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Abstract. Radio Frequency Identification (RFID) systems promise large scale, automated tracking solutions
but also pose a threat to customer privacy. The tree-based hash protocol proposed by Molnar and Wagner presents
a scalable, privacy-preserving solution. Previous analyses of this protocol concluded that an attacker who can
extract secrets from a large number of tags can compromise privacy of other tags. We propose a new metric for
information leakage in RFID protocols along with a threat model that more realistically captures the goals and
capabilities of potential attackers. Using this metric, we measure the information leakage in the tree-based hash
protocol and estimate an attacker’s probability of success in tracking targeted individuals, considering scenarios
in which multiple information sources can be combined to track an individual. We conclude that an attacker has a
reasonable chance of tracking tags when the tree-based hash protocol is used.

1 Introduction

Radio Frequency Identification (RFID) systems provide more precise identification (right down to the item-level)
and superior reliability over existing tracking systems, as well as the possibility of strong authentication. Their
capabilities, however, also pose a threat to individual privacy and have already raised objections from consumer
protection organizations. Customer protest against a field trial conducted by Europe’s largest trade group resulted
in a recall of its RFID-equipped loyalty cards [12]. Several schemes have been proposed that preserve consumer
privacy by obfuscating the tag identity from rogue readers. Some proposed schemes, such as Weis et al.’s [16] and
Ohkubo et al.’s [10], provide strong privacy but cannot scale to large RFID systems because the workload for the
backend system scales linearly with the number of tags in the system. Other schemes, such as the tree-based hash
protocol first proposed by Molnar and Wagner [8], provide scalability but sacrifice some privacy. We focus on this
protocol and describe it in Section 2.

Avoine et al. analyzed the degree to which privacy is scarified in the tree-based protocol and concluded that a
serious privacy threat exists [2]. In this paper, we revisit their assumptions and derive a different attacker model
that we believe better captures possible capabilities and motives of real-world attackers. In our model, the attacker
wants to track a tag through the system and needs to distinguish that tag from all other tags. We find that the threat
to privacy is even higher than Avoine et al.’s estimate.

We assume an active attacker who can send arbitrary messages to readers and tags of the system, but cannot
invert the hash function. We also assume our attacker can extract secrets from a limited number of tags. The attacker
tries to learn as many bits of information as possible about each tag’s identity with the final goal of distinguishing
among passing tags. The amount of information that the adversary needs to successfully launch an attack depends
on properties of the system and environment. The attack becomes harder if the system has more tags and also
if more of these appear in the limited environment that the attacker probes. Our attacker model is different from
previous models in that we consider the case in which the attacker sees only a subset of all tags in the system
and tries to distinguish among those. The probability an attack will be successful increases with the amount of
information that each tag leaks, and with the number of tags that are likely to stay together as a group. Our model
does not make assumptions about how the attacker learns information about the tags other than that the attacker



can extract all the key material from a number of captured tags. We focus on information leaked from the protocol
layer; information leaked through side channels may further increase the risk of privacy compromise.

Our main contributions are an improved metric for information leakage that allows us to combine different
information sources and that better follows the proposed attacker model (Section 3.2), an analysis of the tree-based
protocol based on this metric (Section 4), and an analysis of the relevance of our results of realistic RFID systems 5.
We conclude that the privacy risks associated with the tree-based hash protocol are more severe than previously
thought.

2 Private Authentication Protocols

Several protocols have been proposed through which a tag can identify itself to a legitimate reader while preserving
the customer’s privacy against rogue readers. Typically, these protocols also provide authentication. In this paper,
we consider only the privacy properties of the protocols; Juels’ survey [6] includes a discussion of authentication
properties.

Public-key cryptography would provide a clear solution to the privacy problem, but is usually too expensive to
implement on RFID tags. The tag would encrypt its ID and a random nonce with the public key of the database.
Only a legitimate reader with access to the database could decrypt the response to determine the ID. Because of
the complexity of public key algorithms, however, the available implementations are too expensive in terms of
tag cost and power consumption (higher power consumption requirements reduce reading range). Even optimized
implementations are unlikely to be suitable for cheap RFID tags for several more years [17]. All the protocols we
consider employ symmetric cryptographic hash functions in which keys are shared between the tag and legitimate
readers.

Weis et al. proposed a privacy-preserving RFID protocol in which the tag hashes a random value (nonce) with
a secret key that is only known to the tag itself and all legitimate readers [16]. This linear hash protocol provides
strong privacy (as defined in Section 3) but fails to provide the needed scalability for large RFID systems. The
reader stores one key per tag and has to try all possible keys in the database. Every tag authentication requires
O(N) hashing operations whereN is the number of tags in the system. Since RFID systems must scale to millions
of tags, this cost becomes excessive.

To achieve scalability, Molnar and Wagner [8] proposed a protocol that achieves sub-linear workload in the
backend system1. The main drawback is that secrets are shared among several tags. Hence, an attacker who can
extract secrets from a given tag also learns some of the secrets stored on other tags. The tags are structured in a tree
where each tree leaf is a tag. Secrets are assigned to each tree branch and every leaf stores all secrets on the path
from the root to itself. The tree has a depthd. Each node in the tree (except for the leaves) hask children. Each tag
holdsd secrets, one for each level of the tree. Using the notation from Avoine et al. [2] we denote theith secret on
thej level of the tree asrj,i. The secrets on each tag correspond to a unique path through the tree; hence, every tag
has at least one secret that is not shared with any other tag. The example in Figure 1 illustrates a tree withN = 9,
d = 2, andk = 3.

To authenticate a tag in the tree, the reader initiates the protocol by sending a nonce,NR. The tag responds with
a second nonce,NT , and one hash for each level of the tree. The tag response is:

NT ,H (r1,i||NT ||NR) , · · · ,H (rd,i||NT ||NR)

,

1 Other protocols have been devised that sacrifice reliability for better scalability [10][15]. Since we believe that most RFID applications
require high availability, we do not consider these protocols viable solutions.
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T0 T1 T2 T3 T4 T5 T6 T7 T8

r1,0 r1,1 r1,2

r2,0 r2,1 r2,2 r2,3 r2,4 r2,5 r2,6 r2,7 r2,8

Fig. 1.Sample secrets tree

whereH is a cryptographic hash function (our analysis assumes that the attacker cannot compromiseH). The
nonce provided by the tag provides privacy by making consecutive responses from the same tag unlinkable. The
reader-supplied nonce prevents replay attacks. On reception, the backend system generates hashes for all possible
secrets corresponding to the first-level branches with the two session-specific nonces. The one hash that matches
the transmitted hash on this level points to a node on the next level. This step is repeated until a leaf is reached.

If the tree is balanced, it holdsN = kd tags. On each of thed levels, up tok hashing operations are needed
to find the responding secret. Hence, the database performs up todk = d d

√
N hashing operations. The tag per-

formsd times the number of hash operations than were required with the linear hash protocol, and the transmitted
response is approximatelyd times larger (ignoring the framing and protocol overhead that does not grow withd).
The memory needed to store and process the hashes grows withd. Therefore, it is necessary to keepd small to
minimize the tag processing and memory requirements. The parameterk does not affect the tag, but determines the
computational cost in the backend database. When designing a tree it can be chosen more freely thand. It can also
be dynamically adapted to a changing system size.

Different tags can have different probabilities of being broken. Tags that are more likely to be broken should
have fewer secrets (i.e., be placed higher in the tree) than tags that are know to be hard to break. The question of
the optimal number of secrets was answered by Poovendran and Baras [11] in the context of multicast keys. If tag
i has a probability of being broken ofpi then the optimal number of secrets for this tag isdi = −logk(pi). Note
that for the special case in which all tags have the same probability of being broken (∀i : pi = 1

N ), this resolves to
a balanced tree as introduced earlierd = −logk( 1

N ) = logk(N). The rest of this paper assumes equal probabilities
of being broken for all tags and a balanced tree.

3 Privacy Definition

In the next section, we describe previous work that defines privacy. Section 3.2 establishes the privacy definition
and metric we will use for this paper.

3.1 Prior Work

Several different notions of RFID privacy have been developed. The first papers that targeted RFID privacy [16][10]
focused on the requirement that tags should protect product information from being disclosed. This is a weak notion
because it leaves tags traceable. A stronger property,unlinkability, means that an adversary should not be able to
differentiate between readings that originated from the same tag and readings that originated from different tags.
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A system achievesstrong privacywhen an adversary cannot distinguish between two tags with a probability
better than random guessing [7]. Since scalable protocols have to sacrifice strong privacy, we need a more flexible
measure of privacy. Our notion captures shades of privacy where a tag can be distinguishable from some tags but
not from others.

A relaxed notion of unlinkability requires the legitimate reader to change the tag’s identifier after every read
[1]. The tag stays traceable in between these interactions. Since legitimate reads may only occur infrequently, a
large window of time remains in which an attacker can trace an individual. Therefore, we do not believe this notion
is strong enough to protect customer privacy.

Our notion of privacy is closely related to anonymity, which has been studied in the context of mix-nets [13][5].
Mix-nets try to make sender (and recipient) of a message anonymous. The anonymity set is defined as the set of
all potential senders of a given message. The degree to which anonymity is achieved depends on the size of the
anonymity set. Perfect anonymity is achieved if the set includes all members capable of sending messages in the
system. The metric used by Serjantov and Danezis is similar to the metric we propose in this paper. Both are based
on Shannon’s information theory [14]. They use entropy to describe the number of possible elements in a group
(in our case, the set of RFID tags in the system). Nohara et al. were the first to use entropy in the analysis of the
tree-based RFID protocols [9]2. They only considered the case of a single compromised tag and concluded that
almost no information is leaked if the number of tags in the system is large enough. Our results are consistent with
this, but extend to the more likely scenario where multiple tags are compromised.

Buttyán, Holczer and Vajda published an analysis of the privacy of tree-based hash protocols also employing an
information-theoretic metric similar to ours [4]. Their notion of privacy is different from ours in that they employ
the average anonymity set size as their metric. In this metric the impact of decreasing the anonymity set size is
independent of the initial set size. We believe that the attacker’s actual incentive is better modeled by a logarithmic
measure. Decreasing the size from 100 to 50 should have the same impact as from 2 to 1 since both advances help
to distinguish tags twice as well.

3.2 Measuring Privacy

We define privacy as the degree to which two authentication sessions of the same tag are not linkable. An authenti-
cation session is the interaction between a reader (legitimate or rogue) and a tag at the protocol level. Sessions are
unlinkable if an attacker cannot discover whether two responses originated from the same tag with a probability
better than random guessing. The highest degree of unlinkability exits if any pair of tags is indistinguishable. Our
metric closely follows our attacker model as described in Section 1.

We measure privacy as the degree to which a member of the group is indistinguishable from other elements
of the group. The degree to which elements in the group are distinguishable can be measured in bits. If we have a
group of sizeN and the adversary can, with absolute certainty, divide our group into two disjoint subgroups of size
N
2 each then we have disclosed 1 bit of information. We can extend this to two arbitrarily sized subgroups,S1 and
S2, whereN

s tags are placed into groupS1 and the remaining
(
1 − 1

s

)
N tags are placed intoS2. The adversary can

place every tag in eitherS1 or S2. We useI to denote average amount of information disclosed (that is, the amount
of information that can be learned about all tags divided by the number of tags). The information disclosed is:

I =
1
s
· log2 (s) +

s− 1
s

· log2

(
s

s− 1

)
.

For example, if the adversary can learn 2 bits of information about a quarter of the tags (s = 4), this means that
for the remaining three quarters of the treelog2(4

3) (= 0.42 bits) are revealed. The weighted average isI = 0.81

2 Poovendran and Baras use entropy to analyze multicast keys [11].
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bits. An adversary can place a randomly selected tag into a group of on average sizeN
2I . Section 5 uses this metric

to measure how effective an attack is at revealing the tag’s identity.
In general, an attacker will be able to split the group of all tags,G, into k disjoint groups,Si, of arbitrary size.

G =
k⋃

i=1

(Si) ,∀a, b : 1 ≤ a, b ≤ k, a 6= b : Sa ∩ Sb = ∅

Then, the information disclosed is:

I =
k∑

i=1

(
|Si|
|G|

· log2

(
|G|
|Si|

))
. (1)

The amount of disclosed information increases when there are more groups and is maximized when the groups
are equal in size (This is consistent with Shannon’s information theory that states that the entropy of a source
grows as the probabilities of possible symbols become more similar [14]). Information theory also gives us that a
log2(N)-bit identifier uniquely identifies elements in a group of sizeN . The values ofI range fromI = 0 (strong
privacy) toI = log2(N) (no privacy). In the latter case we haveN groups of size 1, which means that we can
identify each tag uniquely.

To this point we have assumed that an adversary can distinguish among all subgroups with absolute certainty.
We now look at the case in which we can only distinguish among tags with a certain probability. The work by
Serjantov and Danezis [13] analyzes this question for mix-based anonymity systems. The application of their result
to our analysis is straightforward.

P (p, s) gives us the probability that the tagsp ands are the same tag. This value can be different for different
tags. The amount of information disclosed,Ik, for a given tag,pk, is:

Ik =
N∑

i=1

(
P (pk, gi) · log2

(
1

P (pk, gi)

))
We do not use these results in the analysis of the tree-based protocol because we assume tag compromises that

always lead to a deterministic grouping. Probabilistic groupings of tags will be required in the analysis of attack
scenarios in which the information collected by the adversary is fuzzy (e.g. radio fingerprinting).

4 Information Leakage

The tree-based protocol shares secrets among tags, so extracting the secrets from one tag compromises the privacy
of other tags. This section analyzes the amount of information that can be gathered by an adversary. The amount
of information depends on the tree-structure and the tree positions of broken tags. We first look at the worst case
in which the adversary can select the tags to compromise based on their tree position in Section 4.2 and then at the
random case in Section 4.3.

4.1 Prior Work

Our notion of information leakage is different from Avoine et al.’s [2]. While they calculate the probability that two
reading events of the same tag can be linked, we calculate the probability that all reading events of that tag can be
linked. Consequently, our metric analyzes how well an attacker can distinguish among different tags.

Our metric is similar to that of Buttýan et al. [4] in that both build on information theory. Their work uses the
average anonymity set size as the metric and calculates the lower bound on the average anonymity set size for the
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Fig. 2.Distinguishable groups of tags after 4 tags have been broken

case in which several tags are compromised. For the analyzed tree of 27,000 tags (d = 3, b = 30), their bound is
as much as 80% lower than the actual value in the range of up to 50 compromised tags. On average their bound is
48% lower than the actual value. Since the tree-based protocol is only needed in large systems, a more reasonable
number of tags to look at is106 tags (d = 3, b = 100), in which case their bound is on average 55% and at most
93% lower than the real value (b <= 150). The second order effects ignored by their lower bound calculation
become stronger as the number of tags grows. Even though their result follows the modeled value along general
lines, the degree of deviation leaves the usefulness questionable.

4.2 Selected Tags Scenario

In the selected tag scenario, the attacker can select which tags to compromise. This enables the attacker to select
tags such that the number of redundant secrets is minimized, thereby maximizing the information leakage. We
consider the information leaked when an attacker breaksb tags, and denote the broken tags ast1, t2, · · · , tb. The
first broken tag,t1, always revealsd new secrets to the adversary. The second throughkth broken tags (recall that
k is the number of children of a node), can each reveal between 1 andd new secrets. The number of new secrets
depends on how many branches are shared between the broken tag and previously broken tags. This can be as few
as one new secret if the tags are siblings in the tree. Assuming the worst case the tagst(ki+1) · · · tki+1 reveald − i
new secrets each — that is, all secrets at leveli are known to the attacker and each newly broken tag adds one secret
to each level belowi.

For the purpose of our analysis we assume a completely filledk-ary tree with depthd, containingN = kd tags.
The secrets have been extracted fromb tags. The adversary always selects tags to break that maximize the number
of secrets learned. We define levelj of the tree as the deepest level on which all secrets are known:

j = blogk(b)c

On the next level of the tree, levelj + 1, the adversary knowsb secrets. Recall, that we are considering the worst
case first in which there exists as little redundancy among the secrets as possible. Each of these secrets is the root
to a subtree with heightd − j with one known path from the root to one of the leaves. Each of these subtrees split
the leaves of the tree into subgroups of sizeN ·(k−1)

kj+2 , N ·(k−1)
kj+3 , · · · , N ·(k−1)

kd , N
kd . Maximum information is disclosed

if the groups of tags are of similar size. Therefore, the remaining tags cluster in groups of only two sizes. These
sizes are the ones closest to the average size.

Figure 2 shows an example of the maximal information leakage in a 3-ary tree, in which 4 tags have been
broken. For the subgroups in which one of the leaves has been broken, the final level is either the broken tag, or one
of two unbroken tags. The remaining unbroken keys at level 2 correspond to tag groups of size 3 and 6. The next
broken tag should be selected from one of the groups of size 6.

The unbroken levelj keys correspond to tag groups of two sizes,c1 andc2, wherer1 andr2 are the numbers
of times these groups appear. The overall number of groups add up to the number of keys at levelj (r1 + r2 = kj),
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hash list hash tree
d=1 d=2 d=3 d=5 d=10

N work work I(k,2,20) work I(k,3,20) work I(k,5,20) work I(k,10,20)
103 103 6.4 · 101 3.78 3.0 · 101 4.34 2.0 · 101 5.30 2.0 · 101 6.21
104 104 2.0 · 102 1.60 6.6 · 101 4.62 3.5 · 101 4.68 3.0 · 101 5.77
105 105 6.3 · 102 0.61 1.4 · 102 2.89 5.5 · 101 4.33 4.0 · 101 5.32
106 106 2.0 · 103 0.23 3.0 · 102 1.60 8.0 · 101 4.45 4.0 · 101 5.32
107 107 6.3 · 103 0.08 6.5 · 102 0.85 1.3 · 102 4.29 6.0 · 101 4.96
108 108 2.0 · 104 0.03 1.4 · 103 0.44 2.0 · 102 3.25 7.0 · 101 4.68

Table 1.Number of hash operations (work) and information leakage (I) for different parameters.

because each node on levelj has exactly one group (potentially with size 0) below it. Thus,r1 = b mod kj and
r2 = kj − r1.

The number of nodes on the next level,kj+1, is equal to the number of groups times their sizes plus the number
of broken tags:

kj+1 = c1 · r1 + c2 · r2 + b

c2 = c1 + 1 andc1 = kj+1−b−r2
r1+r2

For the example in Figure 2, we get one group of size 3 (j = 1; r1 = 1; c1 = 1 = 3
kj ), two groups of size 6

(r2 = 2; c2 = 2 = 6
kj ); in addition, there are 4 groups of size 2, and 4 groups of size 1 at levelj + 1.

Using equation 1 we can compute the worst case average information leakage as

I (k, d, b) = b ·

 d∑
i=j+2

(
Ψ

(
k − 1

ki

))
+ Ψ

(
1
kd

)+ r1 · Ψ
( c1

kj+1

)
+ r2 · Ψ

( c2

kj+1

)
where the information leakage due to a group of sizeσ is Ψ (σ) = 1

σ · log2 (σ).
The first term quantifies the information leakage due tob subtrees, each of which contains one broken tag. The

second and third term denote the leakage due to the groups of tags that are not part of these subtrees.
For the example in Figure 2, this formula resolves toI = 3.132 bits. After just 4 of the 27 tags in the tree have

been broken (which means that 11 of the 39 secrets have been revealed), a significant portion of the maximally
achievable information (= log2(27), approximately 4.75, bits) is disclosed.

The information disclosed is a function of the branching factor, the depth, and the number of broken tags. The
tree depth,d, is typically limited to small integers, because the tag memory and communication costs grow withd.
Values of equation 1 for selected depths are shown in Table 1. The table also includes the workload for the linear
hash-protocol (d = 1). The information disclosure for this protocol is negligible since keys are not shared (if we no
longer consider tags that have been broken as part of the system, the information disclosure is zero).

The information leakage for a few example cases is shown in Figure 3(a) and 3(b). The figure shows the
amount of information leakage over the number of broken tags for several different system sizes. An attacker who
compromises 20 tags in a system with 100,000 tags obtains 2.9 bits of information when a tree with depth 3 is used
and 4.3 bits when a tree of depth 5 is used.

The worst case scenario will only occur if the attacker can select tags that maximize the number of different
secrets compromised. This is entirely possible if the attacker has access to many tags. The attacker could probe
every tag for secrets on the tag that match those that were already extracted from other tags, thus identifying a tag
to break that has a high number of unknown secrets.
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(b) Tree withd=5, selected tags scenario
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(c) Tree withd=3, random tags scenario
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(d) Tree withd=5, random tags scenario

Fig. 3. Information leakage in the tree-based hash-protocol.
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4.3 Random Tags Scenario

The attacker in this scenario breaks tags that are chosen at random. The information disclosure of this scenario
cannot be easily captured in a closed-form equation. We choose to simulate this case instead.

We simulated the random case for systems with system sizes in betweenN = 103 andN = 107, and a tree
depthsd = 3 andd = 5, and number of broken tags up tob = 100. The results are shown in Figure 3(c) and 3(d).
The difference between this simulated random case leakage and the selected tag leakage (Figure 3(a) and 3(b)) is at
most 43% (ford = 3 N = 103 andb = 90) and typically less than 10%. The average difference over all simulated
cases is 9% ford = 5 and 14% ford = 3.

The information leakage in the random tags scenario is always upper-bounded by the selected tags scenario.
Our results suggest that the closed-form solution for the selected tags scenario is tight enough, typically within
a ten percent, for cases where attackers have no control over which tags they break. Since a smart attacker with
access to many tags could obtain nearly the worst case information leakage, the derived closed-form solution can
be used to analyze the information leakage in the tree-based protocol in nearly all scenarios.

5 Relevance

An attacker can only track people whose tags can be distinguished from all other people’s tags. This definition is
different from Avoine et al.’s [2]. They considered an attack to be successful if an attacker can distinguish between
two tags. In our model an attacker needs to be able to distinguish a tag from all other tags for a tracking attack to
be successful which we believe better captures a realistic attacker. In this section, we estimate the likelihood of a
successful attack for different key parameters.

Our threat model and the described tracking attack are not limited to information disclosed at the protocol layer.
The most notable additional source of information is the physical layer of a tag [3]. We conducted a preliminary
experiment to find out whether we could easily distinguish tags based on their antenna characteristics. In our
experiment, we exposed different tags to a high-frequency signal. We swept the signal (2-18GHz) and measured
absorption and reflection of the tag antenna. Notice, that the operating frequency of the tag is much lower and that
the tags have most likely not been activated during our experiments. We tested tags of different form factors (printed
antenna and wedges), different antenna sizes and different manufactures. The radio characteristics of different form
factors differ most. We could easily distinguish between the different printed antennas and coil antennas used in
wedges. More difficult to detect are differences among different antennas of the same type. The difference between
tags whose antennas were very similar (form the same or different manufacturers) were less significant and would
likely be lower than the noise-level in real-world scenarios. Figure 4 shows some of our preliminary results. The
figures show the radio reflection of tags with printed antennas. Figure 4(a) shows the deviation of the tags response
from the mean of all responses. For the different tags the deviation is on average between 9.4% and 22.2%. More
similar shaped antennas produce more similar responses. The response of different tags with the same antenna
shape is shown in Figure 4(b). We measured three similar tags, facing the reader and rotated by 90 degrees. The
deviation from the mean was between 3.9% and 7.5%. To quantify the variance in the readings from a single tag,
we measured one tag under three rotations. The results are shown in Figure 4(c). The average deviation form the
mean was between 1.8% and 3.7%.

We present only the simplest approach to radio fingerprinting. More carefully chosen frequencies and a more
sophisticated analysis (e.g. based on recurring patterns in the response) should lead to an attack robust enough to
be successfully executed in a real world setting. We estimate that a somewhat sophisticated attacker can extract 2
to 4 bits of information from the radio characteristics.

A few more bits of information are encoded in the number of tags that an individual carries. Additional infor-
mation could be encoded in the timestamp of readings (e.g. if the same tag was always read at around the same
time of the day).
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Since the number of bits leaked through side channels is not yet clear, the remainder of the analysis is limited
to only information leaked at the protocol layer. Privacy on this layer can be seen as a required but not sufficient
property of RFID privacy.

For simplicity of the analysis we assume that the tags are partitioned intog = b2Ic groups of equal size where
I is the amount of information leakage. A second parameter of our attack,η, is the number of tags in the focus of
the attacker (e.g. all the tags that have entered the subway at a given day). Note that this number is typically much
smaller than the total number of tags in the system. A tag can be uniquely identified if it is the only tag in one of
theg groups. First we look at the case where every individual carries exactly one tag and then we consider the case
in which multiple tags stay together as a group.

5.1 Tracking Single Tags

The probability that at least one tag can be uniquely identified (that is, this tag can be distinguished from all other
tags) is

P1(g, η) =
(

g − 1
g

)η−1

.

The probability that at leastj tags of theη tags can be identified is

P (g, η, j) =
j∏

i=1

(
g − i

g − i + 1

)η−i

.

Given a system with 100,000 tags of which 20 have been broken, and a tree with depth 5, we get 20 groups
(g = 20). The probability that in small group of tags (η = 10), half of the tags can be uniquely identified is 14%.
As the number of tags grows, this probability becomes smaller.

5.2 Tracking Collections of Tags

For many RFID applications, it is common for each individual to carry several tags. Even if a given RFID appli-
cation gives individuals only a single tag, other tags they carry for different RFID applications are equally helpful
to the attacker in distinguishing the individual. We assume that these collections comprise randomly selected tags.
The number of ways in whichl tags can fall into theg groups is given by

(
g
l

)
. When combined with the earlier

result, the probability that in a group ofη individuals who each carryl tags, at leastj can be uniquely identified is

P (g, η, l, j) =
j∏

i=1

( (
g
l

)
− i(

g
l

)
− i + 1

)η−i

.

Looking at the example from the last section withN = 105, d = 5, η = 10 but now assuming two tags per
individual (l = 2), the attacker can uniquely identify 5 individuals (j = 5) with a probability of 83%. If each
individual carries 5 tags (l = 5), this probability exceeds 99%. Looking at an example of a larger attack, we assume
50 compromised tags (b = 50 and l = 5); the probability of identifying half of 1,000 individuals (η = 1000,
l = 500) is 88%.

These results illustrate that tracking attacks on large groups of individuals are practical under the assumption
that each individual carries a fixed collection of tags.
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6 Conclusion

The resource constraints of RFID tags, combined with the strict requirements for large-scale scalability and high
availability, mean that strong privacy is not possible. All proposed protocols that provide strong privacy fail to scale
to large systems or suffer from a degraded availability. The tree-based protocol provides a trade-off between privacy
and scalability, but raises the need to better quantify the amount of privacy compromised.

Privacy must be measured in a way that accounts for a realistic attacker’s ability to combine partial informa-
tion to compromise individuals’ privacy without necessarily being able to uniquely distinguish tags. Our proposed
metric for information leakage provides useful guidance for estimating the privacy a system provides. An attacker
is not likely to distinguish between individuals that each carry only a single tag, but is very likely to be successful
in distinguishing individuals that carry several tags. If additional information sources are factored into the attack
tracking of very large tag populations becomes entirely possible. Our results indicate that protocol designs pre-
viously considered to provide adequate privacy, may in fact be insufficient against more realistic threat models.
Designers of RFID applications must be careful to balance the needs for scalability with realistic assessments of
the threats of privacy compromise.
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