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Abstract. Secure two-party computation enables applications in which partic-
ipants compute the output of a function that depends on their private inputs,
without revealing those inputs or relying on any trusted third party. In this pa-
per, we show the potential of building privacy-preserving applications using gar-
bled circuits, a generic technique that until recently was believed to be too ineffi-
cient to scale to realistic problems. We present a Java-based framework that uses
pipelining and circuit-level optimizations to build efficient and scalable privacy-
preserving applications. Although the standard garbled circuit protocol assumes
a very week, honest-but-curious adversary, techniques are available for convert-
ing such protocols to resist stronger adversaries, including fully malicious adver-
saries. We summarize approaches to producing malicious-resistant secure com-
putations that reduce the costs of transforming a protocol to be secure against
stronger adversaries. In addition, we summarize results on ensuring fairness, the
property that either both parties receive the result or neither party does. Several
open problems remain, but as theory and pragmatism advance, secure computa-
tion is approaching the point where it offers practical solutions for a wide variety
of important problems.

1 Introduction

Data gains value when it can be used in computations with data from other sources.
For example, my genetic information becomes much more valuable when I can use it
in a computation to measure kinship with another individual’s genetic data, contribute
it to a scientific genome association study, or use it to analyze drug effectiveness by
comparing it to the genomes of participants in a pharmaceutical study. All of those
uses, however, seem to require exposing my private data to other parties (or the other
parties being willing to provide their private data to me). This leaves individuals with a
dilemma: either maintain privacy, but lose much of the potential value of their data; or
give up on privacy and expose ones data to malicious uses.

Secure computation provides an attractive alternative. It enables data owners to keep
their data private, while allowing it to be used in computations. Secure two-party com-
putation allows two parties to cooperatively compute the output of a function, f (a,b),
without revealing any information about their private inputs, a and b respectively (other
than what can be inferred from the function output). The idea of secure function eval-
uation was introduced by Andrew Yao in the 1980s [52, 53], but it has only recently
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become realistic to imagine large-scale, important problems being solved by practi-
cal secure computations. Realizing such secure computations would enable many real
world applications. For example, government agencies could use it to implement bio-
metric security checks [29] (e.g., the no-fly list) and video criminal identification using
street cameras [28, 47], without compromising the privacy of innocent citizens. If se-
cure computation protocols can be inexpensive enough to execute on mobile devices,
it could also enable applications using smartphones such as proximity-based voting,
common interest and contacts matching, and real-time marketing [27].

In this paper, we focus on a generic approach to secure two-party computation
known as garbled circuits or Yao circuits [52]. A garbled circuit protocol allows two
semi-honest parties, a circuit generator and a circuit evaluator, to compute an arbitrary
function f (a,b), where a and b are private inputs from each party, without leaking any
information about their respective secret inputs beyond what is revealed by the func-
tion output itself. We provide background on the garbled circuit protocol in Section 2.
Although garbled circuit protocols have a reputation for being inefficient and requiring
excessive amounts of memory, there are ways to implement garbled circuit protocols
that take advantage of pipelining and circuit-level optimizations to enable much faster
execution. Section 3 describes our framework for efficient garbled circuit protocols and
reports on results using it for several applications.

An important parameter of any secure computation protocol is the threat model.
The weakest commonly used threat model is the semi-honest threat model, where both
parties are assumed to follow the protocol as specified but attempt to learn additional
information about the other party’s private inputs from the protocol transcript. This is
the easiest model in which to build scalable applications, and the model most frequently
used by implemented systems [9,26,32,37,47,51]). Although this model may be appro-
priate for some realistic situations in which both parties have limited ability to interfere
with the execution or a vested interest in the correctness of the results, it assumes a very
weak adversary so is insufficient for many important use scenarios.

The strongest model is called malicious adversary model, where an attacker can
deviate arbitrarily from the protocol specification to pry on other parties privacy. Several
techniques have been proposed for converting a protocol that is secure under the semi-
honest model into a protocol that is secure against a malicious adversary, which we
discuss in Section 4, along with our work on making these conversions less expensive.

A second important facet of secure computation is fairness, which requires the par-
ticipating parties obtaining the results of the computation simultaneously. Although
fairness seems impossible to achieve since one party could just abort the protocol after
obtaining the result, surprisingly, it turns out that fairness is achievable for some func-
tions, and that for other functions a relaxed definition of partial fairness may be useful.
We discuss our results on ensuring fairness in Section 5.

2 Garbled Circuits Background

Garbled circuits were introduced by Yao [53] as a generic mechanism for secure com-
putation. A standard garbled circuit protocol involves two parties who wish to cooper-
atively compute the output of a function that depends on private data from both parties
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without revealing that private data. One party is known as the generator, who produces
a garbled circuit for computing the function. The other party, the evaluator, evaluates
that circuit to produce the (encrypted) result, which can then be revealed to either or
both parties.

Any binary gate, f , which has two input wires W0,W1 and one output wire W2, can
be realized as a garbled gate. First, generate random nonces w0

i and w1
i to represent

signal 0 and signal 1 on each wire Wi. Then, generate a truth table of four entries,

Encw
s0
0 ,w

s1
1
(w f (s0,s1)

2 )

where s0,s1 denote the 1-bit plain signal on wire W0,W1, respectively. The table entries
are then randomly permuted so no information is revealed by the encrypted table. We
call this encrypted and permuted truth table a garbled table.

Next, the garbled table and the wire labels, ws0
0 , representing the generator’s se-

cret input, are sent to the evaluator. To obtain the appropriate wire label for her own
input (without revealing the input), ws1

1 , the evaluator and generator execute an obliv-
ious transfer protocol (see Section 2.1). Thus, the evaluator can decrypt one and only
one entry that corresponds exactly to their inputs. Following this construction strategy,
an arbitrary number of binary gates can be assembled to accomplish general purpose
computation using the output wire labels of one gate as the input labels of the next gate.

In summary, a garbled circuit protocol involves three main steps: (1) the circuit
generator garbles the circuit’s truth tables; (2) the circuit generator directly transfers the
circuit and garbled truth tables, and obliviously transfers the appropriate input labels to
the evaluator; and (3) the circuit evaluator evaluates the circuit by successively decrypt-
ing the entry of each garbled table corresponding to the available input wires to learn
the output wire labels necessary to fully evaluate a single path through the circuit.

Garbled circuits can compute any function as a two-party secure computation, and
can be easily extended to support multi-party computation. The protocol provides secu-
rity in the semi-honest threat model, where each party is assumed to follow the protocol
as specified but attempts to learn additional information about the other party’s inputs
by observing the protocol execution. In Section 4, we consider approaches to making
garbled circuits protocols resilient to stronger adversaries.

Next, we provide background on the oblivious transfer protocols needed to ex-
change inputs at the beginning of a garbled circuit protocol. Section 2.2 describes some
important improvements to the basic garbled circuit protocol that enable more efficient
execution. Section 2.3 describes previous frameworks designed to make it easier to
build garbled circuit protocols.

2.1 Oblivious Transfer

An oblivious transfer protocol allows a sender to send one of a possible set of values to
a receiver. The receiver selects and learns only one of the values, and the sender cannot
learn which value the receiver selected. For example, a 1-out-of-2 oblivious transfer
protocol (denoted OT2

1) allows the sender, who has two bits b0 and b1, to transfer bσ to
the receiver, where σ ∈ {0,1} is kept secret to the receiver throughout the protocol. OT2

1
was first proposed by Even, Goldreich, and Lempel [12]. Naor and Pinkas developed an

3



efficient OT2
1 protocol based on Decisional Diffie-Hellman (DDH) hardness assump-

tion [44]. We use this technique in our implementation. Based on the random oracle
assumption, Ishai et al. devised a novel technique to reduce the cost of doing m OT2

1
transfers to k OT2

1, where k, (k� m), serves as a configurable security parameter [30].

2.2 Improvements

Several techniques have been developed to improve garbled circuit protocols. This sec-
tion describes a few of the most important enhancements.

The point-and-permute technique allows the circuit evaluator to identify the “right”
entry in a garbled truth table to decrypt [41], saving the evaluator from decrypting more
than one truth table entry. The basic idea is to assign an n-bit random string (say p =
p1 p2 . . . pn) for every garbled truth table with 2n entries. The random string determines
how the generator swaps the entries in the table (swapping every other 2 j consecutive
entries if p j = 1). For the i-th entry in the truth table, the generator sends an n-bit string
p′ = p′1 p′2 . . . p′n (where p′k = pk⊕bk and b1b2 . . .bn is the binary representation of the
number i), which indexes the “right” entry for the evaluator to decrypt. Considering the
full truth table, revealing p′ does not leak anything about p, so the evaluator cannot
learn any extra information about p.

The free-XOR technique [35, 36] realizes all XOR gates by just XOR-ing the in-
put wire labels, without needing any encryption operations. Its security was origi-
nally proven in the random oracle model [36]. The idea is to select wire labels where
w1

i = w0
i ⊕R where R is a random nonce. This allows the XOR of two wire labels to

be computed by simply XOR-ing the wire labels, without requiring any encryption or
communication. Choi et al. proved that it is secure under a notion of circular correla-
tion robustness (which is weaker than the random oracle assumption), but is not secure
under a standard variant of the correlation robustness assumption [10].

The Garbled Row Reduction (GRR) technique reduces the size of a garbled table of
binary gates to three entries (saving 25% of network bandwidth) for all non-free gates.
This is achieved by simply assigning

w0
out = Encw0

in1
,w0

in2
(0)

where w0
out denotes the wire label representing 0 on the output wire while win1 and win2

denote the two input wires. This eliminates the necessity to transmit the encryption of
one particular entry in the table. This technique is composable with both the free-XOR
and point-and-permute techniques.

2.3 Frameworks

Without appropriate programming tools, programmers would have to spend a great deal
of tedious effort to build a privacy-preserving application using garbled circuits. Various
programming tools have been developed to automate parts of building secure compu-
tations. The most widely used garbled circuits framework is Fairplay [41], developed
by Malkhi et al. and extended by several subsequent papers. Fairplay is a compile-and-
interpret framework that automates the production of secure two-party computation ap-
plications. The main interface Fairplay exposes to programmers is a simple Algol-like
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programming language called Secure Function Description Language (SFDL) that sup-
ports very limited primitive data types (boolean, sized int and enumerate), expres-
sions (addition, subtraction, comparison, and Boolean logical operations), and state-
ments (non-recursive functions, branches, and constant number iterative loops). SFDL
programs are compiled to a monolithic digital circuit which is interpreted by the server/-
client runtime environments for protocol execution.

Several subsequent frameworks have built upon Fairplay. FairplayMP [8] extended
the SFDL language to describe secure multi-party computations, using a circuit-based
technique for multi-party computation [5]. TASTY [26] extended Fairplay’s SFDL to
allow the programmer to specify where in the digital circuit to integrate some arithmetic
circuits (limited to addition and constant multiplication) that are realized by additive
homomorphic encryption schemes.

Although Fairplay and similar previous secure computation frameworks demon-
strated that it is feasible to automate building secure computing protocols, they also led
to the false impression that such protocols are unlikely to be useful in practice because
of their poor efficiency and scalability. Many researchers (e.g., [32, 47]) concluded that
the generic garbled circuit technique is not suitable for solving real world computational
problems, and instead developed custom solutions for particular problems [25, 32, 47].
In the next section, we argue that the efficiency and scalability problems attributed to
garbled circuits are not inherent in the protocol, but can be overcome by a more efficient
framework design.

3 Efficient Garbled Circuits Framework

There are two main reasons why secure computations implemented using Fairplay and
similar frameworks tend to be slow and unscalable. The first is that the design of Fair-
play requires that the entire circuit is constructed and stored in memory before evalu-
ation can begin. These circuits are huge since each gate requires a garbled table (three
encrypted values using the GRR technique) and gates may not be reused since that
would leak information. Users of Fairplay have found that the memory required to store
the garbled circuit prevents implementations from scaling to large inputs (as an exam-
ple, Jha et al. failed to compute the edit distance of two 200-character sequences due
to memory constraints thus concluded garbled circuit alone is not suitable for large cir-
cuits [32]). We address this problem by pipelining the generation and execution of the
circuit so there is no need to ever have the entire circuit in memory (Section 3.1).

The other main problem with the Fairplay approach is also its main advantage:
computations are represented as high-level, Algol-like programs. The problem with
starting from a high-level representation is that it prevents many important optimization
opportunities. Although it may one day be possible to automate these optimizations,
important optimizations are well beyond the capabilities of current tools. Our approach
is to adopt a circuit-level representation that enables both higher-level and lower-level
optimizations to greatly improve the efficiency of generated protocols (Section 3.2).

Section 3.3 provides details on our implementation, and Section 3.4 reports on re-
sults for several applications.
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3.1 Pipelined Circuit Execution

The primary limitation of previous garbled circuit implementations is the memory re-
quired to store the entire circuit in memory. For example, Pinkas et al.’s privacy-preser-
ving AES implementation involved 11,500 non-free gates [48], each of which requires
a garbled table of encrypted wire values. For problems like Levenshtein distance the
size of the circuit scales with the size of the input, so only relatively small inputs can be
handled.

There is no need, however, for either the circuit generator or circuit evaluator to
ever hold the entire circuit in memory. The circuit generating and evaluating processes
of different gates can actually be overlapped in time. In our framework, the processing
of the garbled truth tables is pipelined to avoid the need to store the entire circuit and
to save processing time. At the beginning of the evaluation, both the generator and
evaluator instantiate the circuit structure, which is known to both and fairly small since it
can reuse components just like a non-garbled circuit. Note that the process of generating
and evaluating the circuit does not (indeed, it cannot, because of privacy) depend on the
inputs, so there is no overhead required to keep the two parties synchronized.

Our framework automates the pipelined execution, so a user only needs to construct
the desired circuit. When the protocol is executed, the generator transmits garbled truth
tables over the network as they are produced, in an order defined by the circuit structure.
As the client receives the garbled truth tables, it associates them with the corresponding
gate. The client determines which gate to evaluate next based on the available output
values and tables. Gate evaluation is triggered automatically when all the necessary
inputs are ready. Once a gate has been evaluated it is immediately discarded, so the
number of garbled tables stored in memory is minimal. Evaluating larger circuits does
not substantially increase the memory load on the generator or evaluator, only the net-
work bandwidth needed to transmit the garbled tables.

3.2 Generating Efficient Circuits

Since pipelined execution eliminates the memory bottleneck, the cost of evaluating a
garbled circuit protocol scales linearly with the number of garbled gates. One way to
reduce the number of gates is to identify parts of the computation that only require
private inputs from one party. These components can be computed directly by that party
so do not require any garbled circuits. By designing circuits at the circuit-level rather
than using a high-level language like SFDL, users of our framework can take advantage
of these opportunities (for example, by computing the key schedule for AES locally and
transmitting it obliviously).

For the parts of the computation that involve private data from both parties so must
be done cooperatively, we exploit several opportunities enabled by our framework for
minimizing the number of non-free gates in our circuits.

Circuit Library. A programmer can create circuits using a library of basic circuits (e.g.,
comparator, adder, muxer, min) designed to make the best use of free-XOR techniques.
This serves as one solution to the more general goal of replacing expensive AND and
OR gates with XOR gates, which are free. Our goals are distinguished from conventional
hardware circuit design in that the latter aims to optimize circuits under a completely
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different set of criteria, such as total number of gates, area, and power consumption.
Also, since each garbled gate can only be evaluated once, the reuse goals of hardware
circuit design do not apply to garbled circuits.

Minimizing Width. In garbled circuits, every bit of computation requires very expen-
sive operations. To improve performance, our circuits are constructed with the minimal
width required for the correctness of the programs. For example, if one wants to count
the number of 1’s in a 900-bit number, as is encountered in a face recognition appli-
cation, SFDL’s simplicity encourages programmers to write code that leads to a circuit
that uses 10-bit accumulators throughout the computation. However, narrower accumu-
lators are sufficient for early stages. The Hamming distance, Levenshtein distance, and
Smith-Waterman applications all take advantage of this technique. For example, this
technique reduces the cost for our Levenshtein distance protocol by about 20%.

Propagating Known Values. Our framework automatically propagates known wire
signals when the circuit is built. For example, given a circuit designed for Hamming
distance of 1024× 1024 vectors, we can immediately obtain a 900× 900 Hamming
distance circuit by fixing 248 of the 2048 input wires to 0. Because of the value prop-
agation, this does not incur any significant evaluation cost. As another example, all
the initial states (i.e., entries in the first row and the first column of the state matrix)
in both the Levenshtein and Smith-Waterman protocols are filled with known values
agreed upon by both parties. Hence, our circuit computes on known signals without any
needing any encryption.

Exploiting Wire Labels. The wire labels obtained during a garbled circuit evaluation
are normally treated as a worthless by-product of the evaluation, but can be used in
subsequent computations. In the garbled circuit evaluator’s perspective, the set of wire
labels computed are meaningless numbers, conveying no semantic information until the
last step. This property is bound to the rigorous definition of security for garbled circuit
technique. We exploit this fact to avoid garbled execution for many binary gates, in two
main ways:

– Backtracking We used the wire labels in conjunction with permuted data struc-
tures to perform additional computation without leaking any information. For ex-
ample, the wire exiting each comparison sub-circuit in a tree-structured circuit for
determining the minimum value of a large set encodes the information about each
pairwise comparison. Thus, the wire labels obtained by the evaluator can be used to
very efficiently evaluate a backtracking tree created by the generator to obliviously
retrieve profile information associated with the minimum value found. In essence,
the labels are used as encryption keys that are combined to reveal profile informa-
tion. We use this technique in our fingerprint matching protocol [29] to obtain the
identity record associated with the closest matching fingerprint.

– Symbolic Execution Recall that plain signals, occasionally or frequently, can ap-
pear in our hybrid circuit (especially when circuit executions of plain and garbled
signals are combined). In addition, since wire labels are unique, we can treat them
as ordinary distinct symbols. This insight allows us to do binary gate-level sym-
bolic execution which is free compared to garbled execution. When combined in
a large circuit, these gate-level simplfications can collapse many binary gates to
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simple wire connections. For example, the initialization in Levenshtein and Smith-
Waterman algorithms specifies that a fraction of wire ports (corresponding to the
values of the first row and the first column) are bound to known signals, a fact that
can be exploited to eliminate many gates. Zahur et al. describes this technique in
more detail, as well as further opportunities for using higher-level symbolic execu-
tion techniques to speedup privacy-preserving applications when some data can be
revealed [54].

3.3 Implementation

Our framework is designed to enable programmers to define secure computations using
a high-level language while providing enough control over the circuit design to enable
efficient implementation. Users of our framework write a combination of high-level
(Java) code and code for constructing circuits. Users need not be cryptographic experts,
but are expected to be familiar with digital circuit design. Our framework and applica-
tions are available under an open source license from http://www.MightBeEvil.com.

Our framework core is about 1500 lines of Java code. The utility circuits comprise
an additional 700 lines for efficient implementations of common circuits (adders, mux-
ers, comparators, etc.). The small size of the framework enables it to be reasonably
verified to provide users with good confidence in the integrity of the protocol soft-
ware implementation (although we have not yet attempted any formal verification of
properties of the framework implementation). Since both parties involved in a privacy-
preserving computation need to fully trust their software for protecting their secrets,
this small code base is essential in practice.

Figure 1 depicts a UML class diagram of the core classes of our framework. Con-
crete circuits are constructed using their build() method. The hierarchy of circuits is or-
ganized following the Composite design pattern [14] with respect to the build() method.
Circuits are constructed in a highly modularized way, using Wire objects to connect
them all together. The relation between Wire and Circuit follows a variation of the Ob-
server pattern (a kind of publish-subscribe) [14]. The main difference is that, when a
wire w is connected to a circuit on a port p (represented as a position index to the in-

putWires array of the circuit), all the observers of the input port wire p are automatically
become observers of w. Moreover, the wire-to-wire propagation is done once at circuit
construction time (instead of circuit execution time), which yields about 15% speedup
in our experiments.

Subclasses of the SimpleCircuit abstract class provide the functions commonly re-
quired by any binary gates such as 2-to-1 AND, OR, and XOR. The AND and OR gates
are implemented using the standard garbled circuit technique, whereas the XOR gate
is implemented using the free-XOR optimization [36]. Our framework automatically
propagates known signals which saves the protocol run-time cost whenever any in-
ternal wires can be fixed to a known value. The binary circuits form the core of our
framework. To build a new application, users only need to create new subclasses of
CompositeCircuit.

To simplify building new composite circuits, the build() method of CompositeCircuit

abstract class is designed with the Factory Method pattern [14]. The code below shows
the general structure of the build() method:
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CompositeCircuit

subCircuits : Circuit[]

build() : void
createSubCircuits() : void
connectWires() : void
defineOutputWires() : void
fixInternalWires() : void

AND_2_1

Circuit

inputWires : Wire[]
outputWires : Wire[]

build() : void
startExecuting(s : State) : State
update(o : TransitiveObservable,arg : Object) : void

SimpleCircuit_2_1

gtt : BigInteger[][]

build() : void
execute() : void

OR_2_1MUX_3_1GT_3_1 XOR_2_1

Wire

value : int
lbl : BigInteger
invd : boolean

connectTo(ws : Wire[],idx : int) : void
fixWire(v : int) : void

TransitiveObserver

<<interface>>

Circuit -> TransitiveObserver
<<realize>>

TransitiveObservable

1

1..*

11..*

ADD1_Lplus1_L

Fig. 1: Core Classes in Framework.

public void build() throws Exception {
createInputWires();
createSubCircuits();
connectWires();
defineOutputWires();
fixInternalWires();

}

To define a new circuit, a user creates a new subclass of CompositeCircuit that over-
rides the createSubCircuits(), connectWires(), and defineOutputWires() methods to define
a new circuit. In cases where internal wires have known values (e.g., the carry-in port
of an adder is fixed to 0), better performance is obtained if the user also overrides the
fixInternalWires() method.

3.4 Applications

We built several target applications using our garbled circuits framework to evaluate its
scalability and efficiency. Table 1 summarizes the results.

In privacy-preserving fingerprint matching [29], a client has a scanned candidate
fingerprint and the server has a database of fingerprint images with associated profile
information. The system does not reveal any information about the candidate finger-
print to the server, or about the database to the client, except the identity of the closest
match if there is a match within some threshold distance (or the non-existence of any
close match). We designed a bit-width minimizing circuit for finding the minimum
difference of the Euclidean distances (removing the random vector added in the homo-
morphic encryption phase), and used a backtracking strategy to obliviously obtain the
associated profile information. Our fingerprint matching protocol combines an additive
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Application Best Previous Measurement Results Our Results Speedup
Fingerprint
Matching

Barni et al.
[2]

Closest Threshold Matcha 16s 1.5s 10.6a

Face
Recognition SCiFI [47]

900-bit Hamming, Online 0.310s 0.019s 16.3
900-bit Hamming, Total 213s 0.05s 4176

Levenshtein
Distance

Jha et al.
[32]

100×100b 92.4s 4.1s 22.4
200×200c 534s 18.4s 29.0

Smith-
Waterman

Jha et al.
[32]

60×60 d 447s d

AES
Encryption

Henecka et al.
[26]

Online Time (per block) 0.4s 0.008s 50
Total Time (per block) 3.3s 0.2s 16.5

Table 1: Performance results for privacy-preserving applications.
All results are for 80-bit wire labels and the security parameters for the extended OT protocol [30]
are (80,80). Our results are the average of 100 trials with the client and server each running on
a Intel Core Duo E8400 3GHz; the comparisons are with results reported in the cited papers,
using similar, but not identical, machines. a. Unlike our work, Barni et al. [2] cannot find the
best match but instead identifies all entries within some threshold. b. Protocol 1, a garbled-circuit
only implementation that is faster than Protocol 3, but does not scale to 200×200. c. Protocol 3,
a hybrid protocol (the flagship protocol of [32]). d. No meaningful comparison is possible here,
although our protocol is about twice as fast, since [32] implemented a simplified Smith-Waterman
protocol [28].

homomorphic encryption phase used to compute Euclidean distances between finger-
print vectors, and a garbled circuit phase for finding the closest match within ε . For the
other applications, we use only garbled circuit techniques.

The main operation in the privacy-preserving face recognition application is com-
puting the Hamming distance between bit vectors representing face characteristics. Os-
adchy et al.’s results which use a combination of homomorphic encryption and 1-out-
of-n oblivious transfer, but are far slower than our generic garbled circuit approach. The
Levenshtein Distance (edit distance) and Smith-Waterman (genome alignment) applica-
tions use a dynamic programming algorithm. In the privacy-preserving setting, each
party has one of the input strings and they wish to compute the distance between the
two strings without revealing anything else about the input strings. In considering these
problems, Jha et al. concluded that garbled circuits could not because of the memory
blowup as the circuit size increases [32]. Our implementation is able to complete a
2000×10,000 Levenshtein distance problem on commodity PCs, evaluating more than
1.29 billion non-free gates in 223 minutes.

We also demonstrated generic garbled circuit based privacy-preserving applications
are even possible for mobile platforms, where memory and computing resources are
much more constrained [27].
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4 Stronger Adversaries

The standard garbled circuits protocol, as implemented by the framework described in
the previous section, is secure against semi-honest adversaries who are required to fol-
low the protocol as specified but attempt to learn additional information about private
inputs from the protocol execution. Although the semi-honest model is very weak, it is
appropriate for some realistic scenarios such as when the result (including knowledge of
whether or not the protocol completed successfully) is only made visible to the circuit
evaluator and is not revealed to the circuit generator. In these scenarios, garbled circuit
protocols can provide strong privacy (but not correctness) guarantees even against an
arbitrary adversary so long as an oblivious transfer protocol that resists malicious ad-
versaries is used. When correctness guarantees are also needed, or when confidentiality
must be maintained even though the generator received the final output, the standard
garbled circuit protocol is not sufficient. Instead, a protocol that tolerates malicious
adversaries is required.

Section 4.1 discusses the possible attacks in the malicious model, and Section 4.2
surveys work on transforming semi-honest protocols to resist malicious adversaries.
We describe our approach to constructing garbled circuit protocols that provably tol-
erate malicious adversaries in Section 4.3, and we compare the asymptotic complexity
of our work and previous solutions in Section 4.4. Implementing protocols that can
resist stronger adversaries remains much more expensive than protocols in the semi-
honest model, but with improvements in both the underlying protocol implementations
and approaches for strengthening semi-honest protocols, secure computations that are
secure against strong adversaries are now feasible in practice for some problems.

4.1 Threats

The malicious model allows a protocol participant to deviate from the agreed protocol in
arbitrary ways. Such an adversary may compromise the privacy of the other participant’s
data, or tamper with the correctness of the result.

A malicious generator might construct a faulty circuit that discloses the evaluator’s
private input. For example, instead of producing a circuit that computes the agreed
upon function f (a,b), a malicious generator could secretly construct a garbled circuit
that computes f ′(a,b) 7→ b, thus learning the second participant’s input directly.

A more subtle attack is selective failure [34, 42]. In this attack, a malicious genera-
tor uses inconsistent labels to construct the garbled gate and OT so that the evaluator’s
input can be inferred from whether or not the protocol completes. For example, a cheat-
ing generator may assign (w0,w1) to an input wire in the garbled circuit while using
(w0, ŵ1) instead in the corresponding OT where w1 6= ŵ1. Consequently, if the evalua-
tor’s input is 0, she will get w0 from OT and complete the evaluation without noticing
any anomaly. In contrast, if her input is 1, she will get ŵ1 and be unable to complete
the evaluation properly. If the protocol expects the evaluator to share the result with the
generator at the end, the generator learns if the evaluation failed and information about
the evaluator’s input is leaked.
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4.2 Previous Work

Many approaches have been proposed to transform a garbled circuit protocol that pro-
vides security in the semi-honest model into a protocol that provides security guarantees
in the malicious model. The two main approaches are cut-and-choose and commit-and-
prove.

Cut-and-choose. One approach is to enforce honest behavior from malicious adver-
saries is for the generator to prepare multiple copies of the garbled circuit with in-
dependent randomness, and the evaluator randomly chooses a fraction of the circuits,
whose randomness is then revealed. The evaluator aborts if any of the chosen circuits
(called check-circuits) are inconsistent with the revealed randomness. Otherwise, she
evaluates the remaining circuits (called evaluation-circuits) and takes the majority of
the output from evaluation-circuits as the final output.

The intuition is that in order to pass the check, a malicious generator will need to
keep the number of faulty circuits low, and the minority faulty circuits will be fixed
by the majority operation in the end. In other words, if a malicious generator wants to
manipulate the final output, she needs to construct faulty majority among evaluation-
circuits, and then the chance that none of the faulty circuits is checked will be negligible.

The cut-and-choose technique requires that the evaluator has a way to ensure that the
generator provides the same input for each evaluation circuit. Recall that the generator
also sends multiple copies of her input labels to the evaluator. A malicious generator
may provide altered inputs to different evaluation-circuits, and it has been shown that
for some functions, there are simple ways for the generator to extract information about
the evaluator’s input [38]. For example, suppose both parties agree to compute the inner-
product of their input, that is, f (a,b) 7→ ∑

n
i=1 aibi, where ai and bi is the generator’s and

evaluator’s i-th input bit, respectively. Instead of providing [a1, . . . ,an] to all evaluation-
circuits, the generator might send [d j

1, . . . ,d
j
n] to the j-th copy of the evaluation-circuits

where d j
j = 1, and d j

i = 0 if i 6= j. The malicious generator then learns the majority bit
in the evaluator’s input, which is not what the evaluator agreed to reveal in advance. As
a result, we must ensure the generator’s input consistency.

Mohassel and Franklin [42] proposed the equality-checker scheme, which needs
O(ns2) commitments to be computed and exchanged to ensure the generator’s input
consistency, where n is the input size and s is a statistical security parameter that is the
number of copies of the garbled circuit. Lindell and Pinkas [38] develop an elegant
cut-and-choose based construction that enjoys the simulation-based security against
malicious players. This approach requires O(ns2) commitments to be computed and
exchanged between the participants. Although these commitments can be implemented
using lightweight primitives such as collision-resistant hash functions, communication
complexity is still an issue. Nielsen and Orlandi [45] proposed an approach with Lego-
like garbled gates. Although it is also based on the cut-and-choose method, via an align-
ment technique only a single copy of the generator’s input keys is needed for all the
evaluation-circuits. However, each gate needs several group elements as commitments
resulting both computational and communicational overhead. Lindell and Pinkas pro-
pose a Diffie-Hellman pseudorandom synthesizer technique [39]. Their approach relies
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on finding efficient zero-knowledge proofs for specifically chosen complexity assump-
tions, which has complexity O(ns).

In summary, to enforce honest behavior from malicious adversaries based on the
cut-and-choose technique, we need to deter the faulty circuit, selective failure, and the
generator’s input inconsistency attacks.

Commit-and-prove. Another well-known category to enforce honest behavior is called
commit-and-prove. This approach is first suggested by Goldreich, Micali, and Widger-
son [16], and only requires the weak general assumption of zero-knowledge proofs
of knowledge. However, it has never been implemented since it requires costly NP-
reductions.

Following the same idea, Jarecki and Shmatikov [31] presented an approach, in
which the generator is asked to prove the correctness of the garbled circuit in zero
knowledge before the evaluation starts. Although only one copy of the garbled circuit
is constructed, their protocol requires hundreds of heavy cryptographic operations per
gate, whereas approaches based on the cut-and-choose method require only such ex-
pensive operations for the input gates.

Recently, Nielsen et al. proposed a solution based on a variation of the commit-and-
prove approach [46]. They extended the GMW [16] protocol with a technique called
authenticated bits that have the property that only if the participants follow the agreed
protocol do the results remain authenticated. In other words, if a malicious participant
deviates from the agreed protocol, the other party will notice and then abort. Therefore,
if the final result remains authenticated, it constitutes a proof that both parties behaved
honestly. Although the GMW protocol requires many expensive OTs, Neilson et al.
manage to conquer this issue with OT extensions, and thus, their solution has good
amortized efficiency.

4.3 Our Approach

We tackle the selective failure attack by using a stronger notion of OT called committing
OT [34]. This notion requires that in addition to getting exactly one message of her
choice, the receiver of the OT (the evaluator of the garbled circuit protocol) also gets
the commitments to both of the sender’s messages. Later, the sender of the OT can post-
facto prove that she ran the OT correctly by revealing the randomness used in the OT
only for those OT instances corresponding to circuits that are opened for verification.

We solve the input consistency problem in an efficient manner by designing a way
to use weak witness indistinguishable proofs instead of zero-knowledge protocols (or
Σ -protocols). A witness-indistinguishable proof only makes the guarantee that the ver-
ifier cannot learn which witness the prover used during a proof. We design a special
witness-indistinguishable proof for an operation concerning claw-free functions that
have a weak malleability property to generate efficient instantiations of input con-
sistency proofs. Shelat and Shen provide details on the full protocol and its security
proof [50].

We note that both the committed-input scheme [42] and Diffie-Hellman pseudoran-
dom synthesizer technique [39] are special cases of our approach, and thus, have similar
complexity. However, the committed-input scheme is not known to enjoy simulation-

13



based security, and the pseudorandom synthesizer technique requires zero-knowledge
proofs that are unnecessary in this case. Our approach is faster than these works by a
constant factor.

4.4 Communication Complexity

To understand the costs of hardening a garbled circuit protocol against malicious adver-
saries, we compare the communication efficiency between protocols that use a mix
of light cryptographic primitives (such as commitments instantiated with collision-
resistant hash functions) and heavy ones (such as group operations that rely on alge-
braic assumptions like discrete logarithm). We consider asymptotic complexity under
reasonable assumptions about the growth of various primitives with respect to the secu-
rity parameter k:

1. light cryptographic primitives have size Θ(k);
2. heavy cryptographic operations, like elliptic curve operations, have size õ(k2); and
3. heavy cryptographic operations, like RSA or group operations over Z, have size

õ(k3).

We make the assumption since in certain elliptic curve groups, known methods for
computing discrete logarithms of size n run in time Ln(1, 1

2 ). Thus, to achieve secu-
rity of 2k, it suffices to use operands of size õ(k2), by which we mean a value that is
asymptotically smaller than k2 by factors of log(k).

Table 2 summarizes our asymptotic analysis. Let k be a security parameter and s be
a statistical security parameter, and let |C| be the number of gates in the base circuit.
The other protocols are:

– Jarecki and Shmatikov [31]: This is a commit-and-prove approach, so it does not
need to ensure input consistency. However, it requires hundreds of group operations
per gate in order to defend faulty circuit and selective failure attacks (with ZK
proofs). Since this protocol assumes the decisional composite residuosity problem
in an RSA group, each group element is of size õ(k3).

– Kiraz [33]: This approach is based on the cut-and-choose technique. So, it uses s
copies of the garbled circuit, each circuit has |C| gates, and each gate needs O(k)

Communication
Base Circuit Generator’s Input Evaluator’s Input

JS07 [31] |C| · õ(k3) – n (committed) OT’s
Ki08 [33] Θ(|C| · sk) Θ(ns2k) n (committing) OT’s
LP07 [38] Θ(|C| · sk) Θ(ns2k) max(4n,8s) OT’s
LP10 [39] Θ(|C| · sk) Θ(ns) · õ(k2) n OT’s
Our work [50] Θ(|C| · sk) Θ(ns) · õ(k2) n (committing) OT’s

Table 2: Analysis of two-party secure computation against malicious adversaries.
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for garbled truth table. Also, they use an equality-checker framework that requires
O(ns2) commitments to enforce the generator’s input consistency. As with our ap-
proach, they thwart the selective failure attack by using committing OTs.

– Lindell and Pinkas [38]: This is also a cut-and-choose-based approach. Each of the
generator’s input bits requires O(s2) light commitment for the consistency check.
To defend against the selective failure attack, it requires max(4n,8s) OT’s.

– Lindell and Pinkas [39]: This approach is similar to ours in finding a good balance
between approaches using many but lightweight primitives and approaches using a
few expensive group operations. This uses a technique called cut-and-choose OT to
handle the generator’s input inconsistency and selective failure attacks. However,
they rely on more specific cryptographic assumptions, and the unnecessary zero-
knowledge proofs incur constant factor overhead.

5 Fairness

Fairness is the property that either all parties receive the output, or no one does.3 None
of the protocols we have described so far provide any fairness properties. Fairness is
desirable in many circumstances:

– Coin-tossing protocols can be used to generate an unbiased coin. This can be
viewed as secure computation of a probabilistic functionality taking no inputs. If
fairness is not guaranteed, then one party might learn the value of the coin first and
then decide whether to abort the protocol based on the coin’s value.

– In a protocol for exchanging digital goods (such as using digital currency to pur-
chase a song) it would be unacceptable for the buyer to obtain the digital good
without also making the payment (or for the seller to receive the payment without
providing the digital good). Similarly, in exchange of digital signatures it is consid-
ered undesirable for one party to obtain the second party’s signature on a contract
without the second party simultaneously getting a copy of the first party’s signature
on the same contract.

More generally, we can imagine any scenario where learning the output — while
preventing the other party from learning the output — provides a competitive advantage.
Without a guarantee of fairness, parties in such a situation may be unwilling to even
participate in the protocol.

In fact, fairness can be ensured in the multi-party setting in the case when a major-
ity of the parties are guaranteed to remain honest [3, 16, 49]. (This assumes a broadcast
channel, or a mechanism such as a PKI that allows broadcast to be implemented.) In
case no honest majority can be assumed, it may seem obvious that fairness cannot be
ensured by the following argument (specialized to the setting of two-party computa-
tion): as the parties alternate sending messages of the protocol, surely one party must
learn their output first. If that party aborts immediately upon learning its output, then
the other party clearly does not learn its output.

3 We assume for simplicity in our discussion that all parties are supposed to receive the same
output, but everything we say generalizes to the case where different parties are supposed to
receive different outputs.
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Cleve [11] formalized this intuition, and showed that fair coin tossing is impossible
in both the two-party and multi-party settings (when an honest majority is not assumed).
This implies an analogous impossibility result for fair computation of the 1-bit XOR
function (since fair computation of XOR would immediately imply fair coin tossing).

Thus, secure computation without an honest majority (for malicious adversaries)
is typically defined relative to an ideal world in which fairness is not ensured at all.
Specifically, the ideal world is taken to be one in which the parties send their inputs to
a trusted entity who computes the result and sends it back to the adversary only; the
adversary then sends either abort or continue to the trusted party. If she sends abort,
the honest parties receive nothing from the trusted party, while in the second case the
trusted party sends the honest parties the correct result.

Faced with Cleve’s impossibility result, researchers have explored several ways to
obtain some form of fairness:

1. Cleve’s impossibility result rules out fairness for one specific function, but does not
rule out fairness for every function. Might there be any non-trivial functions for
which fairness is possible? For over twenty years after Cleve’s result the answer
was assumed to be “no,” especially given how convincing the informal argument
against fairness seemed to be. It therefore came as somewhat of a surprise when
it was recently shown that there do exist non-trivial functions for which fairness is
possible. Section 5.1 surveys this work.

2. The standard definition of secure computation without an honest majority gives up
on fairness entirely. Instead, it seems preferable to define some notion of partial
fairness and design protocols achieving at least that. Section 5.2 discusses several
different notions of partial fairness.

3. Cleve’s impossibility result holds in the usual cryptographic model where the ad-
versary may behave in an arbitrarily malicious way. In some settings, however, it
may be reasonable to assume a rational adversary whose cheating is motivated by
some explicit utility function that the adversary is trying to maximize. Section 5.3
describes work on protocols that are designed to provide fairness against a rational,
but not malicious, adversary.

5.1 Complete Fairness for Specific Functions

Cleve showed one function for which fair secure two-party computation is impossible
without an honest majority, but did not show that fairness is impossible for all func-
tions. Indeed, functions that depend on only one of the parties’ inputs can be computed
with complete fairness. This class includes some interesting functionalities — zero-
knowledge among them — but still seems to miss the main difficulty of fairness in the
first place. Thus, the question becomes whether there are any functions that can be com-
puted with complete fairness that depend on more than one party’s inputs. The answer,
surprisingly, turns out to be yes. This has been shown in both the two-party [19] and
multi-party [21] settings.

Instead of presenting the technical details of the protocols here (see [19, 21]), we
explain informally how the two types of protocols shown by Gordon et al. [19] in the
two-party setting manage to circumvent the convincing intuition that “one party must
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learn its output first, and can abort immediately after doing so to prevent the other
party from learning its output”. In the first type of protocol presented in [19], the round
in which a party learns its output depends on that party’s input. (This is in contrast
to standard protocols for secure computation where the output is always learned, by
both parties, in some fixed round.) In particular, simplifying slightly, if we number
the parties’ possible inputs x1, . . . ,x` then a party holding input xi learns the output in
round i. Thus, depending on the parties’ respective inputs, either party might learn the
output first. Moreover, on an intuitive level, an abort by a party (say, P1) in round i can
be viewed as a “signal” to the other party P2 that P1’s input was in fact xi; thus, even after
an abort by P1, party P2 can still compute the function using xi as P1’s input. That this
works is not immediate: for one thing, a malicious P1 can try to “fool” P2 by aborting in
round i+1, say. Nevertheless, it can be shown that this protocol does achieve complete
fairness for certain carefully constructed functions.

In the second type of protocol, parties also do not learn their outputs in some fixed
round. Instead, the round in which the output is revealed is chosen according to a ge-
ometric distribution; moreover, the parties do not learn definitively in which round the
output is revealed until the end of the protocol. (Slightly more formally, by the end of
the protocol they are guaranteed that, with all but negligible probability, they hold the
correct output.) Probabilities are balanced in such a way that even if one party aborts
early, and thus “knows more information” about the correct output than the other party
does, it doesn’t know how to use this extra knowledge to violate fairness. (The formal
proof of security shows that an aborting adversary can “learn the same information” in
an ideal world where early abort is not possible, possibly by changing its input.)

What is especially interesting about both protocols described above, is that the
proofs of fairness in each case boil down to information-theoretic arguments that do
not rely on cryptography. It is thus natural to conjecture that development of the right
information-theoretic tools will enable better analysis of fairness, and might help to re-
solve the main open question that remains: to characterize those functions for which
complete fairness is possible.

5.2 Partial Fairness

Even given the work described in the previous section, we know that for certain func-
tions complete fairness is simply not possible. The standard approach is to give up on
fairness altogether. An better alternative is to instead define some notion of partial fair-
ness and attempt to design protocols that achieve that weaker notion.

There are at least two general approaches to partial fairness that date back to the
early 1980s (see [18, 22] for more detailed discussion). In one approach, a protocol
is constructed such that at every round both parties can recover their output using a
“similar” amount of work [12, 13, 15]. An unsatisfying feature of this approach is that
the decision of whether an honest party should invest the necessary work to recover the
output is not specified as part of the protocol but is instead decided “externally”. Such
protocols raise the risk of denial-of-service attacks by an adversary who aborts the
protocol early (if that would cause the honest party to then invest a significant amount
of work to recover the answer). Protocols of this sort also seem to require very strong
cryptographic assumptions.
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A second approach [4, 17] can be viewed as designing a protocol in which both
parties gradually increase their “confidence” in the output (for example, by learning an
independent noisy version of the output in each round). It seems difficult to extend such
protocols to multi-bit outputs, or the case where parties are supposed to learn different
outputs. More problematic is that such protocols allow the adversary to significantly
bias the output of the honest party, thus violating correctness.

More recently, Gordon and Katz suggested another definitional approach that has
the advantage of remaining within the simulation-based framework of standard secu-
rity definitions [22]. The idea is to define partial fairness using the same ideal-world
model used to define complete fairness. However, rather than require that the real world
and ideal world be completely (computationally) indistinguishable, partial fairness is in-
stead defined by allowing the real and ideal worlds to be distinguishable by at most 1/p,
for an arbitrary polynomial p. Such a protocol is called 1/p-secure. The way to think
about this is that a 1/p-secure protocol is secure up to a (possible) 1/p “defect”. In
particular, fairness is guaranteed to hold except with probability (at most) 1/p.

Moran et al. showed how to construct a protocol for 1/p-secure coin tossing [43].
Gordon and Katz [22] showed how to construct 1/p-secure protocols in the two-party
setting for any function with polynomial-size domain or range. They also proved a
general impossibility result for functions without one of these requirements. Both of
these works have since been extended to the multi-party setting [6, 7].

5.3 Fairness with Rational Parties

Another approach for dealing with fairness is to explicitly model the adversary as ra-
tional, rather than arbitrary malicious as in most work in cryptography. In the context
of fairness, it is most natural to consider an adversary with the following utilities (spe-
cialized to the two-party case):

– The adversary prefers to learn the (correct) output of the function above all else.
– Assuming it learns the output of the function, the adversary prefers that the other

party does not learn the output.

Protocols that remain fair in the presence of adversaries with the above utilities were
first considered in the context of rational secret sharing [20, 24, 40]. More recently, the
model has been extended to fair secure two-party computation of general functionali-
ties. Asharov et al. [1] propose several equivalent definitions of the problem and show
a negative result, giving a function that cannot be computed fairly even if a rational
adversary is assumed. Subsequently, Groce and Katz [23] showed broad positive results
for this setting along with a partial characterization of when rational fair computation
is possible.

6 Conclusion

General secure computation techniques offer the promise of strong privacy guarantees
without the the need for a trusted third party. Until recently, however, such techniques
were largely viewed as a theoretical curiosity because of the high cost of implementing
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them for real applications. Recent advances in both the theory and implementation of
generic garbled circuit protocols, however, make large-scale privacy-preserving appli-
cations a realistic possibility. Many challenges remain, especially to provide efficient
solutions against stronger adversaries and to provide fairness guarantees when needed,
but the promise secure computation offers to perform computation with private data
without compromising that data appears to be in reach.
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