
 1

Improving Security Using Extensible Lightweight Static Analysis
David Evans and David Larochelle

University of Virginia

Abstract
Most security attacks exploit instances of well-
known classes of implementation flaws. Many
of these flaws could be detected and eliminated
before software is deployed. These problems
continue to be present with disturbing frequency,
not because they are not sufficiently understood
by the security community, but because
techniques for preventing them have not been
integrated into the software development
process. This paper describes an extensible tool
that uses lightweight static analysis to detect
common security vulnerabilities (including
buffer overflows and format string vul-
nerabilities) and can be readily extended to
detect new vulnerabilities.

Keywords: static analysis, security vulnerabil-
ities, checking, buffer overflows, format bugs.

1. Software and Security

Building secure systems involves a myriad
of complex and challenging problems
ranging from building strong cryptosystems
and designing authentication protocols to
producing a trust model and security policy.
Despite all these hard problems, the vast
preponderance of security attacks exploit
either human weaknesses (e.g., poorly
chosen passwords, careless configuration,
social engineering) or software implemen-
tation flaws. It is hard to do much about
human frailties, although education, better
interface design, and security-conscious
defaults can help here. Software implemen-
tation flaws, however, typically involve
well-understood and preventable problems.

An analysis of any vulnerability database
quickly reveals that most software
vulnerabilities are not the result of clever
attackers discovering new classes of
software flaws. Instead, the vast prepon-
derance of vulnerabilities constitute repeti-
tive instances of well-known problems. The
Common Vulnerabilities and Exposures list
contains 190 entries from 1 January 2001
through 18 September 2001 [3], summarized

in Figure 1. Of these 37 are standard buffer
overflow vulnerabilities (including three
related memory access vulnerabilities).
Section 4 describes how Splint detects
buffer overflow vulnerabilities. Eleven
entries involve format bugs, described in
Section 5.1. Most of the other vulnerabili-
ties also reveal common flaws that could be
detected using static analyses including
resource leaks (11 vulnerabilities), problems
with file names (19) and symbolic links
(20). Only four of the vulnerabilities
stemmed from cryptographic problems.
Analyses of other vulnerability and incident
reports reveal similar repetition – Wagner et.
al., found that buffer overflow vulnerabil-
ities account for approximately 50% of
CERT advisories [19].

So why do developers keep making the
same mistakes? Some may be put down to
carelessness or lack or awareness of security
concerns on the part of developers, others to
legacy code, but even experienced security-
aware developers make these mistakes. The
problem is that although security vulner-
abilities such as buffer overflows are well

Figure 1. Entries in Common Vulnerabilities
and Exposures, 1 Jan 2001 – 18 Sept 2001.

Malformed
Input
16%

Resource
Leaks

6%

Format
Bugs
6%

Buffer
Overflows

19%

Access
16%

Pathnames
10%

Symbolic
Links
11%

Other
16%

To appear in IEEE Software, Jan/Feb 2002.
Pre-publication version 31 October 2001. Not for distribution.

 2

understood, the techniques for avoiding
them are not codified into the development
process. Even conscientious programmers
can overlook security issues, especially
when security issues rely on undocumented
assumptions about procedures and data-
types. Instead of relying on programmers’
memories, we should strive to produce tools
that codify what is known about common
security vulnerabilities and can integrate it
directly into the development process. This
article describes Splint, a tool that represents
a step towards those goals.

2. Mitigating Software

Vulnerabilities

Our recommendation now is the same as our
recommendation a month ago, if you haven't
patched your software, do so now.

Microsoft’s security program manager on the
buffer overflow vulnerability in IIS that was
exploited by the Code Red worm to acquire
over 300,000 zombie machines to launch a
distributed denial-of-service attack on the
White House web site.

One way to deal with security vulnerabilities
is suggested by the above quote – wait until
the bugs are exploited by an attacker,
produce a patch that you hope fixed the
problem without introducing any new bugs,
and then whine when system administrators
don’t install patches quickly enough. Not
surprisingly, this approach has proven
largely ineffective.

More promising approaches for reducing the
damage caused by software flaws can be
grouped into two categories – mitigate the
damage flaws can cause or eliminate some
of the flaws before the software is deployed.
Techniques that limit the damage software
flaws may cause include modifying program
binaries to insert run-time checks or running
applications in restricted environments that
limit what they may do. Variations on this
approach include the Janus [10] and Naccio
[9]. In addition, several projects have devel-
oped safe libraries [1] and compiler modi-
fications [5] specifically for addressing

classes of buffer overflow vulnerabilities.
These approaches all reduce the risk of
security vulnerabilities while requiring only
minimal extra work from application
developers.

One disadvantage of run-time damage-
limitation approaches is that they require
some performance overhead. A more
serious weakness of damage-limitation
approaches is that they do not eliminate the
flaw but replace it with a denial-of-service
vulnerability. It is usually not possible to
recover from a detected problem without
terminating the program. Hence, although
damage-limitation techniques should be
used in security-sensitive applications, they
do not supplant techniques for eliminating
the flaws.

Techniques for detecting and correcting
software flaws include human code reviews,
testing, and static analysis. Human code
reviews are time-consuming and expensive,
but can find the types of conceptual
problems it would be impossible to find
automatically. They are likely to miss, how-
ever, more mundane problems that even
extraordinarily thorough people will over-
look. Code reviews depend on the expertise
of the humans involved, whereas automated
techniques can benefit from expert know-
ledge codified in tools. Testing typically is
not effective in finding security vulnerabili-
ties. These vulnerabilities are revealed
when attackers attempt to exploit weak-
nesses in the systems the designers did not
think about; hence, they are not likely to be
found through standard testing.

Static analysis techniques take a different
approach. Rather than observe executions
of the program, they analyze the source code
directly. This enables them to make claims
about all possible executions of a program
instead of just the particular execution
observed in a test case. From a security
viewpoint, this is a significant advantage.

There is a wide range of static analysis
techniques, offering a tradeoff between the

 3

effort required to use them and the com-
plexity of the analyses they are able to
perform. Standard compilers perform type
checking and other simple program
analyses. This represents the low-effort end
of the design spectrum. At the other
extreme, full program verifiers attempt to
prove complex properties about programs.
They typically require a complete formal
specification and use automated theorem
provers. These techniques have been
effective, but are nearly always too
expensive and cumbersome to use on even
security-critical programs.

Our approach is to use lightweight static
analysis techniques that require increment-
ally more effort than using a compiler, but a
fraction of the effort required for full
program verification. This requires certain
compromises, in particular the use of
heuristics to assist the analysis. Our design
criteria eschew theoretical claims in favor of
useful results. Detecting likely vulnerabil-
ities in real programs depends on making
compromises that increase the class of
properties that can be checked while sacri-
ficing soundness and completeness. This
means that our checker will sometimes
generate false warnings and sometimes miss
real problems – our goal is to produce a tool
that produces useful results for real
programs with a reasonable effort.

3. Splint

Splint1 is a lightweight static analysis tool
for ANSI C. It is designed to be as fast and
easy to use as a compiler. It is able to do

1 This paper describes Splint Version 3.0.1.
The latest version is available as source code
and binaries for several platforms under
GPL from http://splint.cs.virginia.edu.
Previous versions of Splint were known as
LCLint. The name is an extraction of
“SPecification Lint” and “Secure
Programming Lint”. The original Lint [11]
was developed to overcome the lack of type
checking for function calls in early versions
of C.

checking no compiler can do, however, by
exploiting annotations added to libraries and
programs that document assumptions and
intents. Splint will check that source code is
consistent with the properties implied by
annotations.

3.1. Annotations
Annotations are denoted using stylized C
comments identified by an @ character fol-
lowing the /* comment marker. Annota-
tions can be associated syntactically with
function parameters and results, global
variables and structure fields.

For example, the annotation /*@notnull@*/
can be used in a pointer declaration
syntactically like a type qualifier. In a
parameter declaration, the notnull annotation
documents an assumption that the value
passed for this parameter is not NULL. Splint
would report a warning for any call site
where the actual parameter might be NULL.
In checking the implementation of the
function, Splint could assume that the initial
value of the notnull-annotated parameter is
not NULL. On a return value declaration, a
notnull annotation would indicate that the
function never returns NULL. Splint would
report a warning for any return path that
might return NULL, and check the call site
assuming the function result is never NULL.
In a global variable declaration, a notnull
annotation would indicate that the value of
the variable may not be NULL at an interface
point – that is, it may be NULL within the
body of a function, but may not be NULL at a
call site or return point. Failure to handle
possible NULL return values can be exploited
in denial of service attacks, and is often not
detected in normal testing.

Annotations can also document assumptions
over the lifetime of an object. For example,
the only annotation is used on a pointer
reference to indicate that the reference is the
sole long-lived (there may be temporary
local aliases) reference to the storage it
points to. An only annotation implies an
obligation to release storage. This can be

 4

done either by passing the object as a
parameter annotated with only, returning the
object as a result annotated with only, or
assigning the object to an external reference
annotated with only. Each of these transfers
the obligation to some other reference. The
library storage allocator malloc is annotated
with only on its result, and the deallocator
free takes an only parameter. Hence, one
way to satisfy the obligation to release
storage returned by malloc, is to pass it to
free. Splint reports a warning for any code
path on which the obligation to release
storage is not satisfied since it would cause a
memory leak. Memory leaks do not
typically constitute a direct security threat,
but they may be exploited to increase the
effectiveness of a denial-of-service attack.
Three of the CVE entries for the first half of
2001 involve memory leaks that can be
exploited in denial of service attacks (CVE-
2001-0017, CVE-2001-0041 and CVE-
2001-0055). Not all storage management
can be modeled with only references; some-
times programs need to share references
across procedure and structure boundaries.
Splint provides annotations for describing
different storage management [8].

3.2. Analysis
There are both theoretical and practical
limits on what can be analyzed statically.
Precise analysis of most interesting
properties of arbitrary C programs depends
on several undecidable problems including
reachability and determining possible aliases
[15]. We could either limit our checking to
issues that do not depend on solving
undecidable problems (for example, type
checking), or admit some imprecision in our
results. Since our goal is to do as much
useful checking as possible, we choose to
allow checking that is both unsound and
incomplete. This means Splint produces
both false positives and false negatives.
Warnings are intended to be as useful as
possible to the programmer, but there is no
guarantee that all messages indicate real
bugs or that all bugs will be found. We
make it easy for users to configure checking

to suppress particular messages and weaken
or strengthen checking assumptions.

Designers of static analyses face a tradeoff
between precision and scalability. In order
for our analysis to be fast and to scale to
large programs certain compromises are
made. The most important is to limit our
analysis to dataflow within procedure
bodies. Procedure calls are analyzed using
information in annotations that describe
preconditions and postconditions. Another
compromise is between flow-sensitive
(consider all program paths) and flow-
insensitive (ignore control flow) analyses.
Splint considers control flow paths, but to
limit the blowup of analysis paths it merges
possible paths at branch points. Loops are
analyzed by using heuristics to recognize
common idioms. This enables Splint to
correctly determine the number of iterations
and bounds of many loops without the need
for loop invariants or abstract evaluation.
The simplifying assumptions made by Splint
are sometimes wrong; often this reveals con-
voluted code that is a challenge for both
humans and automated tools to analyze. It
is important to provide easy ways for
programmers to customize checking
behavior locally and suppress spurious
warnings that result from imprecise analysis.

4. Buffer Overflows
As discussed in Section 1, buffer overflow
vulnerabilities are perhaps the single most
important security problem for the past
decade. The simplest buffer overflow
attack, stack smashing, overwrites a buffer
on the stack to replace the return address.
When the function returns, instead of
jumping to the return address, control will
jump to the address that was placed on the
stack by the attacker. This gives the attacker
the ability to execute arbitrary code. Buffer
overflow attacks can also exploit buffers on
the heap, but these are less common and
harder to create. Splint detects both stack
and heap-based buffer overflow vulnerabili-
ties in the same way.

 5

Programs written in C are particularly
vulnerable to this type of attack. C was
designed with an emphasis on performance
and simplicity, rather than security and
reliability. It provides direct low-level
memory access and pointer arithmetic
without bounds checking. Worse, the ANSI
C library provides unsafe functions (such as
gets) that write an unbounded amount of
user input into a fixed size buffer without
any bounds checking. Buffers stored on the
stack are often passed to these functions. To
exploit such vulnerabilities, an attacker
merely has to enter an input larger than the
size of the buffer and encode an attack
program binary in that input.

4.1. Use Warnings
The simplest way to detect possible buffer
overflows is to produce a warning whenever
library functions susceptible to buffer
overflow vulnerabilities are used. The gets
function is always vulnerable so it seems
reasonable for a static analysis tool to report
all uses of gets. Other library functions,
such as strcpy may be used safely, but are
often the source of buffer overflow
vulnerabilities. Splint provides the anno-
tation warn flag-specifier message that can
be associated with a declaration to indicate
that a warning should be produced whenever
the declarator is used. For example, the
Splint library declares gets with
 /*@warn bufferoverflowhigh
 "Use of gets leads to … "@*/

to indicate that a warning message should be
produced whenever gets is used if the
bufferoverflowhigh flag is set.

Several security scanning tools provide
similar functionality including Flawfinder
[21], ITS4 [18], and the Rough Auditing
Tool for Security (RATS) [16]. Unlike
Splint, these tools use lexical analysis
instead of parsing the code. This means
they will report spurious warnings if the
names of vulnerable functions are used in
other ways (for example, as local user-
defined functions). The main limitation of
use warnings, however, is that they are so

imprecise. They alert humans to possibly
dangerous code, but provide no assistance in
determining whether a particular use of a
possibly dangerous function is safe or
dangerous. To improve the results, we need
a more precise specification of how a
function may be safely used, and a more
detailed analysis of program values.

4.2. Describing Functions
Consider the strcpy (char *s1, char
*s2) function – it takes two char * param-
eters, and copies the string pointed to by the
second parameter into the buffer pointed to
by the first parameter. A call to strcpy
overflows the buffer pointed to by the first
parameter if it is not large enough to hold
the string pointed to by the second
parameter. This property can be described
by adding a requires clause to the
declaration of strcpy: requires maxSet(s1)
>= maxRead(s2).

This precondition uses two buffer attribute
annotations, maxSet and maxRead. The
value of maxSet (b) is the highest integer i
such that b[i] may be safely used as an
lvalue (e.g., on the left side of an assignment
expression). The value of maxRead (b) is
the highest integer i such that b[i] may be
safely used as an rvalue. The nullterminated
annotation on the s2 parameter indicates that
it is a null-terminated character string. This
implies that s2[i] must be a NUL character
for some i <= maxRead (s2).

At a call site, Splint will produce a warning
if a precondition is not satisfied. Hence, a
call strcpy (s, t) would produce a warn-
ing if Splint cannot determine that
maxSet(s) >= maxRead(t). The warning
would reveal that the buffer allocated for s
may be overrun by the call to strcpy.

4.3. Analyzing Program Values
Splint analyzes a function body and deter-
mines if the annotated preconditions are
sufficient to ensure that the function is used
correctly. Preconditions and postconditions
are generated at the expression level in the

 6

parse tree using internal rules or annotated
descriptions in the case of function calls.
The declaration char buf[MAXSIZE] gene-
rates the postconditions

 maxSet(buf) = MAXSIZE – 1 and
 minSet(buf) = 0.

Where the expression buf[i] is used as an
lvalue, Splint generates the precondition
maxSet(buf) >= i. All variables appearing in
constraints also identify particular code
locations. Since the value of a variable may
change, it is important that the analysis can
distinguish between values at different code
points.

Preconditions are resolved using post-
conditions from previous statements and any
annotated preconditions for the function. If
a generated precondition cannot be resolved
at the beginning of a function, or a
documented postcondition is not satisfied at
the end, a descriptive warning about the
unsatisfied condition is produced. Hence,
Splint would produce a warning if it cannot
determine that the value of i is between 0
and MAXSIZE – 1.

Constraints are propagated across statements
using an axiomatic semantics. In addition,
constraint-specific algebraic rules such as

maxSet(ptr + i) = maxSet(ptr) - i

are used to simplify constraints.

To handle loops, we use heuristics that
recognize common loop forms [12]. Our
experience indicates that a few heuristics
can match a large number of loops in real
programs. This allows us to effectively
analyze many loops without needing loop
invariants or expensive analyses.

5. Extensible Checking
In addition to the built in checks, Splint pro-
vides mechanisms for defining new checks
and annotations to detect new vulnerabilities
or violations of application-specific proper-
ties. A large class of useful checks can be
described in terms of attributes associated

with program objects or the global execution
state. Unlike types, the values of these
attributes may change along an execution
path.

Splint provides a general language for de-
fining attributes that may be associated with
different kinds of program objects, and for
defining rules that constrain the values of
attributes at interface points and specify how
attributes change. Because user-defined
attribute checking is integrated with Splint’s
normal checking, it can take advantage of
other analyses done by Splint such as alias
and nullness analysis. The limited
expressiveness of user attributes means that
user-defined properties can be checked
efficiently. Here, we illustrate the potential
for user-defined checks to detect new
vulnerabilities or application-specific
constraints by showing how Splint can be
extended to detect format bugs using a
taintedness attribute. We have also used
extensible checking to detect misuses of the
files (e.g., failing to close a FILE, failing to
reset a read/write file between certain
operations), sockets, and incompatibilities
between Unix and Win32 [2].

5.1. Taintedness
A new class of vulnerability was discovered
in June 2000 known as a “format bug” [4].
If an attacker can pass hostile input as the
format string for a variable arguments
routine such as printf, the attacker can
write arbitrary values to memory and gain
control over the host in a manner similar to a
buffer overflow attack. The “%n” directive
is particularly susceptible to attack – it treats
its corresponding argument as an int *, and
stores the number of bytes printed so far in
that location.

A simple way to detect format vulner-
abilities is to provide warnings for any
format string that is not known at compile
time. Splint provides this checking – if the
+formatconst flag is set, Splin t will report
a warning for any format strings that are not
known at compile time. This will produce

 7

spurious messages, however, since there
may be format strings that are not known at
compile time but are not vulnerable to
hostile input.

A more precise way to detect format bugs is
to only report warnings when the format
string is derived from potentially malicious
data (that is, it came from the user or
external environment). Perl’s taint option
[20] suggests a way of doing this. When it
is used (by running Perl with the -T flag),
Perl considers all user input to be tainted,
and produces a run-time error (and halts
execution) if a tainted value is used in an
unsafe way. Untainted values can be
derived from tainted input by using Perl’s
regular expression matching.

With Splint’s extensible checking, we can
detect dangerous operations with tainted
values at compile time. We can define a
taintedness attribute associated with char *
objects. We introduce the annotations
tainted and untainted to indicate assump-
tions about the taintedness of a reference. A
similar approach was taken by Shankar, et.
al., [17]. Instead of using attributes with
explicit rules, they used type qualifiers.
This enables them to take advantage of type
theory, and in particular, to use well-known
type inference algorithms to automatically
infer the correct type qualifiers for many
programs. Splint’s attributes are more
flexible and expressive than type qualifiers.

The complete attribute definition is shown in
Figure 2. The first three lines define the
taintedness attribute that is associated with
char * objects and can be in one of two
states: untainted or tainted. The next clause
specifies rules for transferring objects
between references, for example, by passing
a parameter or returning a result. The
tainted as untainted ==> error rule indicates
that a warning should be reported whenever
an object with taintedness tainted is
transferred to a reference declared as
untainted. This would occur if a tainted
object were passed as an untainted
parameter or returned as an untainted result.

All other transfers (for example, untainted as
tainted) are implicitly permitted and leave
the transferred object in its original state.
Next, the merge clause indicates that combi-
ning tainted and untainted objects produces
a tainted object. This is used to determine
that if a reference is tainted along one
control path, and untainted along another
control path, checking should assume that it
is tainted after the two branches merge. It is
also used to merge taintedness states in
function specifications (as in the strcat
example in the next section).

The annotations clause defines two anno-
tations that can be used in declarations to
document taintedness assumptions. In this
case, the names of the annotations match the
taintedness states. The final clause specifies
default values that will be used for
declarators without one of the taintedness
annotations. The default values are chosen
to make it easy to start checking an unanno-
tated program. By assuming unannotated
references are possibly tainted, Splint will
produce a warning where these references
are passed to functions that require untainted
parameters. This indicates either a format
bug in the code, or a place where an
untainted annotation should be added to the
code. Running Splint again after adding the
annotation will propagate the newly
documented assumption through the
program.

attribute taintedness
 context reference char *
 oneof untainted, tainted
 annotations
 tainted reference ==> tainted
 untainted reference ==> untainted
 transfers
 tainted as untainted ==> error "Possibly...
 merge
 tainted + untainted ==> tainted
 defaults
 reference ==> tainted
 literal ==> untainted
 null ==> untainted
end

Figure 2. Defining Taintedness.

 8

5.2. Specifying Library Functions
For library code where source code is not
available, we cannot rely on the default
annotations since Splint would not detect
inconsistencies without source code. We
need to provide annotated declarations that
document taintedness assumptions for
standard library functions. This is done by
providing annotated declarations in the
tainted.xh file. For example,

int printf
 (/*@untainted@*/ char *fmt, ...);

indicates that the first argument to printf
must be untainted. We can also use ensures
clauses to indicate that a value is tainted
after a call returns. For example, the first
parameter to fgets is tainted after fgets
returns:

char *fgets
 (/*@returned@*/ char *s, int n,
 FILE *stream)

/*@ensures tainted s@*/ ;

The returned annotation on the parameter
means the return value aliases the storage
passed as s, so the result is also tainted (this
information is also used by Splint’s alias
analysis.)

We also need to deal with functions that
may take tainted or untainted objects, but
where the final taintedness states of other
parameters and results may depend on the
initial taintedness states of the parameters.
For example, strcat is annotated:
char *strcat
 (/*@returned@*/ char *s1,
 char *s2)
 /*@ensures s1:taintedness =
 s1:taintedness | s2:taintedness
 @*/

Since there are no annotations on the
parameters, they are implicitly tainted
according to the default rules, and it is
acceptable to pass either untainted or tainted
references as parameters to strcat. The
ensures clause means that after strcat
returns, the taintedness of the first parameter
(and the result because of the returned
annotation on s1) will be the result of
merging the taintedness of the two

parameters before the call. The merge is
done using the rules in the attribute defin-
ition – hence if the actual parameter passed
as s1 is untainted and the parameter passed
as s2 is tainted, the result and first parameter
will be tainted after strcat returns.

6. Experience

Using Splint is an iterative process.
Running Splint produces warnings that lead
to either changes in the code or annotations.
Then, Splint is run again to check the
changes and propagate the newly
documented assumptions. This process
continues until no warnings are produced.
Since Splint checks approximately 1000
lines per second, the need to run Splint again
is not burdensome.

Earlier versions of Splint have been used to
detect a range of problems not specifically
focused on security including data hiding
[7]; memory leaks, uses of dead storage, and
null dereferences [8] on programs com-
prising hundreds of thousands of lines of
code. Splint is used by working program-
mers, especially in the open source develop-
ment community [13, 14].

Our experience with the buffer overflow
checking and extensible checking so far is
limited, but encouraging. We have used
Splint to detect both known and previously
unknown buffer overflow vulnerabilities in
wu-ftpd, a popular ftp server, and BIND,
libraries and tools that comprise the
reference implementation of DNS.

Here we summarize our experience analy-
zing wu-ftpd version 2.5.0, a 20,000 line
program with known (but not known
specifically to the authors when the analysis
was done) format bugs and known and
unknown buffer overflows. It takes less
than 4 seconds to check all of wu-ftpd on a
1.2GHz Athlon machine.

Format Bugs. Running Splint on wu-ftpd
version 2.5.0 with only taintedness checking

 9

turned on produces two warnings, the first
one is:

ftpd.c: (in function vreply)
ftpd.c:4608:69: Invalid transfer from implicitly
 tainted fmt to untainted (Possibly tainted
 storage used as untainted.):
 vsnprintf(..., fmt, ...)
 ftpd.c:4586:33: fmt becomes implicitly
 tainted

In tainted.xh, vsnprintf is declared with
an untainted annotation on its format string
parameter. The passed value, fmt, is a pa-
rameter to vreply, hence it is possibly
tainted according to the default rules. We
add an untainted annotation to the fmt pa-
rameter declaration of vreply to document
the assumption that it must be passed an
untainted value.

After adding the annotation, Splint reports
three warnings for possibly tainted values
passed to vreply in reply and lreply.
This leads us to add three additional annota-
tions. Running Splint again produces five
warnings – three of which involve passing
the global variable globerr as an untainted
parameter. Adding an untainted annotation
to the variable declaration directs Splint to
check that globerr is never tainted at an
interface point. The other warnings concern
possibly tainted values passed to lreply in
site_exec. Since these values are obtained
from a remote user, this constitutes a serious
vulnerability (CVE-2000-0573).

The second message produced by the first
Splint execution reports a similar invalid
transfer in setproctitle. After adding an
annotation and re-running Splint, this leads
us to two additional format string bugs in
wu-ftpd. These vulnerabilities are described
in CERT CA-2000-13 and can be easily
fixed by using the %s constant format string.

We also ran Splint on wu-ftpd 2.6.1, a
version that fixes the known format bugs.
After adding eight untainted annotations,

Splint runs without reporting any format bug
vulnerabilities.2

Buffer Overflow Vulnerabilities. Running
Splint on wu-ftpd 2.5 without adding anno-
tations produces 166 warnings for potential
out of bounds writes.

After adding 66 annotations using an itera-
tive process like the one described for
checking taintedness, we found 25 messages
that indicated real problems. There were 76
messages considered spurious, summarized
in Table 1. Six of these resulted from Splint
being unaware of assumptions external to
the wu-ftpd code. For example, wu-ftpd
allocates an array based on the system con-
stant OPEN_MAX, which specifies the maxi-
mum number of files a process may have
open. This buffer is then written to using
the integer value of the file descriptor of an
open file stream as the index. This is safe
because the value of the file descriptor is
always less than OPEN_MAX. Without a more
detailed specification of the meaning of file
descriptor values, there is no way for a static
analysis tool to determine that the memory
access is safe.

Ten false warnings resulted from loops
which were correct but which did not match

the loop heuristics. To some extent this
could be addressed by incorporating

2 Splint does find two legitimate buffer overflow
vulnerabilities in wu-ftpd 2.6.1. They had
already been corrected in the latest development
version.

 Number Percent

External Assumptions 6 7.9

Arithmetic Limitations 13 17.1

Alias analysis 3 3.9

Flow control 20 26.3

Other 24 31.6

Loop heuristics 10 13.2

Table 1. False warnings checking wu -ftpd.

 10

additional loop heuristics into Splint,
however there will always be some
unmatched loops. The remaining 60
spurious messages resulted from limitations
of Splint’s ability to reason about arithmetic,
control flow and aliases. We are optimistic
that many of these limitations can be
overcome without unacceptably sacrificing
the efficiency and usability goals using
known techniques that have not yet been
implemented in Split. It is impossible,
though, to eliminate all spurious messages
because of the general undecidability of
static analysis.

An impediment to widespread adoption is
the effort involved in annotating programs.
Providing an annotated standard library
solves part of the problem, but does not
remove the need to add annotations where
correct use of standard library functions
depend on assumptions that cross interface
boundaries. Much of the work in annotating
legacy programs is fairly tedious and
mechanical, and we are currently working
on techniques for automating this process.
Techniques for combining run-time infor-
mation with static analysis to automatically
guess annotations show some promise [6].

7. Conclusion
The vast majority of security attacks exploit
vulnerabilities in software that are well
understood and can be eliminated.
Lightweight static analysis is a promising
technique for detecting likely vulnerabilities
so they can be fixed before software is
deployed, not patched after attackers have
exploited them.

Although static analysis is an important
approach to security, it is not a panacea. It
does not take the place of run-time access
controls, systematic testing and careful
security assessments. Splint can only find
problems that are revealed through inconsis-
tencies between the code, language
conventions, and assumptions documented
in annotations. Occasionally these inconsis-
tencies will reveal serious design flaws, but

Split offers no general mechanisms for
detecting high-level design flaws that could
lead to security vulnerabilities.

No tool will eliminate all security risks – but
lightweight static analysis should in-
creasingly become part of the development
process for security-sensitive applications.
It is our hope that the security community
will develop a tool suite that codifies
knowledge about security vulnerabilities in a
way that makes it accessible to all
programmers. In future, newly discovered
security vulnerabilities should not lead to
just a patch to fix the problem in a particular
program, but also to checking rules that
detect similar problems in other programs
and prevent the same mistake in future
programs. Lightweight static checking will
play an important part in codifying security
knowledge and moving from today’s
penetrate-and-patch to a penetrate-patch-
and-prevent model where once understood, a
security vulnerability can be codified into
tools that detect it automatically.

References

[1] Arash Baratloo, Navjot Singh and

Timothy Tsai. Transparent Run-Time
Defense Against Stack-Smashing
Attacks. 9th USENIX Security
Symposium, August 2000.

[2] Chris Barker. Static Error Checking of
C Applications Ported from UNIX to
WIN32 Systems Using LCLint.
University of Virginia Senior Thesis,
March 2001.

[3] Common Vulnerabilities and Exposures
Version 20010918. Available from
http://cve.mitre.org/.

[4] Crispin Cowan, Matt Barringer, Steve
Beattie, Greg Kroah-Hartman, Mike
Frantzen, and Jamie Lokier.
FormatGuard: Automatic Protection
From printf Format String
Vulnerabilities. 10th USENIX Security
Symposium, August 2001.

 11

[5] Crispin Cowan, Calton Pu, David Maier,
Heather Hinton, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle and
Qian Zhang. Automatic Detection and
Prevention of Buffer-Overflow Attacks.
7th USENIX Security Symposium,
January 1998.

[6] Michael D. Ernst, Jake Cockrell,
William G. Griswold and David
Notkin. Dynamically Discovering
Likely Program Invariants to Support
Program Evolution. International
Conference on Software Engineering.
May 1999.

[7] David Evans, John Guttag, Jim Horning
and Yang Meng Tan. LCLint: A Tool for
Using Specifications to Check Code.
SIGSOFT Symposium on the
Foundations of Software Engineering.
December 1994.

[8] David Evans. Static Detection of
Dynamic Memory Errors. SIGPLAN
Conference on Programming Language
Design and Implementation. May
1996.

[9] David Evans and Andrew Twyman.
Flexible Policy-Directed Code Safety.
IEEE Symposium on Security and
Privacy. May 1999.

[10] Ian Goldberg, David Wagner, Randi
Thomas and Eric A. Brewer. A Secure
Environment for Untrusted Helper
Applications: Confining the Wily
Hacker. 6th USENIX Security
Symposium. July 1996.

[11] S. C. Johnson. Lint, a C Program
Checker. Computer Science Technical
Report, Bell Laboratories, Murray Hill,
July 1978.

[12] David Larochelle and David Evans.
Statically Detecting Likely Buffer
Overflow Vulnerabilities. 10th
USENIX Security Symposium, August
2001.

[13] David Santo Orcero. The Code
Analyzer LCLint. Linux Journal. May
2000.

[14] Pramode C E and Gopakumar C E.
Static Checking of C programs with
LCLint. Linux Gazette Issue 51. March
2000.

[15] Ramalingam G. The Undecidability of
Aliasing. ACM Transactions on
Programming Languages and Systems,
September 1994.

[16] Secure Software Solutions. Secure
Software Announces Initial Release of
RATS. http://www.securesw.com/rats/.
May 2001.

[17] Umesh Shankar, Kunal Talwar, Jeffrey
S. Foster, and David Wagner.
Detecting Format String Vulnerabilities
with Type Qualifiers. 10th USENIX
Security Symposium, August 2001.

[18] John Viega, J.T. Bloch, Tadayoshi
Kohno, and Gary McGraw. ITS4 : A
Static Vulnerability Scanner for C and
C++ Code. Annual Computer Security
Applications Conference. December
2000.

[19] David Wagner, Jeffrey S. Foster, Eric
A. Brewer, and Alexander Aiken. A
First Step Towards Automated
Detection of Buffer Overrun
Vulnerabilities. Network and
Distributed System Security
Symposium. February 2000.

[20] Larry Wall, Tom Christiansen, Jon
Orwant. Programming Perl (3rd
Edition). O’Reilly, July 2000.

[21] David Wheeler. Flawfinder Home
Page.
http://www.dwheeler.com/flawfinder/.
2001.

Contact Information:

David Evans
Department of Computer Science
School of Engineering & Applied Science
University of Virginia
151 Engineer's Way, P.O. Box 400740
Charlottesville, VA 22904-4740
devans@virginia.edu
(434) 982-2218

 12

David Larochelle
Department of Computer Science
School of Engineering & Applied Science
University of Virginia
151 Engineer's Way, P.O. Box 400740
Charlottesville, VA 22904-4740
larochelle@cs.virginia.edu
(434) 982-2291

Biographical Sketches:

David Evans

David Evans is an assistant professor at the
University of Virginia Department of
Computer Science. He has BS, MS and PhD
degrees from the Massachusetts Institute of
Technology. His research interests include
annotation-assisted static checking and
programming swarms of computing devices.

David Larochelle

David Larochelle is a PhD student at the
University of Virginia Department of
Computer Science working on lightweight
static analysis with a focus on security. He
has a BS in Computer Science from William
and Mary.

