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education, better interface design, and secu-
rity-conscious defaults. With software im-
plementation flaws, however, the problems
are typically both preventable and well 
understood. 

Analyzing reports of security attacks
quickly reveals that most attacks do not re-
sult from clever attackers discovering new
kinds of flaws, but rather stem from re-
peated exploits of well-known problems.
Figure 1 summarizes Mitre’s Common Vul-
nerabilities and Exposures list of 190 entries
from 1 January 2001 through 18 September
2001.1 Thirty-seven of these entries are stan-
dard buffer overflow vulnerabilities (includ-
ing three related memory-access vulnerabili-
ties), and 11 involve format bugs. Most of
the rest also reveal common flaws detectable
by static analysis, including resource leaks
(11), file name problems (19), and symbolic
links (20). Only four of the entries involve

cryptographic problems. Analyses of other
vulnerability and incident reports reveal sim-
ilar repetition. For example, David Wagner
and his colleagues found that buffer over-
flow vulnerabilities account for approxi-
mately 50 percent of the Software Engineer-
ing Institute’s CERT advisories.2

So why do developers keep making the
same mistakes? Some errors are caused by
legacy code, others by programmers’ care-
lessness or lack of awareness about security
concerns. However, the root problem is that
while security vulnerabilities, such as buffer
overflows, are well understood, the tech-
niques for avoiding them are not codified
into the development process. Even conscien-
tious programmers can overlook security is-
sues, especially those that rely on undocu-
mented assumptions about procedures and
data types. Instead of relying on program-
mers’ memories, we should strive to produce
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tools that codify what is known about com-
mon security vulnerabilities and integrate it
directly into the development process.

This article describes a way to codify that
knowledge. We describe Splint, a tool that
uses lightweight static analysis to detect
likely vulnerabilities in programs. Splint’s
analyses are similar to those done by a com-
piler. Hence, they are efficient and scalable,
but they can detect a wide range of imple-
mentation flaws by exploiting annotations
added to programs. 

Mitigating software vulnerabilities

“Our recommendation now is the same as our
recommendation a month ago, if you haven’t
patched your software, do so now.” 
—Scott Culp, security program manager for
Microsoft’s security response center

In this quotation, Culp is commenting on
the Internet Information Server’s buffer
overflow vulnerability that was exploited by
the Code Red worm to acquire over
300,000 zombie machines for launching a
denial-of-service attack on the White House
Web site. The quotation suggests one way to
deal with security vulnerabilities: wait until
the bugs are exploited by an attacker, produce
a patch that you hope fixes the problem with-
out introducing new bugs, and whine when
system administrators don’t install patches
quickly enough. Not surprisingly, this ap-
proach has proven largely ineffective.

We can group more promising approaches
for reducing software flaw damage into two
categories: mitigate the damage flaws can
cause, or eliminate flaws before the software
is deployed. 

Limiting damage
Techniques that limit security risks from

software flaws include modifying program
binaries to insert runtime checks or running
applications in restricted environments to
limit what they may do.3,4 Other projects
have developed safe libraries5 and compiler
modifications6 specifically for addressing
classes of buffer overflow vulnerabilities.
These approaches all reduce the risk of secu-
rity vulnerabilities while requiring only mini-
mal extra work from application developers. 

One disadvantage of runtime damage-
limitation approaches is that they increase
performance overhead. More importantly,

such approaches do not eliminate the flaw
but simply replace it with a denial-of-service
vulnerability. Recovering from a detected
problem typically requires terminating the
program. Hence, although security-sensitive
applications should use damage-limitation
techniques, the approach should not sup-
plant techniques for eliminating flaws. 

Eliminating flaws
Techniques to detect and correct software

flaws include human code reviews, testing,
and static analysis. Human code reviews are
time-consuming and expensive but can find
conceptual problems that are impossible to
find automatically. However, even extraordi-
narily thorough people are likely to overlook
more mundane problems. Code reviews de-
pend on the expertise of the human review-
ers, whereas automated techniques can ben-
efit from expert knowledge codified in tools.
Testing is typically ineffective for finding se-
curity vulnerabilities. Attackers attempt to
exploit weaknesses that system designers did
not consider, and standard testing is unlikely
to uncover such weaknesses.

Static analysis techniques take a different
approach. Rather than observe program ex-
ecutions, they analyze source code directly.
Thus, using static analysis lets us make
claims about all possible program execu-
tions rather than just the test-case execu-
tion. From a security viewpoint, this is a sig-
nificant advantage. 

There are a range of static analysis tech-
niques, offering tradeoffs between the re-

J a n u a r y / F e b r u a r y  2 0 0 2 I E E E  S O F T W A R E 4 3

 

Malformed
input 16% 

Resource
 leaks 6%

Format
bugs 6%

Buffer overflows 19% 

Access 16%

Pathnames
10%

Other 16%

Symbolic links 11%

Figure 1. Common
Vulnerabilities and
Exposures list for the
first nine months of
2001. Most of the 
entries are common
flaws detectable by
static analysis, 
including 37 
buffer overflow 
vulnerabilities.



quired effort and analysis complexity. At
the low-effort end are standard compilers,
which perform type checking and other sim-
ple program analyses. At the other extreme,
full program verifiers attempt to prove com-
plex properties about programs. They typi-
cally require a complete formal specification
and use automated theorem provers. These
techniques have been effective but are al-
most always too expensive and cumbersome
to use on even security-critical programs. 

Our approach
We use lightweight static analysis tech-

niques that require incrementally more ef-
fort than using a compiler but a fraction of
the effort required for full program verifica-
tion. This requires certain compromises. In
particular, we use heuristics to assist in the
analysis. Our design criteria eschew theoret-
ical claims in favor of useful results. 

Detecting likely vulnerabilities in real pro-
grams depends on making compromises that
increase the class of properties that can be
checked while sacrificing soundness and
completeness. This means that our checker
will sometimes generate false warnings and
sometimes miss real problems, but our goal
is to create a tool that produces useful results
for real programs with a reasonable effort. 

Splint overview
Splint (previously known as LCLint) is a

lightweight static analysis tool for ANSI C.
Here, we describe Splint, version 3.0.1,
which is available as source code and bina-
ries for several platforms under GPL from
www.splint.org.

We designed Splint to be as fast and easy
to use as a compiler. It can do checking no
compiler can do, however, by exploiting an-
notations added to libraries and programs
that document assumptions and intents.
Splint finds potential vulnerabilities by
checking to see that source code is consistent
with the properties implied by annotations.

Annotations
We denote annotations using stylized C

comments identified by an @ character fol-
lowing the /* comment marker. We associ-
ate annotations syntactically with function
parameters and return values, global vari-
ables, and structure fields. 

The annotation /*@notnull@*/, for ex-

ample, can be used syntactically like a type
qualifier. In a parameter declaration, the 
notnull annotation documents an assump-
tion that the value passed for this parameter
is not NULL. Given this, Splint reports a warn-
ing for any call site where the actual param-
eter might be NULL. In checking the function’s
implementation, Splint assumes that the not-
null-annotated parameter’s initial value is not
NULL. On a return value declaration, a not-
null annotation would indicate that the func-
tion never returns NULL. Splint would then
report a warning for any return path that
might return NULL, and would check the call-
site assuming the function result is never
NULL. In a global variable declaration, a not-
null annotation indicates that the variable’s
value will not be NULL at an interface point—
that is, it might be NULL within the function’s
body but would not be NULL at a call site or
return point. Failure to handle possible NULL
return values is unlikely to be detected in nor-
mal testing, but is often exploited by denial
of service attacks. 

Annotations can also document assump-
tions over an object’s lifetime. For example,
we use the only annotation on a pointer ref-
erence to indicate that the reference is the
sole long-lived reference to its target storage
(there might also be temporary local aliases).
An only annotation implies an obligation to
release storage. The system does this either
by passing the object as a parameter anno-
tated with only, returning the object as a re-
sult annotated with only or assigning the
object to an external reference annotated
with only. Each of these options transfers
the obligation to some other reference. For
example, the library storage allocator mal-
loc is annotated with only on its result, and
the deallocator free also takes an only pa-
rameter. Hence, one way to satisfy the obli-
gation to release malloc’s storage is to pass
it to free. 

Splint reports a warning for any code path
that fails to satisfy the storage-release obliga-
tion, because it causes a memory leak. Al-
though memory leaks do not typically consti-
tute a direct security threat, attackers can
exploit them to increase a denial-of-service at-
tack’s effectiveness. In the first half of 2001,
three of the Common Vulnerabilities and Ex-
posures entries involved memory leaks (CVE-
2001-0017, CVE-2001-0041 and CVE-2001-
0055). Some storage management can’t be
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modeled with only references, as the pro-
grams must share references across procedure
and structure boundaries. To contend with
this, Splint provides annotations for describ-
ing different storage management models.7

Analysis
There are both theoretical and practical

limits to what we can analyze statically. Pre-
cise analysis of the most interesting properties
of arbitrary C programs depends on several
undecidable problems, including reachability
and determining possible aliases.8 Given this,
we could either limit our checking to issues
like type checking, which do not depend on
solving undecidable problems, or admit to
some imprecision in our results. Because our
goal is to do as much useful checking as pos-
sible, we allow checking that is both unsound
and incomplete. Splint thus produces both
false positives and false negatives. We intend
the warnings to be as useful as possible to
programmers but offer no guarantee that all
messages indicate real bugs or that all bugs
will be found. We also make it easy for users
to configure checking to suppress particular
messages and weaken or strengthen checking
assumptions. 

With static analysis, designers face a
tradeoff between precision and scalability. To
make our analysis fast and scalable to large
programs, we made certain compromises.
The most important is to limit our analysis to
data flow within procedure bodies. Splint an-
alyzes procedure calls using information
from annotations that describes precondi-
tions and postconditions. We made another
compromise between flow-sensitive analysis,
which considers all program paths, and flow-
insensitive analysis, which ignores control
flow. Splint considers control-flow paths,
but, to limit analysis path blowup, it merges
possible paths at branch points. It analyzes
loops using heuristics to recognize common
idioms. This lets Splint correctly determine
the number of iterations and bounds of many
loops without requiring loop invariants or
abstract evaluation. Splint’s simplifying as-
sumptions are sometimes wrong; this often
reveals convoluted code that is a challenge
for both humans and automated tools to an-
alyze. Hence, we provide easy ways for pro-
grammers to customize checking behavior lo-
cally and suppress spurious warnings that
result from imprecise analysis.

Buffer overflows

Buffer overflow vulnerabilities are per-
haps the single most important security
problem of the past decade. The simplest
buffer overflow attack, stack smashing, over-
writes a buffer on the stack, replacing the
return address. Thus, when the function
returns, instead of jumping to the return
address, control jumps to the address the
attacker placed on the stack. The attacker
can then execute arbitrary code. Buffer over-
flow attacks can also exploit buffers on the
heap, but these are less common and harder
to create.

C programs are particularly vulnerable to
buffer overflow attacks. C was designed with
an emphasis on performance and simplicity
rather than security and reliability. It provides
direct low-level memory access and pointer
arithmetic without bounds checking. Worse,
the ANSI C library provides unsafe func-
tions—such as gets—that write an un-
bounded amount of user input into a fixed-
size buffer without any bounds checking.
Buffers stored on the stack are often passed to
these functions. To exploit such vulnerabili-
ties, an attacker merely enters an input larger
than the buffer’s size, encoding an attack pro-
gram binary in the input.

Splint detects both stack and heap-based
buffer overflow vulnerabilities. The simplest
detection techniques just identify calls to of-
ten misused functions; more precise tech-
niques depend on function descriptions and
program-value analysis.

Use warnings
The simplest way to detect possible buffer

overflows is to produce a warning whenever
the code uses library functions susceptible to
buffer overflow vulnerabilities. The gets func-
tion is always vulnerable, so it seems reason-
able for a static analysis tool to report all uses
of gets. Other library functions, such as str-
cpy, can be used safely but are often the source
of buffer overflow vulnerabilities. Splint pro-
vides the annotation warn flag-specifier

message, which precedes a declaration to in-
dicate that declarator use should produce a
warning. For example, the Splint library de-
clares gets with

/*@warn bufferoverflowhigh       

“Use of gets leads to … “@*/

J a n u a r y / F e b r u a r y  2 0 0 2 I E E E  S O F T W A R E 4 5

Buffer overflow
vulnerabilities
are perhaps 

the single most
important
security

problem of the
past decade. 



to indicate that Splint should issue a
warning message whenever gets is used
and the bufferoverflowhigh flag is set.

Several security scanning tools provide sim-
ilar functionality, including Flawfinder (www.
dwheeler.com/flawfinder), ITS4,9 and the
Rough Auditing Tool for Security (www.
securesw.com/rats). Unlike Splint, however,
these tools use lexical analysis instead of pars-
ing the code. This means they will report spu-
rious warnings if the names of the vulnerable
functions are used in other ways (for example,
as local variables). 

The main limitation of use warnings is
that they are so imprecise. They alert hu-
mans to possibly dangerous code but pro-
vide no assistance in determining whether a
particular use of a potentially dangerous
function is safe. To improve the results, we
need a more precise specification of how a
function might be safely used, and a more
precise analysis of program values.  

Describing functions
Consider the strcpy function: it takes

two char * parameters (s1 and s2) and
copies the string that the second parameter
points to into the buffer to which the first
parameter points. A call to strcpy will over-
flow the buffer pointed to by the first pa-
rameter if that buffer is not large enough to
hold the string pointed to by the second pa-
rameter. This property can be described by
adding a requires clause to the declaration of
strcpy: /*@requires maxSet(s1)>=

maxRead(s2) @*/.
This precondition uses two buffer attrib-

ute annotations, maxSet and maxRead. The
value of maxSet(b) is the highest integer i
such that b[i] can be safely used as an lvalue
(that is, on the left side of an assignment ex-
pression). The value of maxRead(b) is the
highest integer i such that b[i] can be safely
used as an rvalue. The s2 parameter also has
a nullterminated annotation that indicates
that it is a nullterminated character string.
This implies that s2[i] must be a NUL char-
acter for some i <= maxRead(s2).

At a call site, Splint produces a warning if
a precondition is not satisfied. Hence, a call
strcpy (s, t) would produce a warning if
Splint cannot determine that maxSet(s)>=
maxRead(t). The warning would indicate
that the buffer allocated for s might be over-
run by the strcpy call.

Analyzing program values

Splint analyzes a function body starting
from the annotated preconditions and checks
that the function implementation ensures the
postconditions. It generates preconditions and
postconditions at the expression level in the
parse tree using internal rules or, in the case of
function calls, annotated descriptions. For ex-
ample, the declaration char buf[MAXSIZE]
generates the postconditions maxSet(buf) =
MAXSIZE – 1 and minSet(buf) = 0.

Where the expression buf[i] is used as
an lvalue, Splint generates the precondition
maxSet(buf) >= i. All constraint variables
also identify particular code locations. Be-
cause a variable’s value can change, the
analysis must distinguish between values at
different code points. 

Splint resolves preconditions using post-
conditions from previous statements and
any annotated preconditions for the func-
tion. If it cannot resolve a generated precon-
dition at the beginning of a function or sat-
isfy a documented postcondition at the end,
Splint issues a descriptive warning about the
unsatisfied condition. Hence, for the buf[i]
example above, Splint would produce a
warning if it cannot determine that the value
of i is between 0 and MAXSIZE – 1. 

Splint propagates constraints across state-
ments using an axiomatic semantics and sim-
plifies constraints using constraint-specific al-
gebraic rules, such as maxSet(ptr + i) =

maxSet(ptr) - i.
To handle loops, we use heuristics that rec-

ognize common loop forms.10 Our experience
indicates that a few heuristics can match
many loops in real programs. This lets us ef-
fectively analyze loops without needing loop
invariants or expensive analyses.

Extensible checking
In addition to the built-in checks, Splint

provides mechanisms for defining new
checks and annotations to detect new vul-
nerabilities or violations of application-spe-
cific properties. A large class of useful
checks can be described as constraints on
attributes associated with program objects
or the global execution state. Unlike types,
however, the values of these attributes can
change along an execution path. 

Splint provides a general language that
lets users define attributes associated with
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different kinds of program objects as well as
rules that both constrain the values of at-
tributes at interface points and specify how
attributes change. The limited expressiveness
of user attributes means that Splint can
check user-defined properties efficiently. Be-
cause user-defined attribute checking is inte-
grated with normal checking, Splint’s analy-
sis of user-defined attributes can take
advantage of other analyses, such as alias
and nullness analysis.

Next, we illustrate how user-defined
checks can detect new vulnerabilities using
a taintedness attribute to detect format
bugs. We have also used extensible check-
ing to detect misuses of files and sockets
(such as failing to close a file or to reset a
read/write file between certain operations)
and incompatibilities between Unix and
Win32.11

Detecting format bugs
In June 2000, researchers discovered a

new class of vulnerability: the format bug.12

If an attacker can pass hostile input as the
format string for a variable arguments rou-
tine such as printf, the attacker can write
arbitrary values to memory and gain control
over the host in a manner similar to a buffer
overflow attack. The %n directive is particu-
larly susceptible to attack, as it treats its
corresponding argument as an int *, and
stores the number of bytes printed so far in
that location.

A simple way to detect format vulnerabil-
ities is to provide warnings for any format
string that is unknown at compile time. If
the +formatconst flag is set, Splint issues a
warning at all callsites where a format string
is not known at compile time. This can pro-
duce spurious messages, however, because
there might be unknown format strings that
are not vulnerable to hostile input.

A more precise way to detect format bugs
is to only report warnings when the format
string is derived from potentially malicious
data (that is, when it comes from the user or
external environment). Perl’s taint option13

suggests a way to do this. The taint option,
which is activated by running Perl with the
-T flag, considers all user input as tainted
and produces a runtime error, halting exe-
cution before a tainted value is used in an
unsafe way. Untainted values can be derived
from tainted input by using Perl’s regular
expression matching.

Taintedness attribute
Splint can be used to detect possibly dan-

gerous operations with tainted values at
compile time. To accomplish this, we define
a taintedness attribute associated with char
* objects and introduce the annotations
tainted and untainted to indicate as-
sumptions about the taintedness of a refer-
ence. Umesh Shankar and his colleagues
used a similar approach.14 Instead of using
attributes with explicit rules, they used type
qualifiers. This lets them take advantage of
type theory, and, in particular, use well-
known type-inference algorithms to auto-
matically infer the correct type qualifiers for
many programs.

Splint’s attributes are more flexible and
expressive than type qualifiers. Figure 2
shows the complete attribute definition. The
first three lines define the taintedness attrib-
ute associated with char * objects, which
can be in one of two states: untainted or
tainted. The next clause specifies rules for
transferring objects between references, for
example, by passing a parameter or returning
a result. The tainted as untainted ==>
error rule directs Splint to report a warning
when a tainted object is used where an un-
tainted object is expected. This would oc-
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cur if the system passed a tainted object as
an untainted parameter or returned it as an
untainted result. All other transfers (for
example, untainted as tainted) are im-
plicitly permitted and leave the transferred
object in its original state. 

Next, the merge clause indicates that com-
bining tainted and untainted objects pro-
duces a tainted object. Thus, if a reference
is tainted along one control path and un-
tainted along another control path, check-
ing assumes that it is tainted after the two
branches merge. It is also used to merge taint-
edness states in function specifications (see
the strcat example in the next section).

The annotations clause defines two an-
notations that programmers can use in dec-
larations to document taintedness assump-
tions. In this case, the names of the
annotations match the taintedness states.
The final clause specifies default values
used for declarators without taintedness
annotations. We choose default values to
make it easy to start checking an unanno-
tated program. Here we assume unanno-
tated references are possibly tainted and
Splint will report a warning where unanno-
tated references are passed to functions that
require untainted parameters. The warn-
ings indicate either a format bug in the code
or a place where an untainted annotation
should be added. Running Splint again af-
ter adding the annotation will propagate
the newly documented assumption through
the program.

Specifying library functions
When the source code for library code is

unavailable, we cannot rely on the default
annotations because Splint needs the source
code to detect inconsistencies. We must
therefore provide annotated declarations
that document taintedness assumptions for
standard library functions. We do this by
providing annotated declarations in the
tainted.xh file. For example,

int printf  

(/*@untainted@*/ char *fmt, ...);

indicates that the first argument to printf
must be untainted. We can also use ensures
clauses to indicate that a value is tainted after
a call returns. For example, the first parame-
ter to fgets is tainted after fgets returns:

char *fgets

(/*@returned@*/ char *s, int n,

FILE *stream)

/*@ensures tainted s@*/ ;

The returned annotation on the parame-
ter means that the return value aliases the
storage passed as s, so the result is also
tainted (Splint’s alias analysis also uses this
information).

We also must deal with functions that
might take tainted or untainted objects, but
where the final taintedness states of other
parameters and results might depend on the
parameters’ initial taintedness states. For
example, strcat is annotated this way:

char *strcat 

(/*@returned@*/ char *s1, 

char *s2)

/*@ensures s1:taintedness =

s1:taintedness | s2:taintedness@*/

Because the parameters lack annotations,
they are implicitly tainted according to the
default rules, and either untainted or tainted
references can be passed as parameters to
strcat. The ensures clause means that after
strcat returns, the first parameter (and the
result, because of the returned annotation
on s1) will be tainted if either passed ob-
ject was tainted. Splint merges the two taint-
edness states using the attribute definition
rules—hence, if the s1 parameter is un-
tainted and the s2 parameter is tainted, the
result and first parameter will be tainted af-
ter strcat returns.

Experience
Using Splint is an iterative process. First,

we run Splint to produce warnings and then
change either the code or the annotations
accordingly. Next, we run Splint again to
check the changes and propagate the newly
documented assumptions. We continue this
process until Splint issues no warnings. Be-
cause Splint checks approximately 1,000
lines per second, running Splint repeatedly
is not burdensome.

Splint’s predecessor, LCLint, has been
used to detect a range of problems, includ-
ing data hiding15 and memory leaks, dead
storage usage, and NULL dereferences7 on
programs comprising hundreds of thou-
sands of lines of code. LCLint is widely used

Using Splint is
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by working programmers, especially in the
open-source development community.16,17

So far, our experience with buffer over-
flow checking and extensible checking is
limited but encouraging. We have used
Splint to detect both known and previously
unknown buffer overflow vulnerabilities in
wu-ftpd, a popular ftp server, and BIND, the
libraries and tools that comprise the Domain
Name System’s reference implementation. 

Here, we summarize our experience ana-
lyzing wu-ftpd version 2.5.0, a 20,000 line
program with known (but not known
specifically to the authors when the analysis
was done) format and buffer overflow bugs.
We detected the known flaws as well as
finding some previously unknown flaws in
wu-ftpd. It takes Splint less than four sec-
onds to check all of wu-ftpd on a 1.2-GHz
Athlon machine. 

Format bugs
Running Splint on wu-ftpd version 2.5.0

produced two warnings regarding tainted-
ness. The first one was:

ftpd.c: (in function vreply)

ftpd.c:4608:69: Invalid transfer from implicitly

tainted fmt to untainted (Possibly tainted 

storage used as untainted.): 

vsnprintf(..., fmt, ...)

ftpd.c:4586:33: fmt becomes implicitly

tainted

In tainted.xh, vsnprintf is declared with
an untainted annotation on its format
string parameter. The passed value, fmt, is a
parameter to vreply, and hence it might be
tainted according to the default rules. We
added an untainted annotation to the fmt
parameter declaration to document the as-
sumption that an untainted value must be
passed to vreply. 

After adding the annotation, Splint re-
ported three warnings for possibly tainted
values passed to vreply in reply and lre-
ply. We thus added three additional annota-
tions. Running Splint again produced five
warnings—three of which involved passing
the global variable globerr as an untainted
parameter. Adding an untainted annotation
to the variable declaration directed Splint to
ensure that globerr is never tainted at an in-
terface point. The other warnings concerned
possibly tainted values passed to lreply in

site_exec. Because these values were ob-
tained from a remote user, they constituted a
serious vulnerability (CVE-2000-0573).

The second message Splint produced in
the first execution reported a similar invalid
transfer in setproctitle. After adding an
annotation and rerunning Splint, we found
two additional format string bugs in wu-
ftpd. These vulnerabilities, described in
CERT CA-2000-13, are easily fixed using
the %s constant format string.

We also ran Splint on wu-ftpd 2.6.1, a
version that fixed the known format bugs.
After adding eight untainted annotations,
Splint ran without reporting any format bug
vulnerabilities.

Buffer overflow vulnerabilities 
Running Splint on wu-ftpd 2.5 without

adding annotations produced 166 warnings
for potential out-of-bounds writes. After
adding 66 annotations in an iterative process
such as the one we described above for
checking taintedness, Splint produced 101
warnings. Twenty-five of these warnings in-
dicated real problems and 76 were false
(summarized in Table 1). 

Six of the false warnings resulted because
Splint was unaware of assumptions external
to the wu-ftpd code. For example, wu-ftpd
allocates an array based on the system con-
stant OPEN_MAX, which specifies the maxi-
mum number of files a process can have
open. The program then writes to this
buffer using the integer value of an open file
stream’s file descriptor as the index. This is
safe because the file descriptor’s value is al-
ways less than OPEN_MAX. Without a more
detailed specification of the meaning of file
descriptor values, there is no way for a
static analysis tool to determine that the
memory access is safe.

Ten false warnings resulted from loops
that were correct but did not match the loop
heuristics. To some extent, we could address
this by incorporating additional loop
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Table 1
False warnings checking wu-ftpd

Cause Number Percent

External assumptions 6 7.9
Arithmetic limitations 13 17.1
Alias analysis 3 3.9
Flow control 20 26.3
Loop heuristics 10 13.2
Other 24 31.6



heuristics into Splint, but there will always
be some unmatched loops. The remaining
60 spurious messages resulted from limita-
tions in Splint’s ability to reason about
arithmetic, control flow, and aliases. We’re
optimistic that implementing known tech-
niques into Splint will overcome many of
these limitations without unacceptable sac-
rifices in efficiency and usability. It is im-
possible, though, to eliminate all spurious
messages because of the general undecid-
ability of static analysis. 

L ightweight static analysis is a prom-
ising technique for detecting likely
software vulnerabilities, helping pro-

grammers fix them before software is de-
ployed rather than patch them after attack-
ers exploit the problem. 

Although static analysis is an important
approach to security, it is not a panacea. It
does not replace runtime access controls,
systematic testing, and careful security as-
sessments. Splint can only find problems
that are revealed through inconsistencies be-
tween the code, language conventions, and
assumptions documented in annotations.
Occasionally, such inconsistencies reveal se-
rious design flaws, but Splint offers no gen-
eral mechanisms for detecting high-level de-
sign flaws that could lead to security
vulnerabilities.

The effort involved in annotating pro-
grams is significant, however, and limits
how widely these techniques will be used in
the near future. Providing an annotated
standard library solves part of the problem.
However, it does not remove the need to
add annotations to user functions where
correctness depends on documenting as-
sumptions that cross interface boundaries.
Much of the work in annotating legacy pro-
grams is fairly tedious and mechanical, and
we are currently working on techniques for
automating this process. Techniques for
combining runtime information with static
analysis to automatically guess annotations
also show promise.18

No tool will eliminate all security risks,
but lightweight static analysis should be
part of the development process for secu-
rity-sensitive applications. We hope that the

security community will develop a tool suite
that codifies knowledge about security vul-
nerabilities in a way that makes it accessible
to all programmers. 

Newly discovered security vulnerabilities
should not lead just to a patch for a specific
program’s problem, but also to checking
rules that detect similar problems in other
programs and prevent the same mistake in
future programs. Lightweight static checking
will play an important part in codifying secu-
rity knowledge and moving from today’s
penetrate-and-patch model to a penetrate-
patch-and-prevent model where, once under-
stood, a security vulnerability can be codified
into tools that detect it automatically.
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