
In 19th Network and Distributed Security Symposium, San Diego, 5-8 February 2012

Private Set Intersection:
Are Garbled Circuits Better than Custom Protocols?

http://MightBeEvil.org

Yan Huang David Evans
University of Virginia

Jonathan Katz
University of Maryland

Abstract

Cryptographic protocols for Private Set Intersection (PSI)
are the basis for many important privacy-preserving ap-
plications. Over the past few years, intensive research has
been devoted to designing custom protocols for PSI based
on homomorphic encryption and other public-key tech-
niques, apparently due to the belief that solutions using
generic approaches would be impractical. This paper ex-
plores the validity of that belief. We develop three classes
of protocols targeted to different set sizes and domains, all
based on Yao’s generic garbled-circuit method. We then
compare the performance of our protocols to the fastest
custom PSI protocols in the literature. Our results show
that a careful application of garbled circuits leads to solu-
tions that can run on million-element sets on typical desk-
tops, and that can be competitive with the fastest custom
protocols. Moreover, generic protocols like ours can be
used directly for performing more complex secure com-
putations, something we demonstrate by adding a simple
information-auditing mechanism to our PSI protocols.

1 Introduction

Protocols for private set intersection (PSI) allow two par-
ties holding sets S and S′ to compute the intersection
I = S∩ S′ without revealing to the other party any addi-
tional information about their respective sets (except their
sizes). Either party, or both, may learn the intersection de-
pending on the application. PSI can be used directly to en-
able two companies to find their common customers, or to
allow a government agency to determine whether anyone
on its terrorist watch list is present on a flight manifest.
PSI can also be used as a sub-routine of larger privacy-
preserving computations. For example, companies can
perform data mining only on the customers they have in
common (using PSI for pre-processing), or parties might
apply some filter, privately specified by the other party,
to their input set before computing the intersection (using

PSI for post-processing). Many other examples are pro-
vided by De Cristofaro et al. [9].

Because of its importance and wide applicability, many
protocols for PSI and its variants have been proposed [7–
11, 14, 15, 20, 24]. All these works develop custom PSI
protocols using asymmetric cryptography, usually with
the explicit remark that they do so because solving PSI
via generic techniques (such as garbled-circuit proto-
cols [39]) would be impractical.1 However, this claim has
never been substantiated.

The belief that generic techniques for solving PSI are
inefficient may stem from several factors: a general feel-
ing that generic protocols are inherently slow and that
garbled circuits do not scale, or perhaps the belief that
computing the intersection of two sets of size n requires
Θ(n2)-size circuits since all pairs of elements must be
compared. Recent implementations of Yao’s (generic)
garbled-circuit technique suggest that the first assumption
is invalid; the second is simply incorrect (see Section 5).

In this work, we explore using Yao’s generic garbled-
circuit approach to perform PSI. Our primary goal is
to better understand the efficiency of generic protocols
as compared to “custom-designed” protocols for specific
tasks. As a secondary benefit, we obtain protocols that
are substantially more efficient than existing PSI proto-
cols in certain settings. Using generic techniques to gen-
erate privacy-preserving protocols has several advantages:
by relying on existing software packages for construct-
ing garbled-circuit protocols [17, 32, 33, 36], one need
only write down a circuit for the function to be computed
rather than having to design and implement a new proto-
col from scratch. Generic protocols are also inherently
more modular than custom-tailored protocols. For ex-
ample, returning to the specific case of PSI, we observe
that it is relatively easy to adapt a generic PSI protocol to
support additional private pre- or post-computation (sim-
ply by extending the circuit with the desired pre- or post-

1Recently a generic implementation of PSI was considered in the
less-accepted three-party setting [23]. We discuss this work further in
Section 1.3.

Protocol Number of Non-Free Gates
Bitwise-AND (BWA) 2σ

Pairwise-Comparisons (PWC)
(
(2n− n̂)2 + n̂

)
(σ −1)/4

Sort-Compare-Shuffle-SORT 2σn log(2n)+
(
(3n−1)σ −n

)
+2σn log2(2n̂)

Sort-Compare-Shuffle-HE 2σn log(2n)+
(
(3n−1)σ −n

)
+(σ +32)n

Sort-Compare-Shuffle-WN 2σn log(2n)+
(
(3n−1)σ −n

)
+ σ(n logn−n+1)

3

Table 1: Gate counts for our protocols. The size of each set is n, elements are represented using σ bits, and n̂ is the
size of the intersection.

computation), whereas with custom protocols it may not
be possible to modify the protocol to support additional
computation while maintaining comparable efficiency.

1.1 Contributions

The goal of our work is to understand how generic proto-
cols for PSI perform relative to custom PSI protocols. We
assume the semi-honest setting (see Section 2) which has
been the focus of much of the prior work on PSI, and leave
consideration of stronger threat models to future work.

We describe three classes of protocols for PSI based on
garbled-circuit techniques, each targeted to different set
sizes and different universes from which the elements in
the sets are drawn. Section 1.2 provides an overview of
these protocols, and Sections 3–5 describe each protocol
in more depth. In each case, we significantly improve per-
formance by optimizing the underlying circuit design.

We evaluate our protocols on a range of parameters,
comparing them both to each other as well as to a re-
cent protocol by De Cristofaro and Tsudik [10] that is
the most efficient PSI protocol previously reported in
the literature. Somewhat surprisingly, we found that
the generic garbled-circuit approach can outperform the
De Cristofaro-Tsudik protocol in many settings. For ex-
ample, when the universe is relatively small (e.g., ele-
ments can be represented using 32 bits) our most efficient
protocol is faster than theirs for all settings of the secu-
rity parameter, and by several orders of magnitude at high
security levels. Even when the universe is large, with el-
ements represented using 160 bits, our protocol remains
competitive with their PSI protocol, and is faster than their
protocol except at the ultra-short security level. Section 7
provides details on our evaluation and results.

We also explore the use of our generic protocols as sub-
routines within larger privacy-preserving computations.
As an illustrative example, we show in Section 6 how a
simple auditing mechanism can be incorporated into our
protocols so that the intersection is not revealed when its
size exceeds some threshold.

1.2 Overview of our Protocols

We consider three classes of protocols for PSI, as sum-
marized in Table 1. All of our protocols are built using
Yao’s garbled-circuit technique which takes any boolean
circuit C and yields a secure protocol for computing C.
(Section 2 provides a brief introduction to garbled-circuit
protocols.) Thus, we need only describe the different
types of circuits we construct and can rely on established
proofs of security properties for garbled-circuit protocols
in the semi-honest model [29].

Our first protocol (Bitwise-AND (BWA)), described in
Section 3, uses a circuit based on a bit-vector representa-
tion of the parties’ sets. The protocol is only practical for
small universes; in that case, however, it achieves the best
performance.

Section 4 describes the Pairwise-Compare (PWC) pro-
tocol that uses a circuit performing pairwise comparisons
of the elements in the two parties’ sets. This protocol
has worst-case complexity Θ(n2) for computing the in-
tersection of two sets of size n, and is a reasonably good
choice — even for large universes — as long as n is small.
We present an optimization that improves performance
when the size of the intersection is large without sacri-
ficing any privacy. Though relatively simple, this and the
previous protocol demonstrate that even straightforward
approaches can produce effective PSI solutions using gar-
bled circuits.

Section 5 presents our most involved protocols, which
are all based on a Sort-Compare-Shuffle design. These
protocols have complexity Θ(n logn) with small constant
factors. The main idea is for each party to sort their set
locally, and then (privately) merge their sorted sets into a
single sorted list. Then each adjacent pair of elements is
compared (obliviously), with the value retained if the ele-
ments in the pair are equal, and a dummy value substituted
otherwise. Finally, the resulting list of matching/dummy
elements is obliviously shuffled before the entire list is re-
vealed. This shuffling step is necessary because otherwise
positional information about the matching elements leaks
information about the non-matching elements in the par-
ties’ sets. We consider three different ways to perform the

2

final oblivious shuffling: (1) obliviously sorting the entire
list of matching/dummy elements using a garbled-circuit
approach (SCS-SORT), (2) randomly shuffling the list of
matching/dummy elements using a protocol based on ho-
momorphic encryption (SCS-HE), and (3) randomly shuf-
fling the list as before, but using garbled circuits applied
to Waksman’s oblivious switching network (SCS-WN).

Table 1 gives the costs of our protocols in terms of the
number of gates that are garbled and evaluated, as a func-
tion of the size n of the input sets, the number of bits σ

needed to represent each set element, and the size n̂ of
the intersection. XOR gates are not counted since these
can be implemented “for free” (without performing any
cryptographic operations) using the free-XOR optimiza-
tion [26]. For the BWA and SCS-HE protocols, there are
substantial other costs so gate counts alone do not capture
the full cost of those protocols.

1.3 Related Work

Most prior work on PSI has focused on developing custom
protocols specific to the problem [7–11, 14, 15, 20, 24]. In
the semi-honest setting (which is the setting considered
here), the protocol by De Cristofaro and Tsudik [10] is the
most efficient, and we use this as the baseline comparison
with our protocols.

Recently, Jónsson et al. [23] explored a generic ap-
proach to the weighted set intersection (weighted-PSI)
problem. They design a circuit for their problem and
then use a (different) generic approach to obtain a se-
cure protocol that they implement within the Sharemind
framework [6]. However, their approach only works in
a multi-party setting with an assumed honest majority.
Thus, some of their techniques do not apply to the two-
party setting we consider, where there is no honest ma-
jority. Although the circuit they construct has some high-
level similarities to the circuit we construct as part of our
SCS-WN protocol, we obtain better efficiency than what
would be obtained using their work for several reasons.
First, although PSI can be reduced to weighted-PSI, do-
ing so leads to a less efficient circuit than what we pro-
pose. The circuits developed by Jónsson et al. require
Θ(n log2 n) gates whereas the circuit in our SCS-WN pro-
tocol has Θ(n logn) gates. In addition, Jónsson et al. con-
struct an arithmetic circuit (where wires can take values in
a finite field, and gates implement addition or multiplica-
tion over that field), whereas we require a Boolean circuit
in order to use the garbled-circuit technique. Finally, be-
cause most prior work on set intersection focuses on the
two-party setting, Jónsson et al. [23] are unable to com-
pare their protocol to custom protocols, which is the main
motivation of our work.

2 Background

This section reviews our threat model, defines the PSI
problem, and provides background on secure computation
and the framework we use to implement our protocols.

Threat model. In this work we focus on the standard
semi-honest (also known as honest-but-curious) model
where parties are assumed to follow the protocol but may
then try to learn additional information from the protocol
execution. Goldreich’s text [12] provides a formal defini-
tion. Semi-honest security is sufficient in scenarios where
it is difficult to modify software without detection (say,
when parties’ represent large institutions or government
agencies), or when hardware/software attestation can be
used. Many known semi-honest protocols can also pro-
vide strong privacy (but not correctness) guarantees when
only the party that evaluates the circuit receives the re-
sult and the oblivious transfers are done using an OT pro-
tocol secure against malicious behavior. Finally, several
techniques (e.g., [21,28,30,37]) are available for convert-
ing protocols secure in the semi-honest setting to proto-
cols secure under stronger notions of security (although
the best known techniques still impose substantial cost).
Thus, work on developing efficient semi-honest protocols
is a useful step towards efficient protocols that are secure
against stronger adversaries.

Private set intersection. Here we have two parties hold-
ing sets S = {s1,s2, . . . ,sn} and S′ = {s′1,s′2, . . . ,s′n}, re-
spectively, where si,s′i ∈ {0,1}

σ and we assume neither S
nor S′ contains any duplicate elements. We assume each
party’s set is of (known) size n and all elements are ex-
actly σ bits long (using padding it is easy to handle the
case where set sizes are different or even kept hidden, up
to a known upper bound, or where elements have different
sizes). We also assume both sets change at each invoca-
tion (note that computing PSI repetitively with a static in-
put set can cause substantial leakage merely by revealing
the outputs). The goal is for the parties to compute the
intersection I = S∩ S′ without revealing any information
other than I. This level of privacy is implied by the stan-
dard notion of security in the semi-honest setting [12] that
we use in this work. It is easy to modify all protocols so
that either one or both of the parties learn the result I.

To the best of our knowledge, the most efficient previ-
ously published PSI protocols (in the semi-honest setting)
are those of De Cristofaro and Tsudik [10]. Security of
their protocols is based on the (non-standard) one-more-
discrete-logarithm or one-more-RSA assumptions [4] in
the random oracle model.

Garbled circuits. Yao’s garbled-circuit approach pro-
vides a generic mechanism for constructing a (semi-
honest) secure two-party protocol for computing f start-

3

ing from any boolean circuit for f [29, 39]. The details
of the garbled-circuit technique are not necessary for un-
derstanding the results of this paper, since we primarily
use it as a black box and focus on constructing optimized
boolean circuits for various functions. Nevertheless, we
provide a brief overview here, and highlight some of the
optimizations we use.

In a garbled-circuit protocol, one party (the circuit gen-
erator) prepares an “encrypted” version of a circuit com-
puting f . The second party (the circuit evaluator) then
obliviously computes the output of the circuit without
learning any intermediate values. Starting with a (known)
boolean circuit for f , the circuit generator associates two
random cryptographic keys w0

i ,w
1
i with each wire i of the

circuit, where w0
i encodes a 0-bit and w1

i encodes a 1-bit.
Then, for each binary gate g of the circuit with input wires
i, j and output wire k, the generator computes ciphertexts

Enc
w

bi
i
(Enc

w
b j
j
(w

g(bi,b j)

k))

for bi,b j ∈ {0,1}. The resulting four ciphertexts, in ran-
dom order, constitute a garbled gate. The collection of all
garbled gates forms the garbled circuit that is sent to the
evaluator.

Given keys wi,w j associated with both input wires i, j
of some garbled gate, the evaluator can compute a key for
the output wire of that gate by decrypting the appropri-
ate ciphertext. Thus, given one key for each input wire
of the circuit, the evaluator can evaluate all gates in the
circuit in topological order to compute one key for each
output wire of the circuit. These keys can then be mapped
to their semantic values using mappings provided by the
circuit generator. As described, this requires up to four de-
cryptions per garbled gate. In fact, the construction can be
modified using standard techniques so the evaluator uses
only a single decryption per garbled gate (see [33]).

Several optimizations can be applied to the above, all of
which we use in our implementation. The free-XOR tech-
nique [26] allows XOR gates in the circuit for f to be eval-
uated “for free,” without incurring any communication or
cryptographic operations. Pinkas et al. [36] proposed a
way to reduce the size of garbled gates from four to three
ciphertexts, thus saving 25% of network bandwidth.2

It remains only to describe how the evaluator obtains
appropriate keys for the input wires, i.e., the keys cor-
responding to the actual inputs held by the parties. The
generator can simply send the keys that correspond to its
own input. The parties use oblivious transfer (OT) to
enable the evaluator to obliviously obtain the input-wire
keys corresponding to its own input. An OT protocol al-
lows a sender, holding strings w0 and w1, to transfer wb

2A second optimization they propose reduces the size of garbled
gates by approximately 50%, but cannot be combined with the free-XOR
technique.

to a receiver holding a selection bit b; the receiver learns
nothing about w1−b, and the sender does not learn b.

As we rely on established protocols from the literature,
we do not include proofs of security for the protocols de-
veloped here. Our protocols can be proven secure based
on the decisional Diffie-Hellman assumption (used for our
instantiation of OT) in the random oracle model.

Implementation. Fairplay [33] provided the first imple-
mentation of Yao’s garbled-circuit approach, and several
subsequent works (e.g., [31,36]) have explored extensions
to the malicious setting. TASTY [16] extended Fairplay
to give programmers the flexibility of switching between
garbled circuits and approaches using homomorphic en-
cryption. The main drawback of Fairplay (and other tools
built on it) is that it requires generating and storing the
entire garbled circuit before evaluation can begin. Pre-
vious authors (e.g., [22, 35]) have thus inappropriately
concluded that the garbled-circuit approach cannot scale
to large circuits. Recently, Huang et al. [17] developed
a garbled-circuit implementation that uses pipelining to
avoid the need to ever store the entire garbled circuit. This
allows it to scale to arbitrarily large circuits. In addition, it
facilitates circuit-level optimizations since circuits are de-
fined within a high-level programming framework. All of
our garbled-circuit protocols are implemented using this
framework.

For the oblivious transfer, our implementation uses the
Naor-Pinkas protocol [34]. We also use oblivious trans-
fer extension [19] which achieves an unlimited number of
OTs at the cost of (essentially) k OTs, where k is a (sta-
tistical) security parameter. In our experiments, we vary k
according to the desired security level (see Table 2).

3 Bitwise-AND Protocol

The BWA protocol is designed for sets whose elements
are drawn from a small universe. In this case, a set can
be represented by a bit-vector of length 2σ , and the set
intersection can be computed simply by bit-wise AND-
ing the bit-vectors of the two parties. The output is exactly
a bit-vector representation of the intersection.

A circuit for this computation is straightforward, and
is obtained by instantiating a binary AND gate 2σ times.
Although the cost of the resulting protocol grows expo-
nentially with σ , the small constant factor involved leads
to good performance when σ is small. Indeed, for val-
ues of σ up to 16, we found this to be the most efficient
protocol in our experiments (see Section 7).

The BWA protocol does not restrict the size of the par-
ties’ sets, so a dishonest participant can use a vector of all
1s as its input and thereby learn the other participant’s en-
tire set! Hence, it should not be used in a standalone fash-
ion by two mutually distrusting parties. Instead, such a

4

protocol could be used as either a sub-protocol in a larger
private computation where the participants do not control
the inputs directly or do not see the outputs explicitly. Al-
ternately, it could be combined with a self-auditing step
to ensure that the result does not leak too much informa-
tion or that neither input set is too large. One of the ad-
vantages of building our protocols using generic garbled-
circuit techniques is that such extensions can easily be
added. Section 6 discusses how auditing can be integrated
into our protocols.

4 Pairwise Comparisons

The running time of the BWA scheme scales linearly in
the size of the universe (2σ) over which the sets are de-
fined. Thus, as the universe of elements grows, the BWA
scheme becomes too inefficient to be useful. For large
universes, we can use a Pairwise-Comparisons (PWC)
protocol, shown in Algorithm 1. It performs comparisons
between each pair of elements from the two parties’ sets.
The running time of PWC is quadratic in the set size (and
linear in σ).

In Algorithm 1, the only part that needs to be imple-
mented by a garbled circuit is the Equal function on line 6
which performs an equality test. An Equal circuit can be
implemented by first XOR-ing the two σ -bit inputs to pro-
duce a σ -bit intermediate result. The negated-OR of these
bits then indicates whether the two inputs match. Thus, an
Equal circuit can be implemented using only σ − 1 non-
free gates.

To improve performance, our algorithm reveals each
match as soon as it is found. This allows us to avoid
performing further comparisons for any elements that
have already been matched. (Recall that we assume each
party’s set contains no duplicates.) This optimization can
potentially leak positional information about the elements
in the parties’ sets since the participants learn the order in
which matching elements are found. To avoid this, each
party randomly permutes its set before starting the pro-
tocol. Then, no information is revealed other than what
could already be inferred from the result, namely, the ele-
ments in the intersection.

Algorithm 1 PairwiseComparisons(S, S′)
1: for i← 1 to S′.size do
2: matched[i]← False
3:
4: for i← 1 to S.size do
5: for j← 1 to S′.size do
6: if ¬matched[j] and

(
Equal(S[i],S′[j])

)
then

7: reveal(S[i])
8: matched[j]← True
9: break

A drawback of the above “short-circuiting” optimiza-
tion is that it substantially increases the round complexity
since each reveal operation adds an extra round of com-
munication. To benefit from this short-circuiting with-
out the penalty of increased round complexity, we im-
plement the protocol using two threads where the reveals
are done asynchronously while the main thread compares
every possible pair of elements. Once a match is found
by the reveal thread, the main thread is notified asyn-
chronously to skip all unnecessary comparisons involv-
ing the matched element. Since the notification is asyn-
chronous, it is possible that some Equal circuits are un-
necessarily generated. However, our experiments show
that the amount of wasted work is an insignificant frac-
tion of the total work except for very small n.

Analysis. To understand the savings of the early reveal
optimization, we provide a heuristic estimate for NEqual,
the expected number of calls to the Equal function. Let
n̂ be the size of the intersection. Since the two parties’
sets S and S′ are randomly shuffled before running Algo-
rithm 1, the n̂ elements in the intersection will, on average,
be evenly distributed in S. Thus, we expect that on aver-
age the elements of S are ordered in such a way that there
are n̂ + 1 intervals of (n− n̂)/(n̂ + 1) non-matching el-
ements each, with each interval separated by one of the
matching elements. Assuming this to be the case, for
each element in the ith interval (0≤ i≤ n̂) the Equal func-
tion will be evaluated exactly n− i times since it will be
compared with all the n− i currently-unmatched elements
of S′. Each matching element in S is compared, on av-
erage, with half the remaining elements in S′ before the
match is found. Hence,

NEqual ≈
n̂

∑
i=0

(n− n̂)(n− i)
n̂+1

+
n̂−1

∑
i=0

n− i
2

=
n− n̂
n̂+1

· (2n− n̂)(n̂+1)
2

+
1
2
· (2n− n̂+1)n̂

2

=
(2n− n̂)2 + n̂

4
.

Compared to a naı̈ve implementation where all n2 com-
parisons are performed, we see that short-circuiting saves
roughly 75% of the comparisons if the two sets are iden-
tical, 45% if half the elements are identical, and 30% if
1
3 of the elements are identical. Our experimental results
(Figure 9) are consistent with this analysis.

5 Sort-Compare-Shuffle

Although the pairwise-comparison protocol is intuitive
and easy to implement, it requires Θ(n2) comparisons and
hence circuits with Θ(n2) gates. Here we present PSI pro-
tocols that require only Θ(n logn) element comparisons.

5

These protocols take advantage of the observation that
each participant can locally sort their own input set. We
use this extra information to improve efficiency by break-
ing the task into three sequential sub-tasks as shown in
Figure 1.

In each of the protocols of this section, each party be-
gins by locally sorting their set. The parties then imple-
ment an oblivious merging network (Section 5.1) to sort
the union of their sets, taking advantage of the fact that
both input sets are sorted. Next, we use garbled circuits
to compare neighboring elements in the sorted sequence
to find all the matches (Section 5.2). Directly outputting
the matches at this stage would, however, reveal informa-
tion about elements that are not in the intersection. (For
example, if the parties learn that the first two elements in
the sorted list match, this would reveal to the first party
that the second party’s set does not contain any elements
smaller than the first matched element.) Thus, we oblivi-
ously shuffle the list of matched elements so that the po-
sitions of the matched elements are not revealed (Sec-
tion 5.3).

5.1 Sorting
The challenge of doing oblivious sorting using a garbled-
circuit approach is that the sorting must be done by a sort-
ing algorithm that uses a fixed (i.e., oblivious) sequence of

Fig. 1: Sort-Compare-Shuffle Approach (parts requiring
cryptographic computation are shaded).

comparisons. Most commonly used sorting algorithms do
not lead to a size-optimal circuit. However, sorting net-
works [3] provide a fast circuit implementation of sorting.
We further take advantage of the property that each party’s
inputs are independently sorted in designing a circuit that
merges the two sorted lists to produce the full sorted list.

The basic module of a sorting network is a 2-Sorter,
which sorts two σ -bit inputs. Figure 2(a) depicts a
straightforward implementation of a 2-Sorter circuit. This
design uses 4σ non-free binary gates to sort two σ -bit
numbers, since the MIN and MAX circuits each use 2σ

non-free gates [25].
We observe that the MIN and MAX circuits each con-

tain a GT (greater than) circuit, and they each share the
same input. So we can eliminate one GT component to
reduce the cost to 3σ non-free binary gates as shown in
Figure 2(b). Furthermore, the two MUXs are unneces-
sary since their outputs are correlated. Based on this in-
sight, we arrive at the final 2-Sorter design shown in Fig-
ure 2(c). It uses a conditional-swap circuit CondSwap
(Figure 3), where a CondSwap circuit with σ -bit output
(Figure 3(a)) is composed of σ parallel CondSwaps with
1-bit output (Figure 3(b)). The latter requires only one
non-free gate. Thus, the overall cost of the 2-Sorter cir-
cuit is reduced to 2σ non-free binary gates. Kolesnikov
and Schneider [26, 27] also designed a conditional-swap
circuit (see [26, Fig. 2(b)]). Our CondSwap circuit has
an explicit selection input bit, whereas in their case the
selection bit is hardwired by the circuit generator.

Since the two input sequences provided by the parties
are pre-sorted, we can sort their union using a bitonic
merger [3] rather than having to use a full-fledged sort-
ing network. A sequence is said to be bitonic if there is at
most one extremum element and the two subsequences di-

(a) Naı̈ve (b) Better

(c) Best

Fig. 2: The design of a 2Sorter.

6

(a) σ -bit CondSwap (b) 1-bit CondSwap

Fig. 3: CondSwap Circuits.

Fig. 4: Example of merging a bitonic sequence.

vided by this extremum element increase monotonically.
As a specific example, the sequence that results from con-
catenating a sequence sorted in increasing order with a
sequence sorted in decreasing order is bitonic.

Figure 4 depicts how a bitonic sequence of eight num-
bers is sorted by a bitonic merger. The basic idea is to
apply a half-cleaner to recursively divide the sequence
into two half-length bitonic sub-sequences where every
element of one sub-sequence is larger than every element
of the other. The base case, when the length of the subse-
quences is two, is handled using a 2-element half-cleaner
which is just a 2-Sorter. A bitonic merger for 2n inputs
uses exactly n log(2n) 2-Sorter circuits (assuming n is a
power of 2). Thus, we can construct a circuit that merges
two lists of n sorted σ -bit elements into a sorted list of 2n
elements using 2σn log(2n) non-free binary gates.

5.2 Filtering Matching Elements
After all 2n elements are in sorted order, we know that
any elements in the intersection must be adjacent. Thus,
to find the intersection we can use a duplicate-selection
circuit (DupSelect-2) that takes as input two elements,
x1,x2 ∈ {0,1}σ , and outputs x1 (= x2) if they are equal
and 0σ otherwise. (This assumes that 0σ is not a valid el-
ement in the input set. If necessary, we can increase σ by
one and remap elements to ensure this.)

Figure 5(a) shows the design of a DupSelect-2 circuit.
Since we have 2n elements as input to this stage, 2n− 1
DupSelect-2 circuits are needed to identify all items in the
intersection. As each DupSelect-2 circuit requires 2σ −1
non-free binary gates, the total cost of this phase as de-
scribed is (2σ −1)(2n−1).

We next show how to reduce this cost by taking ad-
vantage of the property that the initial input sets have no
repeated elements. This implies that for every three con-
secutive elements in the sorted sequence, there can be at
most one match. To take advantage of this, we define a
3-input version of the duplicate-selection circuit, called
DupSelect-3, as follows:

DupSelect-3 (a,b,c) =
{ b if a = b or b = c

0σ otherwise .

Figure 5(b) shows the design of a DupSelect-3 circuit us-
ing 3σ − 1 non-free binary gates. Since we start with 2n
elements as input to this stage, we need n−1 DupSelect-
3 circuits and one DupSelect-2 circuit to identify all the
elements in the intersection (see Figure 5(c)). This re-
duces the total number of non-free gates needed for this
phase to (3n− 1)σ − n. Another benefit of this design is
that it produces only n output elements, rather than the
2n−1 output elements that would be produced using the
DupSelect-2 design. This reduces the size of the circuit
needed in the subsequent oblivious shuffling phase (see
below) by about 50%.

It is natural to ask whether it is possible to save even
more gates by defining “higher-order” DupSelect circuits.
We investigated it but found that this is not the case. The
reason is that we save gates by cutting a MUX when we
go from 2 to 3 inputs by exploiting the fact that within
every three consecutive numbers there can be at most one
match; this is no longer true once we look at four consec-
utive numbers. In fact, since there may be up to n items in
the intersection, the number of outputs of this stage must
clearly be at least n. Therefore, it does not help to com-
bine more duplicate-selection circuits.

7

(a) DupSelect-2 (b) DupSelect-3 (c) Comparison-based Filtering

Fig. 5: Design and use of DupSelect-2 and DupSelect-3 circuits.

5.3 Shuffling
Following the filtering phase, we (implicitly) have a list
of n elements that contains all n̂ elements in the intersec-
tion, in sorted order, interleaved with an additional n− n̂
occurrences of 0σ . This list of elements cannot yet be re-
vealed to the parties, however, since the positions of the
0-elements and the elements in the intersection may leak
information about the parties’ initial sets: for example, if
the first element in the list is some match x1 6= 0σ , this
reveals that x1 was the minimum element in both parties’
sets. It is therefore necessary to destroy positional infor-
mation before the elements are revealed.

We explore two general strategies for doing this: sort-
ing the n intermediate values (Section 5.3.1), or randomly
permuting them. For implementing the random permu-
tation, we analyze strategies based on homomorphic en-
cryption (Section 5.3.2) and using an oblivious shuffling
network (Section 5.3.3).

5.3.1 Sorting

One way to hide positional information is to use an obliv-
ious sorting network to sort the output sequence of the
filtering phase (with 0σ taken, say, to be minimal). This
guarantees that no positional information leaks, since the
sorted output could be generated from the intersection it-
self. Jónsson et al. [23] also use this general strategy in
their work. As we show in Section 5.3.3, our circuit-
based shuffling scheme is substantially more efficient than
sorting-based approaches.

Batcher’s sorting network provides a way to sort us-
ing Θ(n log2 n) gates [3]. Another possibility is to use the
randomized Shellsort algorithm of Goodrich [13], which
uses Θ(n logn) gates but has non-zero error probability
(corresponding to a small leak of information). We ex-
plored both these possibilities, but found that they are
less efficient than the shuffling network presented in Sec-
tion 5.3.3. In principle, sorting can also be done with
Θ(n logn) gates using the AKS sorting network [1], but
the huge constant factor makes this approach impractical.

One scenario where sorting could be preferable, how-
ever, is when the size n̂ of the intersection is small relative
to the size n of the input sets. In that case sorting can

be done using n/n̂ calls to a 2n̂-sorter (that sorts 2n̂ ele-
ments), with total gate count (assuming Batcher’s network
is used for the 2n̂-sorter) of n log2(2n̂). Though generally
we cannot assume that n̂ is small, it would be inexpen-
sive to compute n̂ securely (using a garbled circuit) after
the filtering phase, at which point the parties could decide
whether to use a sorting-based approach or a shuffling ap-
proach for the final phase. We do not explore this further.

5.3.2 Homomorphic Shuffling

Sorting actually does more work than necessary, since it
is only necessary to hide positional information about the
matches. We can do better by randomly permuting the
elements rather than sorting them. In this and the next
section, we consider two approaches to obliviously shuffle
the results.

Our first shuffling approach uses homomorphic encryp-
tion to achieve linear asymptotic complexity. We begin by
dividing each output from the end of the filtering phase
into two secret shares, with one share given to each party.
This can be done within a garbled-circuit computation as
follows: Denote the intermediate results at the end of the
filtering phase as m1, . . . ,mn, and recall that at this point
neither party knows these values since they are encoded
as part of the garbled-circuit computation. One party will
provide an additional n random values r1, . . . ,rn as input
(at the beginning of the garbling stage). The garbled cir-
cuit is then extended so as to compute r′i = mi + ri, with
the other party learning r′i. Note that ri,r′i form two shares
of mi. To ensure security, ri must be sampled from a suffi-
ciently large domain. Choosing ri as a random (σ +k)-bit
integer suffices to give statistical security O(n ·2−k).

Now one party holds r1, . . . ,rn and the other holds
r′1, . . . ,r

′
n, with mi = r′i−r+ i for all i. The parties then ex-

ecute the homomorphic-encryption-based shuffling proto-
col described in Figure 6. Throughout this protocol only
one party’s (e.g., Alice’s) public key is required, so for
simplicity we use [[x]] to denote [[x]]pkAlice , the encryption
of x using Alice’s public key pkAlice. The key idea of this
shuffling protocol is that the shuffler (Bob) cannot decrypt
the ciphertexts he shuffles, whereas Alice (who knows the
private key) does not know how the other party shuffled

8

Input to Alice: r1,r2, · · · ,rn.
Input to Bob: r′1,r

′
2, · · · ,r′n.

(for all i, we have ri +mi = r′i , where mi is the i-th number output by the filtering phase)

Output of Alice: The mi’s in random permuted order.
Output of Bob: ⊥ (or, if desired, the mi’s in sorted order).

Preparation:
Alice chooses a key pair 〈pkAlice,skAlice〉 and sends pkAlice to Bob.

Execution:
1. Alice encrypts the ri’s (1≤ i≤ n) with her public key and sends the [[ri]]’s to Bob.
2. Bob computes [[mi]] = [[r′i− ri]] = [[r′i]] · [[ri]]

−1.
3. Bob randomly permutes the [[mi]]’s (1≤ i≤ n), and sends the resulting shuffled ciphertexts back to Alice.
4. Alice receives and decrypts the ciphertexts to output the mi’s (1≤ i≤ n).
5. (If desired) Alice sorts the mi’s and sends the result back to Bob.

Fig. 6: Homomorphic-encryption-based shuffling protocol.

the ciphertexts.
Say the ri’s are λ -bit integers. Since each λ -bit full-

adder used to perform the additive sharing requires λ

binary AND gates, the secret-sharing phase altogether
requires λn non-free binary gates. The homomorphic-
encryption protocol in Figure 6 uses two rounds of com-
munication, each round of which communicates n cipher-
texts, and uses O(n) public-key operations. Although this
approach has asymptotic complexity linear in n, the actual
cost of the best known homomorphic encryption schemes
remains very high (see Section 7), and for the parame-
ters we consider this protocol performs worse than the
pure garbled-circuit protocol described in the next sec-
tion which uses Θ(n logn) symmetric-key operations. The
other drawback with this approach is that it requires ho-
momorphic encryption which abandons our goal of using
only generic secure computation to enable easy integra-
tion with other secure computations.

5.3.3 Shuffling Network

Here we explore an alternate approach to random shuf-
fling that uses Θ(n logn) symmetric-key operations and
remains a pure garbled-circuit protocol. The basic idea
is to implement an oblivious random shuffling of the el-
ements using a switching network. A switching network
can be viewed as a fixed circuit that takes n inputs along
with an additional set of “control bits,” each of which de-
termines whether some fixed pair of elements is swapped
or not. By setting the control bits appropriately, any de-
sired permutation on the n inputs can be realized. In our
setting the n inputs will be the n sorted elements from
the end of the filtering stage, and one of the parties will
choose a random permutation and then set the control bits
so as to realize this permutation. The second party will
receive as output the n elements, permuted according to
the chosen permutation. If the first party should learn the
output also, the second party applies another random per-

mutation to the output elements (or simply sorts them) be-
fore sending them back. Switching networks can be con-
structed using O(n logn) gates [38].

The core component of a switching network is an obliv-
ious swapper (2-Swapper) that takes as input two σ -bit
values x and y, and an additional control bit s. If the value
of s is 0, the output is x and y in their original order; if
s = 1, the output is y and x in swapped order.

A switching network is simply a series of 2-Swappers
(with independent control bits) applied to predetermined
pairs of elements. A 2-Swapper circuit can be realized
as a σ -bit CondSwap circuit (see Figure 3(b)). For our
application, however, if we let the circuit generator set the
control bits, then each AND gate in a CondSwap circuit
can be replaced by the circuit generator with a 1-to-1 gate
(which is either the identity or the 0-map, depending on
the generator’s secret s). Importantly, the type of the gate
is known only to the circuit generator but is hidden from
the circuit evaluator, so no information is leaked by this
optimization. Combined with the garbled-row reduction
(GRR) technique [36], the garbling of such a gate requires
just a single ciphertext, which is one sixth of the cost of a
2-Sorter with GRR optimization. (Following the standard
garbled-circuit approach, a unary gate would require two
ciphertexts, but using the garbled-row reduction technique
we can reduce this to a single ciphertext.)

The Waksman network [38], improving on the Benes̆
network [5], is a realization of a switching network using
exactly n logn−n+1 2-Swappers when n is a power of 2.
(Constant-factor improvements when n is not a power of
two were developed by Inria et al. [18], but we did not
use those in our implementation.) Figure 7 illustrates a
Waksman network for n inputs, assuming n is a power
of 2. Its design is recursive: an n-input Waksman network
is built out of two n

2 -input Waksman networks (denoted
by P0 and P1 in the figure) and n− 1 2-Swappers (de-
noted by I1, · · · ,I n

2
and O2, · · · ,O n

2
). Using the construc-

9

Fig. 7: Waksman Network for n inputs.

tion of a 2-Swapper circuit discussed earlier, the cost of
the entire oblivious shuffling stage is only a small fraction
(about 15%) of that spent in the oblivious sorting phase of
the overall PSI protocol.

Note that choosing the control bits uniformly at random
does not induce a random permutation. Instead, an algo-
rithm is used to configure the control bits of a Waksman
network to produce any of the n! permutations of the n in-
puts. To induce a random permutation the circuit genera-
tor first chooses a random permutation π on n elements. It
then uses the ConfigureWaksman function shown in Algo-
rithm 2 to set the control bits, represented by the Boolean
arrays I and O (corresponding to the 2-Swapper circuits
in Figure 7). This algorithm sets the control bits in a re-
cursive way. It starts from one of the unset swappers near
an output port, say O j, and sets O j to non-flip position
(line 4). Then, executing the inner while loop (lines 6–
10), sets the configuration of Iπ−1(j)/2 by inspecting the
parity of π−1(j). By looking at the permutation image of
the other input to Iπ−1(j)/2, the algorithm can configure an-
other swapper near the output ports. Therefore, the inner
loop iterates over all swappers involved in a single sub-
permutation, while the outer loop guarantees that all n−1
basic swappers pertaining to this level of the switch are
traversed even if π consists of multiple sub-permutations.

The desired permutations of the component switches P0
and P1 are also recorded (lines 8, 10) as we set up the I,O
swappers (line 7, 9). Thus, at the last two steps (lines 12–
13), we only need to invoke ConfigureWaksman to deal
with the internal swappers inside P0 and P1.

The entire ConfigureWaksman algorithm is run locally
by the circuit generator in our protocol, not within a gar-
bled circuit. It involves no cryptographic operations, so
the time it takes to execute is insignificant compared to the
rest of the protocol. The configuration algorithms have
negligible cost since they are executed as normal (unen-
crypted) computations and finish in linear time.

Algorithm 2 ConfigureWaksman(n, π)
1: init Boolean arrays I,O;
2: π0← φ , π1← φ ;
3: while ∃ j such that O j =⊥ do
4: O j← 0; {O j defaults to non-flip}
5: via← 0;
6: while Ii/2 6=⊥ do
7: [i,via]← SetSwapper(I, j,via,π−1);
8: π0← π0∪{π−1(j)/2 7→ j/2};
9: [j,via]← SetSwapper(O, i,via,π);

10: π1← π1∪{i/2 7→ π(i)/2};
11:
12: ConfigureWaksman(n/2, π0);
13: ConfigureWaksman(n/2, π1);

Algorithm 3 SetSwapper(array, ι ,ϕ,ϖ)
1: i← ϖ(ι);
2: arrayi/2← (i%2) xnor ϕ;
3: return [i+((i % 2 = 1) ? 1 : −1), 1−ϕ];

6 Auditing

An advantage of using generic garbled circuits instead of
a custom protocol to perform private set intersection is
the relative ease with which the generic secure computa-
tion can be combined with subsequent computations in a
privacy-preserving protocol. As an example, we describe
in this section how simple auditing mechanisms can be
incorporated into our PSI protocols.

The result of a private set intersection intrinsically leaks
a great deal of information about the private input sets,
especially when σ is small enough to allow easy prob-
ing. For small enough input universes, a dishonest partic-
ipant can simply set its own input to be the set containing
all values in the data universe and learn the other partici-
pant’s entire set. To mitigate excessive information leaks,
auditing logic could be incorporated into any of the pure
garbled-circuit protocols we have described.

A simple auditing policy would place a threshold on
the maximum size n̂ of the intersection that would be re-
vealed. If the size of the result exceeds this threshold, then
no output is revealed (and so the participants would only
learn that the size of the intersection exceeds the allowed
threshold). Such self-auditing logic would be very cheap
to implement with garbled circuits, but appears to be dif-
ficult to incorporate into custom-designed PSI protocols.

As an initial study, we developed prototypes realizing
the threshold-based auditing scheme just discussed. The
extra work here is to obliviously calculate n̂ (main cost)
and then compare this value to a threshold using a com-
parison circuit (insignificant cost). For the BWA scheme,
n̂ is calculated by a Counter circuit that sums up the out-
put bits of all the AND gates. For the SCS-* family of

10

8 9 10 11 12 13 14 15 16

0

0.5

1

1.5

2

2.5

3

σ

Ti
m
e
(s
e
co
n
d
s)

OT

Circuit

(a) Performance of BWA

16 32 64 128 256

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Set Size

Ti
m
e
(s
e
co
n
d
s)

(b) SCS-WN vs. BWA (σ = 12)

128 256 512 1024 2048

0

2

4

6

8

10

12

14

Set Size

Ti
m
e
(s
e
co
n
d
s)

(c) SCS-WN vs. BWA (σ = 16)

Fig. 8: Set intersection for small element spaces.

schemes described in Section 5, the input signals to the
MUX circuits inside the duplicate-selection circuits (cf.
Figures 5(a) and 5(b)) are summed using a Counter cir-
cuit. As an optimization, our Counter circuit lazily in-
creases the number of bits used to represent its internal
state. Constructing it in this way, the Counter circuit uses
n logn− n non-free gates. Note that when the thresh-
olds are known for specific applications, the cost of the
Counter circuit can be cut further since there is no reason
to represent results that exceed the threshold.

Our experiments show that our size-based auditing cir-
cuits incur no measurable performance overhead for the
SCS-* protocols. For the BWA scheme, the cost of the au-
diting is significant because the underlying BWA protocol
is so fast. For 12 ≤ σ ≤ 16, adding size-based auditing
increases the overall time by roughly a factor of 5 (e.g.,
for σ = 16, it takes 2.48 seconds to run the BWA protocol
without auditing but 12.22 seconds with auditing). This
is consistent with our analysis: BWA with auditing uses
a total of σ2σ non-free gates compared to 2σ non-free
gates without auditing, but the garbled-circuit portion of
the basic BWA protocol constitutes only 35–45% of the
total running time.

7 Experimental Results

To understand the performance of different PSI proto-
cols, we implemented each protocol and measured its
performance on a range of inputs. All experiments
were done using two standard desktop computers (Dell
Intel R© CoreTM 2 Duo E8400 3GHz) connected through a
100 Mbps LAN. Except where noted, we ran experiments
at the ultra-short security level which corresponds to 80-
bit security. That is, we use 80-bit wire labels, statisti-
cal security parameter k = 80 for the OT extension, and
public-key parameters for the underlying Naor-Pinkas OT
that correspond (according to NIST guidelines) to an 80-
bit security level. In all experiments (except those where

we fix the size of the intersection), both parties’ sets con-
sist of elements chosen at random (without replacement)
from some fixed universe. All time measurements are the
total time for the OT and garbled circuit execution, but
do not include the one-time setup work for circuit object
construction (about 1.2 seconds total for the most complex
SCS-WN circuit) and OT extension protocol initialization
(less than one second for the ultra-short security level).
This time is not included in the results since (1) its cost
does not depend on the size of the problem instance; and
(2) it needs to be done only once for every client-server
pair and circuit design.

7.1 Small Sets

We verified through experiments that the BWA protocol
is indeed the best choice when the element space is small
(up to about σ = 20). Figure 8 shows the running time
of the BWA protocol for various sizes of σ , and com-
pares its performance to that of the Sort-Compare-Shuffle
scheme with Waksman-network shuffling (SCS-WN from
Section 5.3.3), which we later show is the best protocol for
larger element spaces. The BWA protocol is faster when
the element space is limited but the set size is relatively
large (e.g., n> 40 for σ = 12 and n> 500 for σ = 16). As
discussed in the previous section, auditing approximately
quintuples the running time of the BWA protocol, but has
little impact for the SCS-WN protocol.

Figure 9 compares the running time for the PWC and
SCS-* protocols for σ = 32 and a range of small set sizes.
The running time of the BWA protocol grows exponen-
tially in σ and so other PSI protocols, including PWC,
become more attractive as σ increases. Since the PWC
scheme’s performance also depends on the size of the in-
tersection, we include results for different ratios n̂/n. In
this figure, we only include the SCS-WN variant because
it is the fastest of the SCS-* protocols.

11

0 10 20 30 40 50 60 70

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Set Size

Ti
m
e
(s
e
co
n
d
s)

Fig. 9: Small sets, σ = 32

7.2 Large Sets

Figure 10 shows the running time and bandwidth usage
of different PSI protocols running on larger sets rang-
ing from 128 to 8192 elements, with every set element
represented by a 32-bit binary string. The only protocol
whose expected running time depends on the elements in
the parties’ sets is the pairwise-comparison-based proto-
col where the performance improves with the size of the
intersection. For this experiment, we fixed the n̂/n-ratio
to 0.5. Note that both axes are logarithmic scale.

The SCS-WN protocol for this range of parameters is
superior to all other protocols by a significant advantage:
over 7× faster than SCS with homomorphic-encryption-
based shuffling (SCS-HE), and 10–70× faster than PWC.
Contrary to expectations, the SCS-HE protocol does not
save any bandwidth compared to SCS-WN which uses
Waksman-network-based shuffling. In addition, we ob-
serve that because of our use of oblivious-transfer exten-
sion and our efficient OT implementation the OT step con-
stitutes only about 5% of the total cost. Using SCS-WN,
we computed the intersection of two sets each contain-
ing more than one million 32-bit numbers (n = 220,σ =
32). This required executing a garbled circuit of 1.7 bil-
lion non-free gates, which completed in about 6 hours
with each participant utilizing a single core of a typical
desktop. This shows that our protocol makes large-scale
privacy-preserving joint database search feasible for non-
real-time applications with minimal hardware cost. When
σ = 160 (effectively, σ = ∞ by first hashing elements to
160-bit strings using SHA-1), our results (see Figure 11)
show that the time and bandwidth costs for SCS-WN and
PWC will be about 5 times larger. Performance of the
SCS-HE protocol, however, would be much less affected
because the cost of HE-based shuffling, which dominates
the cost of the protocol, is not affected by increasing σ

from 32 to 160.

7.3 Comparison
To compare our protocols to the PSI protocols of De
Cristofaro and Tsudik [10], which are the fastest known
PSI protocols, we implemented their protocols in Java 1.6
and measured their performance using the same hardware
and software settings as we do with our own prototypes.3

We ran experiments for various security levels ranging
from ultra-short (≈80-bit effective security) to ultra-long
(≈256-bit effective security). Our security parameters are
based on NIST’s guidelines for key management [2], sum-
marized in Table 2. When we vary the security level, we
change accordingly (1) the parameters for the asymmet-
ric operations uses by the Naor-Pinkas OT; (2) the sta-
tistical security parameter used for OT extension; (3) the
bit length of the wire labels; and (4) the cryptographic
hash algorithms (SHA-1 is used in ultra-short, short, and
medium term security settings while SHA-256 is used in
long and ultra-long term security settings).

Figure 11 compares the performance of the fastest PSI
protocol given by De Cristofaro and Tsudik4 and our SCS-
WN protocol, running on two sets of size 1024 whose el-
ements are represented using either 32 or 160 bits. Be-
cause of the asymmetric operations, the running time of
the De Cristofaro-Tsudik protocol is independent of σ in
this range. As mentioned at the beginning of Section 7,
the SCS-WN results do not include the one-time setup
time for each client-server pair which would add about
two seconds to the first protocol execution for each pair
of participants. There is no comparable setup for the De
Cristofaro and Tsudik protocols.

For σ = 32, our protocol is always comparable to or
more efficient than theirs. For σ = 160, our protocol
is competitive with theirs for all security levels, already

3De Cristofaro and Tsudik kindly provided us with their C implemen-
tation used to obtain experimental results for their protocols. However,
they did not implement their designs as client/server protocols; instead,
they implemented all steps within a single process. This makes it diffi-
cult to make direct comparisons with their results. Hence, we built our
own implementation of their designs as a protocol using the same tools
as are used in our garbled circuit framework.

4Taking total running time into account, their one-more-DL-based
protocol runs faster than their one-more-RSA-based protocol. The latter
may be faster, however, when some work can be pushed into an offline
stage.

Year
(valid
until)

Symmetric
key length

(bits)

Dlog Parameters
subgroup
size (bits)

field size
(bits)

ultra-short 2010 80 160 1024
short 2030 112 224 2048

medium > 2030 128 256 3072
long � 2030 192 384 7680

ultra-long ≫ 2030 256 512 15360

Table 2: Key lengths recommended by NIST [2].

12

128 256 512 1024 2048 4096 8192

1

10

100

1000

10000

Set Size

Ti
m
e
(s
e
co
n
d
s)

(a) Running Time

128 256 512 1024 2048 4096 8192

1

10

100

1000

10000

100000

Set Size

B
an

d
w

id
th

 (
M

B
)

(b) Bandwidth

Fig. 10: Large sets, σ = 32

10.9
62.4

126.0

369.0

1972.0

51.5 57.1 61.5 97.3 122.7
10.5 11.8 12.4 18.6 22.7

0

200

400

600

800

1000

1200

1400

1600

1800

2000

ultra-short short medium long ultra-long

Ti
m

e
 (

se
co

n
d

s)

[DT10] One-more-DL-based

SCS-WN (σ=160)

SCS-WN (σ=32)

Fig. 11: Comparision of SCS-WN and De Cristofaro-Tsudik protocol [10], n = 1024.
SHA-1 is used for ultra-short to medium term security. SHA-256 is used for long and ultra-long term security.

Exponentiations
Modular Inverses Modular Mults. SHAshort

exponents
medium

exponents
long

exponents
DT’s one-more-DL-based – 5000 – 2049 4096 2048∗

DT’s one-more-RSA-based 1024 – 2048 1024 1024 2048∗

SCS-WN – 3k† – 2k† 2k† 18.34 M‡

Table 3: Number of expensive cryptographic operations, for n = 1024 and σ = 160.
[†] k is the security parameter used in OT extension, which ranges from 80 (for ultra-short) to 256 (for ultra-long).
[∗] The input messages are about p bits where p is the bit length of the asymmetric operations field size.
[‡] The input messages are about 2σ bits.

slightly better at the short security level, and significantly
better (by more than a factor of 10) at the highest secu-
rity level. However, the SCS-WN protocol does consume
more bandwidth (147–470 MB, depending on the security
level) than their protocols (0.4–2.0 MB).

Since the timing results are sensitive to the implemen-
tations of particular cryptographic operations, we also cal-
culate the numbers of expensive cryptographic operations

required by each protocol. (Table 1 from the introduction
summarizes algebraically the number of gates needed for
each of our protocols.) Table 3 summarizes the number of
cryptographic operations required for each protocol. The
small number of asymmetric operations used in garbled-
circuit protocols is due to the operations for setting up the
OT extension protocol, which only depend on the secu-
rity parameters and can be precomputed offline once for

13

each pair of protocol participants. The relatively high cost
of asymmetric operations compared to symmetric encryp-
tions means that even though SCS-WN requires approx-
imately 2000 times the number of operations, the actual
running time is lower or comparable for typical imple-
mentations.

8 Conclusion

Private set intersection is a useful building block for many
privacy-preserving applications. Our results show that
protocols based on generic secure computation can of-
fer performance that is competitive with the best known
custom protocols, without the need to rely on application-
specific techniques. Since our protocols are built using
generic garbled circuits they can be easily incorporated
into larger secure-computation protocols, or combined
with auditing mechanisms. Our work provides evidence
that many secure computation problems can be solved
without resorting to the design of custom protocols.

Availability
Our framework implementation and all protocol imple-
mentations are available under an open source license at
http://www.MightBeEvil.com.

Acknowledgments
This work was supported by grants from the National Sci-
ence Foundation, DARPA, and Air Force Office of Scien-
tific Research. The authors thank Nikita Borisov for his
very useful and insightful comments. We thank Emiliano
De Cristofaro and Yanbin Lu for sharing their PSI source
code and answering our questions about their implemen-
tation. We also thank Peter Chapman, Yikan Chen, Dawn
Song, David Wagner, and Samee Zahur for valuable dis-
cussions about this work.

References

[1] M. Ajtai, J. Komlós, and E. Szemerédi. An
O(n logn) sorting network. In ACM Symposium on
Theory of Computation (STOC), 1983.

[2] E. Barker, W. Barker, W. Burr, W. Polk, and
M. Smid. NIST Special Publication 800-57:
Recommendation for Key Management — Part 1,
March 2007.

[3] K. E. Batcher. Sorting networks and their
applications. In Spring Joint Computer Conference.
ACM, 1968.

[4] M. Bellare, C. Namprempre, D. Pointcheval, and
M. Semanko. The one-more-RSA-inversion
problems and the security of Chaum’s blind
signature scheme. Journal of Cryptology,
16(3):185–215, 2003.

[5] V. E. Benes̆. Mathematical Theory of Connecting
Networks and Telephone Traffic. Academic Press,
New York, 1965.

[6] D. Bogdanov, S. Laur, and J. Willemson.
Sharemind: A framework for fast
privacy-preserving computations. In European
Symposium on Research in Computer Security
(ESORICS), 2008.

[7] J. Camenisch and G. Zaverucha. Private
intersection of certified sets. In Financial
Cryptography, 2009.

[8] D. Dachman-Soled, T. Malkin, M. Raykova, and
M. Yung. Efficient robust private set intersection.
In Applied Cryptography and Network Security
(ACNS), 2009.

[9] E. De Cristofaro, J. Kim, and G. Tsudik.
Linear-complexity private set intersection protocols
secure in malicious model. In ASIACRYPT, 2010.

[10] E. De Cristofaro and G. Tsudik. Practical private
set intersection protocols with linear complexity. In
Financial Cryptography, 2010.

[11] M. J. Freedman, K. Nissim, and B. Pinkas. Efficient
private matching and set intersection. In
EUROCRYPT, 2004.

[12] O. Goldreich. Foundations of Cryptography, vol. 2:
Basic Applications. Cambridge University Press,
2004.

[13] M. T. Goodrich. Randomized Shellsort: A simple
oblivious sorting algorithm. In ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2010.

[14] C. Hazay and Y. Lindell. Efficient protocols for set
intersection and pattern matching with security
against malicious and covert adversaries. In Theory
of Cryptography Conference (TCC), 2008.

[15] C. Hazay and K. Nissim. Efficient set operations in
the presence of malicious adversaries. In Intl.
Workshop on Public-Key Cryptography (PKC),
2010.

[16] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider,
and I. Wehrenberg. TASTY: Tool for automating
secure two-party computations. In ACM Conference
on Computer and Communications Security, 2010.

14

[17] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster
secure two-party computation using garbled
circuits. In USENIX Security Symposium, 2011.

[18] U. Inria, S. Antipolis, B. Beauquier, B. Beauquier,
E. Darrot, E. Darrot, and P. Sloop. On arbitrary
Waksman networks and their vulnerability.
Research Report 3788, INRIA, 1999.

[19] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank.
Extending oblivious transfers efficiently. In
CRYPTO, 2003.

[20] S. Jarecki and X. Liu. Fast Secure Computation of
Set Intersection. In Security and Cryptography for
Networks (SCN), 2010.

[21] S. Jarecki and V. Shmatikov. Efficient two-party
secure computation on committed inputs. In
Eurocrypt, 2007.

[22] S. Jha, L. Kruger, and V. Shmatikov. Towards
practical privacy for genomic computation. In IEEE
Symposium on Security & Privacy, 2008.

[23] K. V. Jónsson, G. Kreitz, and M. Uddin. Secure
multi-party sorting and applications. In Applied
Cryptography and Network Security (ACNS), 2011.

[24] L. Kissner and D. Song. Privacy-preserving set
operations. In CRYPTO, 2005.

[25] V. Kolesnikov, A.-R. Sadeghi, and T. Schneider.
Improved garbled circuit building blocks and
applications to auctions and computing minima. In
International Conference on Cryptology and
Network Security (CANS), 2009.

[26] V. Kolesnikov and T. Schneider. Improved garbled
circuit: Free XOR gates and applications. In
International Colloquium on Automata, Languages
and Programming (ICALP), 2008.

[27] V. Kolesnikov and T. Schneider. A practical
universal circuit construction and secure evaluation
of private functions. In Financial Cryptography,
2008.

[28] Y. Lindell and B. Pinkas. An efficient protocol for
secure two-party computation in the presence of
malicious adversaries. In EUROCRYPT, 2007.

[29] Y. Lindell and B. Pinkas. A proof of security of
Yao’s protocol for two-party computation. J.
Cryptology, 22(2):161–188, 2009.

[30] Y. Lindell and B. Pinkas. Secure two-party
computation via cut-and-choose oblivious transfer.
In Theory of Cryptography Conference, 2011.

[31] Y. Lindell, B. Pinkas, and N. P. Smart.
Implementing two-party computation efficiently
with security against malicious adversaries. In
Security and Cryptography for Networks (SCN),
2008.

[32] L. Malka and J. Katz. VMCrypt — modular
software architecture for scalable secure
computation. Available at
http://eprint.iacr.org/2010/584.

[33] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella.
Fairplay — a secure two-party computation system.
In USENIX Security Symposium, 2004.

[34] M. Naor and B. Pinkas. Efficient oblivious transfer
protocols. In ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2001.

[35] M. Osadchy, B. Pinkas, A. Jarrous, and
B. Moskovich. SCiFI: A system for secure face
identification. In IEEE Symposium on Security &
Privacy, 2010.

[36] B. Pinkas, T. Schneider, N. P. Smart, and S. C.
Williams. Secure two-party computation is
practical. In ASIACRYPT, 2009.

[37] C. Shen and A. Shelat. Two-output secure
computation with malicious adversaries. In
EUROCRYPT, 2011.

[38] A. Waksman. A permutation network. J. ACM,
15:159–163, 1968.

[39] A. C. Yao. How to generate and exchange secrets.
In Annual Symposium on Foundations of Computer
Science (FOCS), 1986.

15

