical mass requirements).

2.3 Aggregate State

The function statee�� is configured by declaring aggregate
state variables for context e. The definition of a state variable
in the enclosing context specifies three important pieces of in-
formation; namely, an aggregation function, freshness Le, and
critical mass Ne. Aggregation functions produce scalar values
from sets of sensor readings. Several aggregation functions are
provided in a library that can be extended by the programmer.
The freshness threshold, Le, tells the system how long sensor
readings can be used before they are considered stale. Only
readings taken within the prescribed freshness time are used to
compute the value of an aggregate state variable. The critical
mass, Ne, is an integer that denotes the minimum number of
sensor nodes that should be involved in the aggregation for the
returned value to be valid. Only readings produced within the
freshness threshold can contribute to the critical mass thresh-
old.

Since freshness is decided at configuration time, nodes that
join the group associated with a particular context label pe-
riodically send to the leader their measurements at a period
Pe � Le � d, where d is an estimate of maximum message
delay and processing time within the group. This ensures that
the results of aggregation are always based on sensor readings
that are not older than Le. The leader maintains approximate
aggregate state by performing the aggregation function period-
ically on all the messages received within a sliding window of

Pe time units. The state is tagged valid (using a valid flag)
if more than Ne messages were received within the window.
The application code running on the leader, can perform asyn-
chronous read operations on aggregate state variables, which
return their current value and validity status.

Figure 2 shows the overall internal structure of the middle-
ware, illustrating both member and leader code. As seen in
figure, the main function of members is to report their read-
ings periodically to the group leader. The leader computes the
aggregate state and runs the application, which may communi-
cate with remote contexts using a message transport protocol.
A distributed group management protocol keeps track of group
membership and leader election. Observe that each sensor node
has both member and leader code. The role taken by the node
is chosen by the group management protocol.

eSense
Function:
Trigger

Lightweight Group Management and Leader Election

Join/Leave

Sensor Reporting
Periodic

Start/Stop

MemberTimer

ApplicationInvocation
Periodic

Leader

References to state 

Join/Leave

Protocols
Transport
Message

Send/Receive

Sensee

Trigger
Function:

Statee

Aggregation
Function:

Enable/Disable
Leader

Figure 2. Middleware Architecture

2.4 Application Example

To facilitate the use of our middleware, we developed simple
language support for declaring context labels and aggregate
state variables. A preprocessor uses the stated declaration to
emit appropriate code that initializes the middleware and con-
figures the statee�� and sensee�� functions. While the full lan-
guage and its implementation are outside the scope of this pa-
per, we present for completeness below an example that gives
a general sense of what the programming interface looks like.

An EnviroTrack program consists of a list of context decla-
rations such as the one shown in Figure 3. The psuedocode in
Figure 3 describes a vehicle-tracking context. The presence of
moving vehicles is detected by their magnetic signature (line
2). A context label is generated around each sensed vehicle.
The context keeps the average position of the vehicle in an ag-
gregate state variable, which requires at least 2 nodes to report
a position reading within the last second (line 3). The position



(1) begin context tracker
(2) activation: magnetic sensor reading()
(3) location : avg (position) confidence=2, freshness=1s
(4)
(5) begin object reporter
(6) invocation: TIMER(5s)
(7) report function() f
(8) MySend (pursuer, self�label, location);
(9) g
(10) end
(11) end context

Figure 3. Sample EnviroTrack Code

is reported periodically to an observer (lines 5-10). Note that
both the network traffic and the resulting energy consumption
are reduced since only one node around each vehicle will re-
port the aggregate state, as opposed to having each individual
sensor report raw state to the observer. This simplifies the pro-
grammer’s interaction with the varying sensor group tracking
each vehicle.

3 Architecture

In this section, we describe the architecture of EnviroTrack in
more detail. EnviroTrack consists of two main modules; a pre-
processor that interprets user directives to generate the appro-
priate middleware calls at compile time, and a run-time group
management protocol. The protocol runs on top of a routing
service. Briefly, the input to the EnviroTrack preprocessor is
a context description file, such as the one shown in Section 2.
The preprocessor patches a set of NesC program templates us-
ing the information gathered from the context description file
to produce appropriate middleware calls to a library of NesC
modules such as those implementing the sensee�� and statee��
functions. The programs are then compiled using the provided
TinyOS development tools.

Below, we focus on the group management services, since
they are the run-time component of the middleware architec-
ture. These services, shown at the bottom of Figure 2, maintain
coherence of context labels. That is, they try to ensure that a
group of sensors identifying the same entity in the environment
produce a single context label even as the membership of this
sensor group changes. Ideally, to maintain context label co-
herence, at any point in time, nodes sensing the same external
entity maintain a single “majority” leader.

Contexts are created when a node first senses condition
sensee��. The node immediately starts a leader election pro-
cess in which it randomly chooses a small timeout value. A
node which times out first sends a message informing its neigh-
bors that it is leader. Upon receipt of this message, other nodes
sensing the same sensee�� condition become members. We re-
quire that a node’s communication radius be larger than twice

its sensing radius such that all nodes sensing the same target
are within each other’s communication range.

An elected group leader sends periodic heartbeats, which
are received by all group members. Leader heartbeats have
three purposes. First, they inform current members that the
leader is alive. Should the leader die, a new leader election
is started after a timeout. Second, they carry application state
that must persist across leader handoffs. This state is recorded
by all member nodes. This mechanism allows new leaders to
continue computations of failed leaders from the last state re-
ceived. An application can explicitly create persistent state us-
ing a setState�� primitive and read it using getState��. Fi-
nally, heartbeats are overheard past the group’s perimeter thus
informing neighboring nodes of the existence of context label
e. Nodes that cannot sense the target themselves but know of
its existence from nearby leader heartbeats are called group
followers. If these nodes subsequently sense the condition
sensee��, they join the present group instead of forming a new
context label. The mechanism ensures that multiple spurious
context labels do not emerge around the same target. When
the leader gets out of sensory range from the target, it sends a
leader handoff message which initiates a new leader election.
The resulting behavior is that a group with a unique leader is
created around each target. Membership changes and leader
(and state) handoffs occur automatically as the target moves.

A detailed simulation study of the above protocol appeared
in [4] in which particular attention was paid to various failure
and message loss scenarios that result in election of spurious
leaders. It was shown that while spurious leaders do emerge,
very simple techniques can substantially reduce their effect on
system behavior. For example, in the presence of message loss,
a leader handoff may produce two nodes both of whom claim
to be leaders of the same context label. However, since these
nodes are within each other’s communication range, the one
with the higher node identifier can eventually force the other
to relinquish leadership. The same applies if a node elects it-
self as leader of a new context label for a target that is already
being tracked by another. The effect of such spurious context
labels is reduced by letting nodes that hear two nearby leaders
ignore the one with the smaller weight. Each new context la-
bel is initially created with a leader weight of zero. Leaders of
existing context labels accrue a weight equal to the number of
messages received by the leader from members to date. This
weight is passed during leadership handoffs. Hence, leaders
of spurious context labels will generally be ignored. Conse-
quently, the abstraction of a single context label per target is
adequately maintained.

From the application’s perspective, the sensor network has a
notion of granularity which defines the resolution of target de-
tection and is related to the communication radius of nodes. If
multiple targets fall within the same granule, they become in-
distinguishable, which are the semantics exported to the appli-
cation. When targets separate, they again become distinct. Our



framework, by virtue of leader election and subsequent sen-
sor data aggregation is expected to reduce both the complexity
dealt with by the programmer, as well as the communication
traffic between the observers and the network. Reduction in
communication traffic also reduces the energy spent on track-
ing.

4 Performance

In this section, we evaluate the performance of a preliminary
implementation of the presented tracking middleware service.
Detailed simulation results are reported in [4]. It is interesting
to note that the programming interface imposed on top of our
middleware does not interfere with its run-time performance.
In fact, this interface was written by the authors after the track-
ing middleware was developed. It simply automates the process
of configuring the middleware for tracking. Once the prepro-
cessor has parsed the user’s context declarations and emitted
the configured code, the middleware looks the same as if it was
hand-coded. No performance penalty is associated with the im-
proved level of abstraction.

With the above observation in mind, we now present the ex-
perimental performance of tracking. We first establish a case
for the viability of our middleware for tracking in practice. We
then proceed with stress-testing EnviroTrack to explore the lim-
itations of the current prototype.

4.1 A Case Study of Tracking

Our case-study target is the T-72 tank (made in Russia), moving
in an off-road sensor field. This particular tank weighs 44 tons
and has a maximum off-road speed of around 45 km/hr [12].
Sensors in the field are equipped with magnetometers. Honey-
well advertises magnetic traffic monitoring sensors which can
detect moving vehicles from a range of up to 30 meters [20].
These sensors operate by detecting slight disturbances to the
Earth magnetic field caused by ferrous objects. The magnitude
of this disturbance depends on the amount of the ferrous mate-
rial in the tracked object. Since the T-72 tank weights about 40
times the average vehicle in ferrous matter, its presence could
be detected at a much larger distance than 30 meters. Magnetic
effects are attenuated with the cube of the distance. Hence, we
set the magnetic detection radius for the tank to approximately
�� � ����� which amounts to about 100 meters. It is easy to
show geometrically that if the tank can be detected 100 meters
away, it is guaranteed that it is always within range from at least
one sensor as long as sensors are put on a grid about 140 meters
apart. We thus assume a rectangular grid of sensors with a per-
hop distance of 140 meters. Note that covering a border area of
say 70 km x 5 km at this spacing would require roughly 18,000
sensor devices, which is about the right size for the envisioned
sensor networks. Moving at its maximum speed, a T-72 tank
will cover one hop every 11.2 seconds.

We developed a testbed which provides a scaled down,
1000:1, model of this scenario. To experiment with variable
sensor range more readily, we replaced magnetic sensors with
light sensors installed on MICA motes. The magnetic field of
the target was emulated by moving a round object of a corre-
sponding radius above the sensor field to block a strong light
source from the appropriate sensors. The field was arranged
into a rectangular grid. The communication radius was em-
ulated by having nodes that are logically far away drop each
other’s packets with a probability that increases sharply with
distance. In our first experiment, the tracked object was moved
at a speed of 10 seconds/hop and 15 seconds/hop, which corre-
sponds to an emulated speed of 50 km/hr and 33 km/hr, respec-
tively. A single context type was defined, whose declaration
is similar to Figure 3. At run-time a context label was gener-
ated. Group management maintained a leader for the context
label. The leader sent to a base station the average position re-
ported by nodes sensing the target at the current time. After
each run, logs on individual motes were inspected to produce
message loss and total throughput statistics. Message loss was
computed by counting the number of messages sent but never
received on any other mote.

Figure 4 shows the real and tracked object trajectory (re-
ported to the base station) in a representative run. The motes
were put at integer (x� y) coordinates. The horizontal line at
y � ��� is the real target trajectory. Some tracking error oc-
curs because our sensors have no notion of proximity to the
target. Moreover, direction anomalies occur due to message
loss which causes sensor position aggregation to use a subset
of reporting sensors only. An application receiving this trajec-
tory can presumably improve the results by applying filtering
to the reported raw data. Results could be further improved if
sensor nodes could perform ranging to estimate target proxim-
ity.

-1

0

1

2

0 1 2 3 4 5 6 7 8 9 10

Y

X

Figure 4. Tracked Tank Trajectory

Figure 5 shows the percentage of successful context label
handovers for two target speeds and two settings of group man-
agement parameters. A successful handover means that the
context label successfully follows tank location by virtue of
leadership handoff from one member node to another along the
target’s path. An unsuccessful handover means a different con-
text label is spawned at the new tank’s location, not realizing
that it refers to the same tank as the current context label. This
case violates context label coherence.



In the first group management parameter setting, leader
heartbeats are not propagated past the sensing radius. As ex-
pected, in this case, it is more likely that multiple context labels
are generated for the same target since nodes which sense the
target for the first time might not be aware of the existing con-
text label. Figure 5 shows that a fraction of handovers will fail
in this case unless target speed is slow. In the second setting, the
sensing and communication ranges are such that leader heart-
beats are propagated beyond the sensing radius. In this case,
all handovers are successful at both emulated tank speeds. This
confirms the correctness of the group management algorithm
in Section 3, which requires that the communication range be
larger than the sensing range.

100

0

50

% successful leader handovers

Tank Speed

50 km/hr33 km/hr

Heartbeats only within radius

Propagate heartbeat past sensing radius

Figure 5. Successful Handovers

Finally, Table 1 shows sample communication data collected
during our experiments for the second (correct) case above.
Each point is averaged over three independent runs. In particu-
lar, we show the measured percentage of lost leader heartbeats
(HB loss), lost sensor messages incurred during data aggrega-
tion (Msg loss), and the average useful link utilization (Link
Util). To compute the latter, we divided the total number of
bits sent per second by the total link capacity (50kbs for MICA
motes). Hence, this is a worst case estimate, since it assumes a
broadcast model in which no two messages could be sent con-
currently.

The table demonstrates three important points. First, our
system operates correctly in the presence of message loss,
which is necessary in sensor network applications. Second,
message loss is not caused by link utilization, but rather by
the unreliability of the wireless medium (no reliability is im-
plemented in the MAC layer of the MICA motes). Note that
the effect of collisions increases with target speed. Third, the
bandwidth requirements of the algorithm seem to scale well
with tracking speed. More analysis is needed to derive the per-
formance limits of the protocol.

Speed % HB loss % Msg loss % Link Util
33 km/hr 7.08 3.05 2.54
50 km/hr 22.69 17.05 2.88

Table 1. Communication Performance Data

The aforementioned case study quantifies the tracking per-
formance of the middleware in the context of a specific target
application. Next, we stress-test the architecture to determine
the maximum trackable target speed as a function of various
protocol parameter settings.

4.2 Testing the Maximum Trackable Speed

The maximum trackable speed refers to the maximum speed a
target can have without causing violations of context label co-
herence. The most important parameter which affects the max-
imum trackable target speed in our architecture is the heartbeat
period of the group leader, since it determines how fast a group
can evolve to follow a target. In the experiments conducted, the
timeout associated with failed leader detection (due to absence
of heartbeats) is set to 2.1 the heartbeat period. In other words,
we wait for two consecutive missing heartbeats before initializ-
ing leader re-election. The maximum trackable speed is com-
puted for the worst-case scenario, which is the case when the
current leader fails causing leadership takeover to take place. In
this case, a slow heartbeat period will allow the target to escape
tracking during the leadership takeover.

The maximum trackable speed observed in the experiment
is shown in Figure 6 as a function of heartbeat period for two
events: a narrow signature event (outer bars), and a wide sig-
nature event (inner bars). The figure also shows the trackable
speed during normal operation in which each leader willingly
relinquishes leadership to another as the target moves out of its
sensor range. This case is labeled “relinquish” in the figure and
shows a maximum trackable speed that is independent of the
heartbeat period.

Figure 6. Effect of Timers on Maximum Trackable
Speed

Several points can be made from this graph. First, for a large



range of parameter settings, the maximum trackable speed is 1-
3 hops/s, which is 10-30 times faster than the speed of the tank
presented in the previous section. Thus, very fast targets can
be tracked. Second, we see that events with a larger sensory
signature (expressed in terms of multiples of the average node
separation, or grids) can be tracked at higher speeds. This is so
despite the fact that more communication is needed to report
measurements of larger events to the leader. It is attributed to a
less frequent leadership handover and confirms the efficiency of
the protocol. Third, as the heartbeat period is changed, a trade-
off is invoked between resource consumption and responsive-
ness. Very short periods cause resource overload, while very
large periods decrease responsiveness. In between, an optimal
period exists that maximizes trackable speed. The mathemat-
ical derivation of the optimal period is an interesting question
for future investigation.

To determine the identity of the bottleneck resource that
causes the decline in the maximum trackable speed at small
heartbeat periods, we repeated the above experiment in the
presence of a substantial amount of cross traffic from nearby
nodes. The shape of Figure 6 remained largely unaffected,
which suggests that communication bandwidth is not the bot-
tleneck. The bottleneck appears to lie in CPU processing.

5 Related Work

A growing challenge facing the distributed systems commu-
nity is to develop programming paradigms and run-time sup-
port for the operation of large-scale embedded sensor networks.
Classical distributed programming paradigms and middleware
such as CORBA [27], group communication [8], remote pro-
cedure calls [3], and distributed shared memory [6, 24] share
in common the fact that their programming abstractions exist
in a logical space that does not represent or interact with ob-
jects and activities in the physical world. Their main goal is
to abstract distributed communication rather than facilitate dis-
tributed sensory interactions with an external physical environ-
ment. In contrast, a new paradigm tailored for sensor should be
centered around environmentally-driven abstractions aimed at
simplifying the coding of interactions with the physical world
that arise in distributed deeply embedded systems.

The work reported in this paper is related to several re-
cent projects, such as Cricket [22], Sentient Computing [1] and
Cooltown [9], that propose high-level paradigms in which an
embedded distributed computing system is able to share per-
ceptions of the physical world. These systems allow the loca-
tion of entities in the external environment to be tracked. One
major difference of these systems from EnviroTrack is that they
assume cooperative users who, for example, can wear beacon-
ing devices that interact with location services in the infrastruc-
ture for the purposes of localization and tracking [22, 1]. Our
interest, in contrast, is in situations where no cooperation is as-
sumed from the tracked entity.

In the absence of cooperation, several research efforts pro-
posed alternative addressing schemes that do not rely on hav-
ing destinations with specific identities, but rather contact sen-
sor nodes in the vicinity of a phenomenon of interest based on
the attributes of data they sense. For example, DataSpace [17]
exports abstractions of physical volumes addressable by their
locations. Similarly, directed diffusion [18, 14] and the inten-
tional naming system [2] provide addressing and routing based
on data interests [18, 14]. Attributed-based naming is also re-
lated to the notion of content-addressable networks [23] pro-
posed for an Internet environment, which allows queries to be
routed depending on the requested content rather than on the
identity of the target machine. We adopt a form of attribute-
based naming we call context labels. In our architecture, how-
ever, context labels are active elements. Not only do they pro-
vide a mechanism for addressing nodes that sense specific en-
vironmental conditions, but also they can host context-specific
computation that tracks the target entity in the environment.

Recent research on system software for sensor networks
has seen the introduction of distributed virtual machines de-
signed to provide convenient high-level abstractions to appli-
cation programmers, while implementing low-level distributed
protocols transparently in an efficient manner [26]. This ap-
proach is taken in MagnetOS [11], which exports the illusion
of a single Java virtual machine on top of a distributed sensor
network. The application programmer writes a single Java pro-
gram. The run-time system is responsible for code partition-
ing, placement, and automatic migration such that total energy
consumption is minimized. Maté [19] is another example of a
virtual machine developed for sensor networks. It implements
its own bytecode interpreter, built on top of TinyOS. The inter-
preter provides high-level instructions (such as an atomic mes-
sage send) which the machine can interpret and execute. Each
virtual machine instruction executes in its own TinyOS task.

A somewhat different approach of providing high-level pro-
gramming abstractions is to view the sensor network as a
distributed database, in which sensors produce series of data
values and signal processing functions generate abstract data
types. The database management engine replaces the virtual
machine in that it accepts a query language that allows appli-
cations to perform arbitrarily complex monitoring functions.
This approach is implemented in the COUGAR sensor network
database [5]. A middleware implementation of the same gen-
eral abstraction is also found in SINA [25], a sensor informa-
tion networking architecture that abstracts the sensor network
into a collection of distributed objects.

Our system is different in that it is geared for environmen-
tal tracking applications. To the authors’ knowledge, Enviro-
Track is the first programming support for sensor networks that
explicitly facilitates the coding of tracking applications. Its
novel abstractions and underlying mechanisms are well-suited
for monitoring targets that move in the physical world. En-
viroTrack therefore can have a major impact on application



development for sensor networks. The authors are currently
developing a complete programming system that leverages the
presented middleware.

6 Conclusions

This paper introduced the architecture and experimental eval-
uation of a new distributed programming paradigm and ex-
perimental prototype for sensor network applications. The
paradigm differs from existing distributed computing models in
its central focus on abstracting interactions with a physical en-
vironment produced by a large array of distributed sensors and
actuators. The key advantage of this paradigm lies in its consid-
erable potential to reduce development costs of deeply embed-
ded systems. This reduction comes from off-loading from the
application developer the details of managing low-level com-
munication, mobility, and group management issues in groups
of redundant sensor nodes in tracking applications. Perfor-
mance results show that in addition to convenient abstractions,
target tracking is successful at practical target speeds. The au-
thors hope that this paper might be a first step towards conve-
nient programming-in-the-large systems for distributed deeply-
embedded tracking applications.

References

[1] M. Addlesee, R. Curwen, S. Hodges, J. Newman, P. Steggles,
A. Ward, and A. Hopper. Implementing a sentient computing
system. IEEE Computer, 34(8):50–56, August 2001.

[2] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley.
The design and implementation of an intentional naming sys-
tem. In ACM Symposium on Operating Systems Principles, Ki-
awah Island, SC, December 1999.

[3] A. Birrel and B. Nelson. Implementing remote procedure calls.
ACM Transactions on Computer Systems, 2(1), February 1984.

[4] B. Blum, P. Nagaraddi, A. Wood, T. Abdelzaher, S. Son, and
J. Stankovic. An entity maintenance and connection service for
sensor networks. In International Conference on Mobile Sys-
tems, Applications, and Services (MobiSys), San Francisco, CA,
May 2003.

[5] P. Bonnet, J. Gehrke, and P. Seshardi. Towards sensor database
systems. In 2nd International Conference on Mobile Data Man-
agement, pages 3–14, Hong Kong, January 2001.

[6] J. Carter, J. Bennet, and W. Zwaenepoel. Implementation and
performance of munin. In ACM Symposium on Operating Sys-
tems Principles, pages 151–164, October 1991.

[7] A. Cerp, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao.
Habitat monitoring: Application driver for wireless communica-
tion technology. In ACM Sigcomm Workshop on Data Commu-
nication, San Jose, Costa Rica, April 2001.

[8] G. V. Chockler, I. Keidar, and R. Vitenberg. Group communi-
cation specifications: A comprehensive study. ACM Computing
Surveys, 33(4):427–469, December 2001.

[9] P. Debaty and D. Caswell. Uniform web presence architecture
for people, places, and things. IEEE Personal Communications,
8(4):46–51, August 2001.

[10] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next
century challenges: Mobile networking for smart dust. In ACM
MOBICOM, Seattle, WA, August 1999.

[11] R. B. et al. On the need for system-level support for ad hoc and
sensor networks. Operating System Review, 36(2):1–5, April
2002.

[12] Federation of American Scientists Military Analysis Network.
http://www.fas.org/man/dod-101/sys/land/row/t72tank.htm.

[13] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The nesc language: A holistic approach to network
embedded systems. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, San Diego, CA,
June 2003.

[14] J. Heideman, F. Silva, C. Intanagonwiwat, R. Govindan, D. Es-
trin, and D. Ganesan. Building efficient wireless sensor net-
works with low-level naming. Operating Systems Review,
35(5):146–159, December 2001.

[15] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister.
System architecture directions for network sensors. In ASPLOS,
Cambridge, MA, November 2000.

[16] M. Horton, D. Culler, K. Pister, J. Hill, R. Szewczyk,
and A. Woo. Mica: The commercialization of mi-
crosensor motes. Sensors Online, 19(4), April 2002.
http://www.sensorsmag.com/articles/0402/index.htm.

[17] T. Imielinski and S. Goel. Dataspace - querying and monitoring
deeply networked collections in physical space. IEEE Personal
Communications, 7(5):4–9, October 2000.

[18] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffu-
sion: A scalable and robust communication paradigm for sensor
networks. In ACM MOBICOM, Boston, Massachusetts, August
2000.

[19] P. Levis and D. Culler. Mate: A tiny virtual machine for sensor
networks. In ASPLOS, San Jose, CA, October 2002.

[20] Magnetic Sensors. http://www.magneticsensors.com/mark det.html.
[21] A. Mainwaring, J. Polastre, R. Szewczyk, and D. Culler. Wire-

less sensor networks for habitat monitoring. In First ACM In-
ternational Workshop on Wireless Sensor Networks and Appli-
cations, Atlanta, GA, September 2002.

[22] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. The
cricket location-support system. In ACM MOBICOM, Boston,
MA, August 2000.

[23] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker.
A scalable content-addressable network. In Sigcomm, San
Diego, CA, August 2001.

[24] D. J. Scales and K. Gharachorloo. Towards transparent and effi-
cient software distributed shared memory. In ACM Symposium
on Operating System Principles, Saint Malo, France, October
1997.

[25] C.-C. Shen, C. Srisathapornphat, and C. Jaikeo. Sensor informa-
tion networking architecture and applications. IEEE Personal
Communications, 8(4):52–59, August 2001.

[26] E. Sirer, R. Grimm, A. Gregory, and B. Bershad. ‘design and
implementation of a distributed virtual machine for networked
computers. In ACM Symposium on Operating System Princi-
ples, pages 202–216, Kiawah Island, SC, December 1999.

[27] S. Vinoski. Corba: Integrating diverse applications within dis-
tributed heterogeneous environments. IEEE Communications
Magazine, 14(2), February 1997.

[28] A. Wood and J. A. Stankovic. Denial of service in sensor net-
works. IEEE Computer, 35(10), October 2002.


