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Abstract—Machine learning is widely used to develop classi-
fiers for security tasks. However, the robustness of these methods
against motivated adversaries is uncertain. In this work, we
propose a generic method to evaluate the robustness of classifiers
under attack. The key idea is to stochastically manipulate a
malicious sample to find a variant that preserves the malicious
behavior but is classified as benign by the classifier. We present
a general approach to search for evasive variants and report on
results from experiments using our techniques against two PDF
malware classifiers, PDFrate and Hidost. Our method is able to
automatically find evasive variants for both classifiers for all of
the 500 malicious seeds in our study. Our results suggest a general
method for evaluating classifiers used in security applications, and
raise serious doubts about the effectiveness of classifiers based
on superficial features in the presence of adversaries.

I. INTRODUCTION

Machine learning models are popular in security tasks such
as malware detection, network intrusion detection and spam
detection. From the data scientists’ perspective, these models
are effective since they achieve extremely high accuracy on
test datasets. For example, Dahl et al. reported achieving
99.58% accuracy in classifying Win32 malware using an
ensemble deep neural network with dynamic features [9].
Šrndic et al. achieved over 99.9% accuracy in a PDF malware
classification task using an SVM-RBF model with structural
path features [28].

However, it is important to realize that these results are for
particular test datasets. Unlike when machine learning is used
in other fields, security tasks involve adversaries responding to
the classifier. For example, attackers may try to generate new
malware deliberately designed to evade existing classifiers.
This breaks the assumption of machine learning models that
the training data and the operational data share the same
data distribution. As a result, it is important to be skeptical
of machine learning results in security contexts that do not
consider attackers’ efforts to evade the generated models.

The risk of evasion attacks against machine learning mod-
els under adversarial settings has been discussed in the ma-
chine learning community, mainly focused on simple models
for spam detection (e.g., [10, 18]). However, evasion attacks
against malware classification can be much more complex in
terms of the classification algorithm and the feature extrac-
tion as well as the mutability of highly-structured samples.
Consequently, though evading malware classifiers has been
partially explored by classifier authors as well as security
researchers, previous studies significantly under-estimate the
attackers’ ability to manipulate samples. For example, previous
studies may mistakenly assume the attackers can only insert
new contents because removing existing contents would easily
corrupt maliciousness [4, 20, 28]. In addition, previous works
are ad hoc and limited to particular target classifiers or specific

types of samples [20, 29]. Other than suggesting point solu-
tions, they do not provide methods to automatically evaluate
the effectiveness of a classifier against adaptive adversaries.

We present a generic method to assess the robustness of a
classifier by simulating attackers’ efforts to evade the classifier.
We do not assume the adversary has any detailed knowledge of
the classifier or the features it uses, or can use targeted expert
knowledge to manually direct the search for an evasive sample.
Instead, drawing ideas from genetic programming (GP) [11,
15], we perform stochastic manipulations and then evaluate
the generated variants to select promising ones. By repeating
this procedure iteratively, we aim to generate evasive variants.
A sophisticated attacker, of course, can do manipulations that
would not be found by a stochastic search, so we cannot claim
that a classifier that resists such an attack is necessarily robust.
On the other hand, if the automated approach finds evasive
samples for a given classifier, it is a clear sign that the classifier
is not robust against a motivated adversary.

We evaluated the proposed method on two PDF malware
classifiers, and found that it could automatically find evasive
variants for all the 500 sample seeds selected from the Con-
tagio PDF malware archive [5]. The evasive variants exhibit
the same malicious behaviors as the original samples, but
are sufficiently different in the classifier’s feature space to be
classified as benign by the machine learning-based models.

Our analysis of the discovered evasive variants reveals that
both classifiers are vulnerable because they employ non-robust
features, which can be manipulated without disrupting the
desired malicious behavior. Superficial features may work well
on test datasets, but if the features used to classify malware
are shallow artifacts of the training data rather than intrinsic
properties of malicious content, it is possible to find ways to
preserve the malicious behavior while disrupting the features.

Contributions. Our primary contributions involve developing
and evaluating a general method for automatically finding
variants that evade classifiers. In particular:

• We propose a general method to automatically find
evasive variants for target classifiers. The method
does not rely on any specific classification algorithms
or assume detailed knowledge of feature extraction,
but only needs the classification score feedback on
generated variants and rough knowledge of the likely
features used by the classifier (Section II).

• We implement a prototype system that automatically
finds variants that can evade structural feature-based
PDF malware classifiers. This involves designing op-
erators that perform stochastic manipulations on PDF
files, an oracle that determines if a generated variant



preserves maliciousness, a selection mechanism that
promotes promising variants during the evolutionary
process, and a fitness function for each target classifier
(Section IV).

• We evaluate the effectiveness of our system in evading
two recent PDF malware classifiers: PDFrate [25] and
Hidost [28], a classifier designed with the explicit goal
of resisting evasion attempts. Our system achieves
100% success rates in finding evasive variants against
both classifiers in an experiment with 500 malware
sample seeds. An analysis of the discovered evasive
variants in the feature space of each classifier shows
that many non-robust features employed in the classi-
fication facilitate evasion attacks (Sections V and VI).

We provide background on machine learning classifiers in
Section II and on PDF malware in Section III. Section VIII
discusses related work on evasion attacks.

II. OVERVIEW

We propose an automated method to simulate an attacker
attempting to find an evasive variant for a desired malware
sample which is detected by a target classifier. The attacker’s
goal is to find a malware variant that preserves the malicious
behavior of the original sample, but that is misclassified as
benign by the target classifier. In addition to improving our
understanding of how classifiers work in the presence of
adaptive adversaries, we hope our results will lead to strategies
for constructing classifiers that are more robust to adversaries,
but in this work we focus on assessing evadability.

A. Machine Learning Classifiers

Machine learning learns from and makes predictions on
data. A machine learning-based classifier attempts to find a
hypothesis function f that maps data points into different
classes. For example, a malware classification system would
find a hypothesis function f that maps a data point (a piece
of malware sample) into either benign or malicious.

The effort to train a machine learning system starts with
feature extraction. As most machine learning algorithms cannot
operate on highly-structured data, the data samples are usually
represented in a specially-designed feature space. For example,
a malware classifier may extract the file size and the function
call traces as features. Each feature is a dimension in the
feature space; consequently, every sample is represented as
a vector. An extra step of feature selection may be performed
to reduce the number of features when the number of features
is too large for the classification algorithm.

The most widely used machine learning algorithms in
security tasks use supervised learning, in which the training
dataset comes with labels identifying the class of every training
sample. The hypothesis function f is trained to minimize
the prediction error on the training set. This function usually
results in a low error rate on the operational data under the
stationarity assumption that the distribution over data points
encountered in the future will be the same as the distribution
over the training set.

Machine learning has produced impressive results and is
widely deployed for specific security tasks including malware

classification. Without examining the behavior of suspicious
malware in a real system, malware classifiers often employ
static properties to predict maliciousness such as the file
structure, file size, metadata, grams of tokens or system
calls. Although this approach often achieves high accuracy
in validation tests, the classifier may learn properties that are
superficial artifacts of the training data, rather than properties
that are inherently associated with malware. This is because
malware samples in the training data are likely to differ from
the benign samples in many ways that are not essential to their
malicious behavior.

B. Threat Model

We assume an attacker starts with a desired malicious
sample that is (correctly) classified by a target classifier
as malicious, and wants to create a sample with the same
malicious behavior, but that is misclassified as benign. The
attacker is capable of manipulating the malicious sample in
many ways, and is likely to have knowledge of samples that
are (correctly) classified as benign.

We assume the attacker has black-box access to the target
classifier, and can submit many variants to that classifier. For
each submitted variant, the attacker learns its classification
score. The classification score is a number (typically a real
number between 0 and 1) that indicates the classifier’s predic-
tion of maliciousness, where values above some threshold (say
0.5) are considered malicious and samples with lower classi-
fication scores are considered benign. We do not assume the
attacker has any internal information about the classifier, only
that it can use it as a black-box that outputs the classification
score for an input sample. We assume the classifier operator
does not adapt the classifier to submitted variants (which must
be the case if the attacker has offline access to the classifier).

C. Finding Evasive Samples

Our method uses genetic programming techniques to per-
form a directed search of the space of possible samples to
find ones that evade the classifier while retaining the desired
malicious behavior.

Genetic programming (GP) is a type of evolutionary al-
gorithm, originally developed for automatically generating
computer programs tailored to a particular task [11, 15]. It
is essentially a stochastic search method using computational
analogs of biological mutation and crossover to generate vari-
ants, and modeling Darwinian selection using a user-defined
fitness function. Variants with higher fitness are selected for
continued evolution, and the process continues over multiple
generations until a variant with desired properties is found (or
the search is terminated after exceeding a resource bound).
Genetic programming has been shown to be effective in many
tasks including fixing legacy software bugs [17], software
reverse engineering [13], and software re-engineering [23].

Method. Our procedure is illustrated in Figure 1. It starts with
a seed sample that exhibits malicious behavior, and is classified
as malicious by the target classifier. Our method aims to find
an evasive sample that preserves the malicious behavior but is
misclassified as benign by the target classifier.
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Fig. 1. Generic classifier evasion method.

First, we initialize a population of variants by performing
random manipulations on the malicious seed. Then, each
variant is evaluated by a target classifier as well as an oracle.
The target classifier is a black box that outputs a number that
is a measure of predicted maliciousness of an input sample.
There is a prescribed threshold used to decide if it is malicious
or benign. The oracle is used to determine if a given sample
exhibits particular malicious behavior. In most instantiations,
the oracle will involve expensive dynamic tests.

A variant that is classified as benign by the target classifier,
but found to be malicious by the oracle, is a successful evasive
sample. If no evasive samples are found in the population,
a subset of the generated variants are selected for the next
generation based on a fitness measure designed to reflect
progress towards finding an evasive sample. Since it is unlikely
that the transformations will re-introduce malicious behaviors
into a variant, corrupted variants that have lost the malicious
behavior are replaced with other variants or the original seed.

Next, the selected variants are randomly manipulated by
mutation operators to produce next generation of the popula-
tion. The process continues until an evasive sample is found
or a threshold number of generations is reached.

To improve the efficiency of the search, we collect traces
of the mutation operations used and reuse effective traces. If
a search ends up finding any evasive variants, the mutation
traces on the evasive variants will be stored as successful
traces. Otherwise, the mutation trace of a variant with the
highest fitness score is stored. These traces are then applied to
other malware seeds to generate variants for their population
initialization. Because of the structure of PDFs and the nature
of the mutation operators, the same sequence of mutations can
often be applied effectively to many initial seeds.

III. PDF MALWARE AND CLASSIFIERS

This section provides background on PDF malware and the
two target PDF malware classifiers.

A. PDF Malware

The Portable Document Format (PDF) is a popular docu-
ment format designed to enable consistent content and layout
in rendering and printing on different platforms. Although it
was not openly standardized until 2008 [1], and there are

1 0 obj <<
  /Type /Catalog
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Fig. 2. The physical and logical structure of a PDF file.

various non-standard extensions supported by different PDF
reader products, all PDF files roughly share the same basic
structure depicted in Figure 2.

A PDF file consists of four parts: header, body, cross-
reference table (CRT) and trailer. The header contains the
PDF magic number and a format version indicator. The body
is a set of PDF objects that comprise the content of the file,
while the CRT indexes the objects in body. The trailer specifies
how to find the CRT and other special objects such as the root
object. Thus, PDF readers typically start reading a PDF from
the end of the file for efficiency.

The body is the most important to a PDF since it holds
almost all the visible document data. It contains eight basic
types of objects, namely Booleans, numbers, strings, names,
arrays, dictionaries, streams and the null objects. The objects
can be labeled with a pair of integer identifiers as indirect
objects so that they can be referenced by other objects. The
inter-referencing objects form a tree-like logical structure, as
is shown in the right of Figure 2. This tree-like structure is
ideally suited to genetic programming techniques since it is
easy to alter and move sub-trees to generate new variants.

PDF malware is becoming increasing prevalent because
PDF is a widely accepted document format and victims are
more willing to open PDFs than other files. According to a
recent Internet security threat report [30], PDF is in top 7
attachment types in spear-phishing emails in 2014. We expect
there will be continuing opportunities for PDF malware attacks
because 128 new vulnerabilities in Acrobat readers have been
reported in CVE so far in 2015 (through 8 December), which
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is almost three times the total number in 2014 [8].

PDF malware typically contains exploits in JavaScript
objects or other objects that take advantage of vulnerabilities
of particular PDF readers (most commonly, Adobe Acrobat).
PDF malware may also carry other encoded payloads in stream
objects which will be triggered after exploits [25].

B. Target Classifiers

Several projects have built PDF malware classifiers using
machine learning techniques. Earlier works, such as Wepawet
[7] and PJScan [16], focused on the embedded malicious
JavaScript in PDF malware. These tools consist of a JavaScript
code extractor and a dynamic or static malicious JavaScript
classifier.

Since not all PDF malware involves embedded JavaScript,
and PDF malware authors have found many tricks for hiding
JavaScript code [24], recent PDF malware classifiers have
focused on structural features of PDF files. In this work, we
target state-of-the-art structural feature-based classifiers.

Structural feature-based classifiers assume that the mali-
cious PDFs have different patterns in their internal object
structures than those found in benign PDFs. For example,
the PDF Malware Slayer tool uses the object keywords as
features, where each feature corresponds to the occurrences
of a given keyword [19]. For our experiments, we selected
PDFrate [25, 26] and Hidost [28] as the target classifiers.
They are representatives of recent PDF malware classifiers,
and Hidost was developed with a particular goal of being
resilient to evasion attacks. Both classifiers achieve extremely
high accuracy in malware detection on their testing datasets.
The other reason for choosing these classifiers as our targets is
the availability of the open source implementations. Although
our method only requires black-box access to the classifier,
having access to the internal feature space is beneficial for
understanding our results (Section VI).

PDFrate. PDFrate is a random forest classifier that uses an
ensemble learning model consisting of a large number of de-
cision trees designed to reduce variance in predictions. With a
random subset of training data and a random subset of features,
each decision tree is trained to minimize the prediction error on
its training subset. After training, the output score of PDFrate
is the fraction of trees that output “malicious”, ranging from 0
to 1. The threshold value is typically 0.5, although the PDFrate
authors claim that adjusting the threshold from 0.2 to 0.8 has
little impact on accuracy because most samples have scores
very close to either 0 or 1.

Besides object keywords, PDFrate also employs the PDF
metadata and several properties of objects as the classification
features. The PDF metadata includes the author, title, and
creation date. The object properties includes positions, counts,
and lengths.

PDFrate was trained with a random subset of the Contagio
dataset [5] with 5,000 benign and 5,000 malicious PDFs. The
two parameters are respectively the number of trees (ntree =
1,000) and the number of features in each tree (mtry = 43).
The feature set is a total of 202 integer, floating point, and
Boolean features, but only 135 of the features are described in
the PDFrate documentation.

What we use in this work is an open-source re-
implementation of PDFrate named Mimicus [27], implemented
by Nedim Šrndic and Pavel Laskov to mimic PDFrate for
malware evasion experiments [29]. Mimicus was trained with
the 135 documented PDFrate features and the same training set
as PDFrate.1 Mimicus has been shown to have classification
performance nearly equivalent to PDFrate [29].

Hidost. Hidost is a support vector machine (SVM) classifi-
cation model. SVM is an optimal margin classifier that tries
to find a small number of support vectors (data points) that
separate all data points of two classes with a hyperplane of a
high-dimensional space. With kernel tricks, it can be extended
as a nonlinear classifier to fit more complex classification
problems. Hidost uses a radial basis function (RBF) kernel to
map data points into an infinite dimensional space. At testing
time, the (positive or negative) distance of a data point to
the hyper-plane is output as the prediction result. A positive
distance is interpreted as malicious, and negative as benign.

Hidost uses the structural paths of objects as classification
features. For example, the structural path of a typical Pages
object is /Root/Pages. If that object appears in the PDF file,
its feature value is 1; if not, its feature value is 0. Since the
number of possible structural paths of PDF objects is infinite,
Hidost uses 6,087 selected paths as features. The selected paths
are those which appeared in at least 1,000 of the files in a
pool of 658,763 benign and malicious PDFs collected from
VirusTotal [31] and a Google search. The resulting model
provided by the authors of Hidost was trained using the
randomly-sampled 5,000 malicious and 5,000 benign files. It is
reported to be robust against adversaries, where the number of
false negatives on another 5,000 random malicious files only
increased from 28 to 30 under what the authors claim is the
“strongest conceivable mimicry attack” [28].

IV. EVADING PDF MALWARE CLASSIFIERS

The proposed method could be applied to any security
classifier, although its effectiveness depends on being able to
find good genetic programming operators to search the feature
space efficiently and an appropriate fitness function to direct
the search. In this section, we show how to instantiate our
design to find evasive PDF malware.

A. PDF Parser and Repacker

The first step is to parse the PDF file as a tree-like
representation. We will also need to regenerate a PDF file from
the tree representation, after it has been manipulated to produce
a new variant. For this, we use pdfrw [21], a python-based open
source library for parsing PDF files into the tree-like structure
and serializing that structure into an output PDF file.

It is important to note that pdfrw is not a perfect PDF
parser and repacker, and a number of PDF malware samples
have been malformed intentionally to bypass or confuse PDF
parsers used in malware detectors (while still being processed
by target PDF readers due to parser quirks). This means we
cannot test our method on PDF seed samples that cannot be

1The Mimicus authors were unable to locate one malicious file with the
MD5 hash 35b621f1065b7c6ebebacb9a785b6d69 in Contagio.
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parsed by pdfrw, or that no longer exhibit malicious behavior
when they are unpacked and packed using pdfrw.

To avoid losing too many samples because of PDF parsing
issues, we modified pdfrw to loosen its grammar checking.
This significantly increased the success rate of repacking PDF
malware samples. The modified version of pdfrw is available
at https://github.com/mzweilin/pdfrw.

In our modified pdfrw, we ignore several potentially cor-
rupted, malformed, or misleading auxiliary elements. The EOF
marks in PDF raw bytes are ignored; instead, the parser
reads in all bytes of a file. The cross-reference tables are
ignored; instead, it parses objects in the body directly without
any index. Stream length indicators are ignored; instead, the
parser detects the stream length with the endstream token.
The unpaired keys or values are also ignored in parsing
a dictionary. Ignoring these auxiliary elements significantly
decreases parsing efficiency, thus, is only suitable for repacking
seed malware samples. All seeds are repacked with correct
auxiliary elements for efficient parsing later. In addition, we
added support for parsing empty objects, which do exist in the
malware samples. The dictionary data structure was modified
to enable deep-copy in duplicating variants from seeds.

B. Genetic Operators

Since both of the classifiers we target employ the object
structure of the PDF file as features, we need to generate
variants by manipulating the PDF files at that level. (If we were
targeting JavaScript-based classifiers instead, we would instead
need to generate variants by manipulating the embedded
JavaScript code.) Due to the limited number of possible static
features, we believe it is reasonable to assume the attackers
have the knowledge of the manipulation level.

We use computational analogs of mutation in biological
evolution to generate evasive PDF malware variants. The
mutation operator changes any object in a PDF file’s tree-
like structure with low probability. An object is mutated with
probability given by the mutation rate, typically a number
smaller than 0.5. The mutation is either a deletion (the object
is removed), an insertion (another object is inserted after it), or
a replacement (this object is replaced with some other object).

We choose among these options with uniform random
probability. In the case of an insertion or replacement, a second
object is also chosen uniformly at random from a large pool
of objects segmented from benign PDFs. The external genome
helps to generate a more diverse population.

The other well-known operator, crossover, commonly used
in genetic algorithms, is not used in this work. We found it
was possible to achieve an 100% evasion rate only using the
simple mutation operations.

C. Oracle

We need an oracle to determine if a variant preserves
the seed’s malicious behavior. There is no perfectly accurate
malware detection technique that works universally (indeed, if
such a technique existed our work would not be necessary). In
this case we have one advantage that enables a highly-accurate
oracle for testing variants: we do not need an oracle that can
test for arbitrary malicious behavior, but instead only need to

Fig. 3. A PDF malware detection result given by the Cuckoo sandbox. The
left side shows the key API execution trace, the right is a screenshot captured
from the virtual machine.

verify that a particular known malicious action is performed
by the variant.

To do this, we use the Cuckoo sandbox [12]. Cuckoo
runs a submitted sample in a virtual machine installed with
a PDF reader and reports the behavior of the sample including
network APIs called and their parameters. Figure 3 shows
an example of malware detection results from Cuckoo. The
malware sample opened in a virtual machine exploited a dis-
closed buffer overflow vulnerability in Acrobat Readers (CVE-
2007-5659). The injected shellcode downloads four additional
pieces of malware from Internet and executes them. Since the
execution of Cuckoo was isolated from the Internet to avoid
spreading malware, the shellcode just received malformed
executable files provided by INetSim, a network service simu-
lator [14]. However, the downloading and execution behaviors
detected by Cuckoo are enough to show that the shellcode
has been executed. By comparing the behavioral signature of
the original PDF malware and the manipulated variant, we
determine if the original malicious behavior is preserved. The
details on how we select and compare behavioral signatures
are deferred to Section V-A.

We only focus on the network behaviors of malware sam-
ples in this work. Although this setting prevents our method
from working on malware samples without network activity,
we believe it is not a real constraint in practice since malware
authors could always develop a way to verify the desired
malicious behaviors.

Cuckoo sandbox works well as an oracle, but is com-
putationally expensive. We experimented with other possible
oracles, including using Wepawet. Wepawet and similar de-
tection techniques only detect the malicious payloads, but do
not verify that the payload is actually executed in a real PDF
reader. Because many of the genetic mutations will disrupt that
execution, oracles that do not actually dynamically observe the
variant exhibiting the malicious behavior result in many false
positives (apparently evasive variants that would not actually
work as malware). Hence, it is important to use an oracle
that confirms the malicious behavior is preserved through
actual execution. This limits the samples we can use in our
experiments to ones for which we can produce the malicious
behavior in our oracle’s test environment (Section V-A).

D. Fitness Function

A fitness function gives the fitness score of each generated
variant. Higher scores are better. Given 0 as a threshold value,
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a variant with a positive fitness score is evasive: it is classified
as benign and retains the malicious behavior.

In our case, the fitness function captures both the output
of the oracle and the predicted result of the target classifier.
The oracle is modeled as a binary function: oracle(x) = 1 if
x exhibits the malicious signature; otherwise, oracle(x) = 0.
In order to eliminate corrupted variants, we always assign the
lowest possible fitness score to variants with oracle(x) = 0.

Based on the different scoring methods used by the target
classifiers, the fitness functions are defined separately. PDFrate,
as a random forest classifier, outputs a confidence value of
maliciousness from 0 to 1, typically with a threshold of 0.5.
Thus, we define its fitness function as

fitnesspdfrate(x) =
{

0.5−pdfrate(x) oracle(x) = 1
LOW SCORE oracle(x) = 0

with evasive range of (0,0.5].

The SVM model of Hidost outputs negative (positive) dis-
tance of a benign (malicious) sample to hyperplane. Therefore,
for Hidost the fitness function is defined as

fitnesshidost(x) =
{

hidost(x)× (−1) oracle(x) = 1
LOW SCORE oracle(x) = 0

with evasive range of (0,+∞).

E. Selection

A selection process in GP can be as simple as always
selecting variants with higher fitness scores in a generation.
However, it might happen that very few or even none of the
variants in a generation preserve the malicious behavior during
the evolutionary process. If the malicious behavior is lost from
the population, it is very unlikely the GP will ever find an
evasive sample that exhibits the original malicious behavior.

In order to avoid degeneration in the population, we
designed a replacement mechanism in addition to the naı̈ve
selection process. The corrupted variants, which are judged
by the oracle as non-malicious, are assigned the lowest fitness
score (LOW SCORE) and are replaced by either the original
malicious PDF, the best variant found so far, or the best
variant found in the previous generation. We choose among
these options with uniform random probability when corrupted
variants occur, which ensures that a fixed number of variants
are retained in each generation.

F. Trace Collection and Replay

The most common way to initialize a population is du-
plicating the original seed and performing a random mutation
operation on each copy. Considering the potentially common
properties across evasive variants, we accelerate the search
by reusing mutation traces that successfully led to evasive or
promising variants.

A mutation trace consists of a series of mutations defined
by 3-tuple (mutation operator, target object path, file id: source
object path). For example,

(insert, /Root/Pages/Kids/1, 1: /Root/Pages/Kids/4)

inserts an external Page object from a benign file 1 to the
targeted PDF file. The three possible mutation operators are
defined in Section IV-B. Though the target object path has
the same format as the source object path, they are paths in
different PDF files. The target object path refers to an object
in the variant, while the source object path points to an object
in an external benign file with the specified file id.

Mutation traces are added to two pools at the end of
each GP search. If a GP search successfully generates evasive
variants, all of the corresponding mutation traces are added
to the success trace pool. Otherwise, a mutation trace that
generates the variant with the highest fitness score is added to
the promising trace pool.

The traces in the two pools are replayed in the population
initialization to produce some variants for the first generation.
If the number of usable traces is smaller than the population
size, additional variants are generated in the conventional way.
If the number is larger than the population size, the selection
process described in Section IV-E shrinks the population to the
specified size.

V. EXPERIMENT

We evaluate the effectiveness of the proposed method
by conducting experiments on the two target PDF malware
classifiers.

A. Dataset and Experiment Setup

We started with the 10,980 PDF malware samples in the
Contagio archive [5], from which we selected 500 suitable
samples for evaluation. These samples are verified by the
oracle as exhibiting malicious behavior, are classified by both
target classifiers as malicious, and can be correctly repacked
by pdfrw.

Malicious PDF Dataset. Table I summarizes the sample
selection procedure.

First, we filtered out the samples that don’t have any
network API calls by the shell code analysis of Wepawet,
leaving 9,688 out of 10,980 samples. This is not necessary
for our method, but useful since we use Wepawet to obtain
additional information about the samples.

Second, the remaining samples were tested in the Cuckoo
sandbox. According to the vulnerability information of each
sample provided by Wepawet, Adobe Acrobat Reader 8.1.1 is
the most common target PDF reader, except for CVE-2009-
9837 which targets Foxit readers. Thus, these samples were
loaded with Acrobat Reader 8.1.1. However, not all network
behaviors indicated by the static analysis on shell code can be
observed in Cuckoo even though we have selected a targeted

TABLE I. SEED SELECTION.

Description Number
PDF Malware samples in Contagio 10,980
Samples with network API calls detected by Wepawet 9,688
Samples with network activities observed by Cuckoo 1,414
Unique samples correctly repacked by pdfrw 1,384
True positives of PDFrate 1,378
True positives of Hidost 502
Intersection of TPs in PDFrate and Hidost 500
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TABLE II. COMPARISON OF NETWORK-BASED MALWARE SIGNATURES.

Consistency
Source Description Example Effective Average Minimum

API traces Combination of HTTP URL requests and host
queries

[http://stortfordaircadets.org.uk/flash/exe.php?x=pdf,
stortfordaircadets.org.uk]

500 0.95 0.50

API traces Hosts queried through getaddrinfo() [stortfordaircadets.org.uk] 497 0.95 0.50
Network traffic Transport layer destination IP addresses (udp: [192.168.57.2:53], tcp: [192.168.57.2:80]) 476 0.85 0.10
API traces URLs requested through raw socket,

URLDownloadToFileW(), InternetOpenUrlA()
[http://stortfordaircadets.org.uk/flash/exe.php?x=pdf] 473 0.95 0.50

Network traffic DNS queries [stortfordaircadets.org.uk] 462 0.93 0.10
Network traffic HTTP URL requests [http://stortfordaircadets.org.uk/flash/exe.php?x=pdf] 460 0.93 0.10

PDF reader due to the imperfect network simulation in virtual
machines as well as the potential sandbox detection features
in malware. As a result, only 1,414 out of the 9,688 samples
were observed to have malicious network activities running on
Acrobat Reader 8.1.1 inside the Cuckoo sandbox.

Next, the 1,414 samples were repacked by the modified
pdfrw with less strict grammar checking, then re-tested by
Wepawet and Cuckoo. This resulted in 1,384 unique samples.
Eleven of the samples were corrupted during repacking and no
longer behaved maliciously in Wepawet or Cuckoo. The other
19 samples were found to be duplicates after being repacked.
This is a clear sign that malware authors have attempted to
evade detection through parsing obfuscation.

Since our goal is to evaluate the effectiveness of an evasion
attack, we need to filter out the false negative samples of
the target classifiers. PDFrate correctly classified 1,378 out of
the 1,384 samples as malicious, while Hidost only correctly
classified 502 of them. The intersection of the true positives
from both classifiers left a suitable evaluation set of 500 unique
PDF malware samples.

According to results from Wepawet, these 500 malware
samples exploit two different vulnerabilities in Acrobat Read-
ers: 333 of them exploit multiple buffer overflows reported in
CVE-2007-5659, the other 167 exploit a stack-based buffer
overflow reported by CVE-2009-0927. Both vulnerabilities
can be exploited to execute arbitrary code. In summary, the
payloads in the 500 samples access 255 different hosts to
download additional malware from the Internet.

The selection process leaves us with 500 samples from
the original 10,980 malware samples in the Contagio archive.
Although this selects less than 5% of the original samples, it
does not have implications for the success rate of a malware
author attempting to find an evasive sample so long as the
selection criteria have no biases which would impact our
results. Many of the down-selects are due to artifacts of the
experiment, not reflective of what an actual malware producer
would observe. For example, the most significant reduction
is because of the particular dynamic environment we selected
to verify the malicious behaviors. Malware authors can easily
design an oracle that verifies the presence of the particular
malicious behaviors they intend to inflict.

Reliable Malware Signatures. Since the dynamic behavior
of malware samples may vary across executions, we need to
select a reliable malware signature from a group of candidates.
Even though the malware is executing in the same virtual
environment, its behavior may be effected by the timing of
events, service failures, and other sources of non-determinism.

Focusing on the network behaviors of malware samples, we

may extract various network behaviors reported by Cuckoo as
signatures, such as DNS queries, HTTP URL requests, and
network destinations. Cuckoo generates these reports from the
network-related API execution traces and the captured network
traffic. Table II compares the effectiveness of six different types
of signatures extracted from Cuckoo reports.

We tested the 500 malware seeds in Cuckoo virtual ma-
chines, running each seed ten times. Our goal is to determine
which type of signature will have the best precision in captur-
ing observed malicious behavior, while being consistent across
multiple executions of the same sample.

If a signature extracts any relevant behavior for a seed in
any of the ten tests, we count the signature effective on the
seed. Obviously, an ideal signature would be effective on all
500 seeds. We also measure the consistency of a signature
over the 10 repeated tests. We designate the extracted behavior
observed most frequently over the ten tests as the reference
signature for a seed. The consistency on a seed is calculated
as mode

10 (that is, the fraction of times the reference signature
occurred across the 10 trials).

The average and the minimum consistency of each type of
signature over the ten executions for each of the 500 seeds are
listed in Table II. In general, the signatures extracted from API
traces are more consistent than those extracted from network
traffic. We choose the union of the HTTP URL requests and
host queries extracted from API traces as the signature for our
experiments. By combining those two behavioral signatures,
we obtain a signature that is effective on all 500 malware seeds
and has the highest average and minimum consistency.

Benign PDF Dataset. We collected a set of 179 benign PDF
documents using a Google search with filetype:pdf and no
keywords. All files were confirmed to be benign by both Virus-
Total [31] and Wepawet [7]. We only included files smaller
than 1 MB to avoid introducing unnecessary computation
costs manipulating extremely large PDF files. We picked the
3 benign samples with the lowest scores (that is, most benign)
to the target classifiers as the source of external objects in the
experiment. Our results show that just a few benign samples
is sufficient for generating successful evasion attacks.

GP Parameters. Several GP parameters are arbitrarily chosen
without any parameter fine-tuning other than one obvious
constraint: we want the experiment to finish in a reasonable
time. The population size is 48 and the maximum generation
is 20. The mutation rate is 0.1. The fitness stop threshold is
0.0, which indicates that an evasive variant has been found.

Target Classifiers. Since we don’t want to abuse the online
deployed malware classification systems by submitting too
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many automatically generated malware variants, we always
prefer locally executable code. We used the Mimicus re-
implementation of PDFrate and the Hidost classifier, config-
ured and trained as described in Section III-B.

Machine. We used one typical desktop PC in the experiment
(Intel Core i7-2600 CPU @ 3.40GHz and 32GB of physical
memory running 64-bit Ubuntu 14.04 Server). The Cuckoo
sandbox consists of 16 virtual machine instances running
Windows XP SP3 32 bit and Adobe Acrobat Reader 8.1.1. The
resources required to find evasive samples using our approach
are readily available.

VI. RESULTS

The GP-based method achieves surprisingly good results in
evading the two target classifiers. For both of the classifiers,
it is able to generate a variant that preserves the malicious
behavior but is classified as benign for all 500 seeds in our
test set. Our code and data are available under an open source
license from http://www.evadeML.org

A. PDFrate

After approximately one week of execution, the algorithm
found 72 effective mutation traces that generated 16,985 total
evasive variants for the 500 malware seeds (34.0 evasive
variants per seed in average), achieving 100% evasion rate in
attacking PDFrate.

Trace Analysis. All the mutation traces that generated evasive
variants were re-executed on all of the 500 seeds afterwards to
investigate the efficacy of each trace. Efficacy here measures
for how many of the malware seeds applying the given trace
produces an evasive variant.

The length of each mutation trace and its efficacy are
illustrated in Figure 4. The traces are sorted by trace ID, which
reflects the order in which traces are found. From the figure
we observe that the method generally finds longer mutation
traces as the evolution proceeds. Part of the reason for this
is the initial population for later seeds is generated using
the collected traces. If those initial variants are not evasive,
subsequent mutations will be added to the original traces.

The efficacy of each seed is not strongly correlated with
its length. One mutation trace consisting of a single opera-
tion that inserts a page object generated evasive variants for
155 malware seeds. There was also mutation trace with 189
operations that was effective for only two seeds.

The accumulated evasions sorted by the length of mutation
traces are given by Figure 5 (for comparison, the figure
show results for Hidost as well, which we discuss later).
The difficulty of generating variants to evade PDFrate varies
substantially over the seeds. It only took 15 short mutation
traces (none longer than 45 operations) to generate evasive
variants for 400 of the 500 seeds. Finding evasive variants for
the other 100 seeds took 57 long mutation traces with lengths
ranging from 48 to 354.

In order to understand why it takes much longer traces to
generate evasive variants for those 100 seeds, we examined
the original classification scores of each seed. Figure 6 groups

Fig. 4. The length and efficacy of mutation traces for evading PDFrate.

Fig. 5. Accumulated evasions against PDFrate and Hidost, sorted by trace
length.

the seeds by the minimum trace length required for generating
evasive variants. The left side shows the original classification
score distribution in PDFrate. We found that the original seeds
with lower classification scores (<0.95) are mostly evadable
by short traces. Thus, we believe some seeds require more
mutations to evade because they are originally more clearly
malicious to the classifier. (This is more obvious in Hidost as
we discuss later.)

Feature Analysis. To understand the evasion attacks, we
examine the impact of the changes on the feature space used
by PDFrate.

We first look at the two simplest mutation traces in length
of 1 that are effective for 162 seeds:

(insert, /Root/Pages/Kids,
3:/Root/Pages/Kids/4/Kids/5/ )

(replace, /Root/Type, 3:/Root/Pages/Kids/1/Kids/3)

Even though they are different operations, the common effect
of the two mutations is that they both introduce new Page
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Fig. 6. The distribution of the original classification score of seeds.

objects from external benign PDFs, resulting in significant
changes in the feature space of PDFrate.

Table III lists one example of feature changes by simply
inserting several Page objects. The classification score of the
original seed is 0.998, approaching the maximum malicious
score of 1.0. After inserting the new Page objects, the clas-
sification score decreases to 0.43, which is below the normal
malware threshold of 0.5. The simple insert resulted in a large
number of changes in the feature space. The counters of some
objects like pages, fonts and streams as well as the file size
directly increase due to the newly introduced objects. The
object length statistics are decreased or increased due to the
change of the object population. Some other features on object
positions are also changed due to the relocation of objects at
the raw byte level. All feature values are in the raw formats
because feature normalization is not required with random
forests. Even though the feature changes are so significant
that PDFrate classifies the new variant as benign, the malicious
behavior of the original seed does not change at all. The change
just added some pages to the PDF file.

One simple manipulation introduces many feature changes,
but the impact of changing each feature is not equivalent due
to the varying importance of features in the classification.
Though random forest is a complex non-linear model that
is difficult to interpret, we estimate the impact of altering
each feature independently. Intuitively, changing a high impact
feature should significantly affect the classification scores.

For an original malware sample, if the feature is changed
to a different value in evasive variants, the classification
score should decrease (indicating it appears more like benign
samples to the classifier). On the other hand, for an evasive
variant, if the feature value is reset to the original value,
the classification score should increase (appears more like
malicious samples to the classifier). Therefore, we model the
impacts with two factors. The decrease of the classification
score of a malware seed when a feature is changed to the
evasive value is reported as ∆score1. The increase of the
classification score of an evasive variant when the feature is
reset to the original value is reported as ∆score2. The impact is

TABLE III. IMPACT OF PDFRATE FEATURES.

Feature Original Evasive ∆score1 ∆score2 Impact
count font 0.0 70.0 0.114 0.392 0.506
count obj 11.0 230.0 0.067 0.110 0.177

count endobj 11.0 230.0 0.056 0.069 0.125
count box other 3.0 140.0 0.038 0.043 0.081
count endstream 4.0 74.0 0.011 0.054 0.065

pos box max 0.0 0.8 0.052 0.013 0.065
count stream 4.0 74.0 0.021 0.041 0.062
pos box avg 0.0 0.5 0.022 0.022 0.044
pos eof avg 1.0 1.0 0.000 0.032 0.032
pos eof min 1.0 1.0 -0.002 0.029 0.027

pos page max 0.0 0.8 0.003 0.018 0.021
pos eof max 1.0 1.0 0.002 0.016 0.018
pos page avg 0.0 0.5 0.002 0.010 0.012

size 36,028.0 503,739.0 -0.001 0.005 0.004
ratio size page 36,028.0 7,407.9 0.001 0.002 0.003
ratio size obj 3,275.3 2,190.2 0.000 0.002 0.002

ratio size stream 9,007.0 6,807.3 0.002 0.000 0.002
len obj avg 3,234.9 2,157.2 0.001 0.000 0.001
count page 1.0 68.0 -0.004 0.004 0.000

len obj max 27,455.0 34,314.0 0.000 0.000 0.000
len obj min 44.0 49.0 0.000 0.000 0.000

len stream avg 8,700.3 6,390.2 0.000 0.000 0.000
len stream max 27,392.0 34,246.0 0.000 0.000 0.000
pos page min 0.0 0.0 -0.002 0.000 -0.002
pos box min 0.0 0.0 -0.003 0.000 -0.003

The difference in the feature space of PDFrate for a selected
seed sample (with score 0.998) and corresponding evasive variant
(with score 0.43). Original is the feature value of the original
seed malware sample; Evasive is the feature value of the evasive
variant. Features with the same value for both samples are not
included. ∆score1 is the original score subtracting the score after
that feature is changed to Evasive value; ∆score2 is the evasive
score subtracted by the score after that feature is reset to the
Original value. Impact is ∆score1+∆score2.

the sum of the two scores. Table III lists the impact ranking of
the affected features, which roughly matches with the feature
importance ranking in PDFrate [26].

The most critical feature change for this example is
count font. The original malware sample does not have any
font objects as fonts are not needed for the exploit. The
classifier learns that this feature is important because most
of the malware samples in the training set do not contain any
font objects as the malware authors are too lazy to insert any
text, but it is unlikely that any benign PDF file has no font
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TABLE IV. MOST ALTERED FEATURES EVADING PDFRATE

Counts Increased features Counts Decreased features
16,985 pos eof avg 14,234 pos page min
16,985 pos eof max 10,806 len obj min
16,985 pos eof min 10,728 count javascript
16,985 size 8,834 len stream min
16,975 count endstream 7,637 ratio size stream
16,975 count stream 4,742 createdate tz
16,941 count endobj 4,742 delta tz
16,941 count obj 4,250 ratio size page
16,862 len stream max 3,448 len stream avg
16,812 pos box max 3,137 pos page avg

objects. However, this is an artifact of the malware samples in
the training set, not an inherent property for malicious PDFs.
It is trivial to add font objects to an existing PDF malware
sample to alter the value of this feature.

There are longer traces which contain at most 354 muta-
tions and influence more features in PDFrate. Table IV lists
the features that were most frequently increased and decreased
across all 16,985 evasive variants found. (The full list of all 68
mutable features of PDFrate found in evasion attacks is found
in Appendix A.) The count is how many times the value of
the feature is different for the evasive variant found compared
to the original seed. High counts imply these features are not
robust and should not be used in malware classification because
they are easy to change without corrupting the malicious
properties for many malware seeds.

Most non-robust features are unsurprising, because a PDF
malware author can always change the visible contents (such
as pages, text, images and metadata) in PDF malware samples
without corrupting the malicious payloads. The only surprising
feature is count javascript. Since PDF malware heavily relies
on JavaScript to carry exploits and shell code, it seems surpris-
ing that it is possible to decrease count javascript without dis-
rupting the malicious behavior. However, the count javascript
feature is not an accurate count of the number of embedded
JavaScript code pieces in a PDF. It just extracts the number of
JavaScript keywords, but these keywords are optional in script
execution. The targeted PDF reader will execute the JavaScript
even without the /Javascript keyword.

B. Hidost

The experiment of evading Hidost took around two days
to execute. Although Hidost was designed specifically to resist
evasion attempts,2 our method achieves a 100% evasion rate,
generating 2,859 evasive samples in total for 500 seeds (5.7
evasive samples per seed in average).

Trace Analysis. We analyze the efficacy of each mutation trace
which is examined in the same way as for PDFrate. The length
and efficacy of each mutation trace are shown in Figure 7. In

2Specifically, the Hidost authors claim, “The most aggressive evasion
strategy we could conceive was successful for only 0.025% of malicious
examples tested against an off-the-shelf nonlinear SVM classifier with the
RBF kernel using the binary embedding. Currently, we do not have a rigorous
mathematical explanation for such a surprising robustness. Our intuition
suggests that the main difficulty on attacker’s part lies in the fact that the input
features under his control, i.e., the structural elements of a PDF document,
are only loosely related to the true features used by a classifier. The space of
true features is hidden behind a complex nonlinear transformation which is
mathematically hard to invert.” [28]

Fig. 7. The length and efficacy of mutation traces for evading Hidost.

general, it required shorter mutation traces to achieve 100%
evasion rate in attacking Hidost than it did for PDFrate.

We observed two major differences compared to PDFrate.
First, there is no increasing trace length trend for newly found
mutation traces, unlike for PDFrate where the trace length
increases with the trace ID. Second, the trace length is more
correlated with the efficacy: longer traces tend to be more
effective in generating evasive variants. Several short mutation
traces with fewer than 5 mutations are only effective on 1 or
2 malware seeds. In contrast, a long mutation trace containing
61 mutations is effective on 334 malware seeds.

The accumulated number of evasions found sorted by the
length of mutation traces is given in Figure 5. The plot is closer
to linear, suggesting that, in contrast to PDFrate, there is little
variation in the difficulty of finding evasive variants for differ-
ent seeds. We believe the differences from PDFrate stem from
the different feature set in Hidost. The mutation operations
have more direct influence on the structural path features in
Hidost. For example, an object deletion operation just deletes
the corresponding path of a feature (along with those of its
descendants). In contrast, feature changes in PDFrate resulting
from the same operation are less tangible. Besides decreasing
the counts of specific objects that we can expect, the other
positional features may also change due to the relocation of
objects in repacking the modified variant. As a result, there
are more inter-influences among the mutation operations in
evading PDFrate, and a larger number of mutations may be
required to reach the evasion threshold. The box plot of the
original classification score in Hidost of each seed shown in
the right side of Figure 6 suggests that it usually requires more
mutations to find an evasive variant for seeds that appear to
be more clearly malicious to the classifier.

Feature Analysis. The binary features used in Hidost are much
easier to interpret than the variety of features used by PDFrate.

We first look at the simplest mutation traces. There are 5
mutation traces in length 1, which are only effective on 1 or
2 malware seeds. They are:
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(delete, /Root/OpenAction/JS/Length)
(delete, /Root/Names)
(delete, /Root/AcroForm/DR)
(replace, /Root/AcroForm/DR,

3: /Root/OpenAction/D/0/.../FontBBox/3)
(replace, /Root/AcroForm/DR,

3: /Root/Pages/Kids/3/.../DescendantFonts/0/DW)

The first three mutations each delete a node from the original
malware seeds, changing the value of the corresponding Hidost
feature from 1 to 0. The first deleted object similar to the
count javascript feature in PDFrate. Both capture properties
that frequently exist in malware samples but not in benign
files. However, they are optional in malicious code execution.
The other deleted objects are artifacts in the training dataset
that are not closely tied to malicious behavior. Although the
last two traces use replace operations, the important effects of
the replacements are to remove the features extracted from the
children objects of the original /Root/AcroForm/DR node.

Simply deleting some objects is not sufficient to evade
Hidost (it is only effective on 1 or 2 malware seeds in
our experiment), but additional mutations are enough to find
evasive variants for all of the seeds. The longest mutation trace
contains 85 operations, which is effective on 198 malware
seeds for generating evasive variants to bypass Hidost. Table V
lists the all of feature changes observed over the 198 malware
seeds when executing that mutation trace. Unsurprisingly,
several auxiliary objects are added or deleted to fool Hidost.
For example, several metadata objects are inserted. Metadata
widely exists in benign PDFs when users generate PDF docu-
ments with popular PDF writers. On the other hand, it is rare in
PDF malware because malware authors did not add metadata
in hand-crafting PDF exploits. However, this is just an artifact
in the training dataset and not an essential difference between
PDF documents and PDF malware. Inserting metadata into a
PDF malware sample increases the likelihood of the sample
being considered benign by Hidost.

As seen from this example, trace length itself is not a
good measure of evasion complexity. Although the stochastic
search process found an 85-operation trace to create these
evasive variants, the trace only impacts the 23 features (each
corresponding to a node in the PDF file) showing in Table V.
That is to say, there is a 23-operation trace that would
be just as effective (and probably shorter traces since one
mutation can impact many features), and the trace found by
the search includes many useless or redundant mutations. For
the purposes of creating evasive malware, it is not important to
find the shortest effective trace, although it would be possible
to develop techniques to automatically pare down a trace to
its essential operations if desired. The yellow triangle plot in
Figure 7 shows the number of affected features for each trace.

Although its authors claimed that Hidost was robust against
evasion attacks involving just feature addition, we found many
evasive variants that only added features. Among the 2,859
evasive variants, 761 are pure feature addition attacks, 21 of
them are pure feature deletion attacks, and the other 2,077
involved both feature addition and deletion. It is already
unrealistic to assume attackers can only insert features, and,
as shown in the claims about non-evadability of Hidost,

TABLE V. FEATURE CHANGES PRODUCED BY LONGEST HIDOST
MUTATION TRACE.

Added Features Deleted Features
Threads AcroForm

ViewerPreferences/Direction Names/JavaScript/Names/S
Metadata AcroForm/DR/Encoding/PDFDocEncoding

Metadata/Length AcroForm/.../PDFDocEncoding/Differences
Metadata/Subtype AcroForm/.../PDFDocEncoding/Type

Metadata/Type Pages/Rotate
OpenAction/Contents AcroForm/Fields

OpenAction/Contents/Filter AcroForm/DA
OpenAction/Contents/Length Outlines/Type

Pages/MediaBox Outlines
Outlines/Count

Pages/Resources/ProcSet
Pages/Resources

dangerous to assume a technique cannot be evaded because
particular manual techniques fail.

A complete list of mutated features in evading Hidost is
given in Appendix B. These non-robust features should not be
used in a malware classifier, as they can be easily changed
while preserving the original malicious properties.

C. Cross-Evasion Effects

Even though the classifiers are designed very differently
and trained with different training datasets, we suspected they
must share some properties in the same classification task.
Therefore, we conducted a cross-evasion experiment by feed-
ing one classifier with the evasive variants found in evading
the other classifier.

For 388 of the malware seeds, the evasive variants found
by evading Hidost are also effective in evading PDFrate. That
is to say, without any access to PDFrate, a malware author
with access to Hidost could find evasive variants for 77.6% of
the seeds. In contrast, the evasive variants found by evading
PDFrate are only effective against Hidost for two of the
malware seeds.

The significant difference in the cross evasion effects
is due to the different feature sets in the two classifiers.
Indeed, the primary design goal for Hidost was to be less
easily evaded than other classifiers by using features based
on structural properties. The evasive variants generated by the
algorithm in evading PDFrate do change the measured features
significantly, however, they have little effect on the structural
features used in Hidost. In the reverse direction, the evasive
variants targeting Hidost by directly altering structural features
(necessary to evade Hidost), incidentally impact the features
used by PDFrate.

D. Execution Cost

One drawback of evolutionary algorithms is that they
provide no guarantees about generating good results within
a specific duration. For many problems, these methods can
require a huge amount of computing resources before a desired
result is found. Further, failing to find the desired result may
be a sign that it doesn’t exist, or just that more computing re-
sources are required. Our experiments show that the resources
required for this instantiation are very reasonable.

For each classifier target, the experiment was run in several
rounds. The first round started with empty trace pools, so the
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Fig. 8. Time required to find evasive variants for 500 malware samples.

search for evasive variants relies solely on the stochastic search
directed by the fitness function. In later rounds, the successful
and promising mutation traces found previously were used to
accelerate the search. All the failed jobs in a round were re-
run in the next round with the all mutation traces stored in
previous rounds.

For PDFrate, it took four rounds to reach 100% evasion.
The evasion rate on Hidost reached 100% in the second round.
Figure 8 shows the total time needed to find evasive variants
for all 500 malware seeds in evading the two classifiers. The
duration for each job is not meaningful because it mainly
depends on the job sequence. Later jobs are usually much
faster because they may benefit from mutation traces found
earlier, but the order of trying the seeds is arbitrary.

It took less than 6 days to achieve a 100% evasion rate
on PDFrate. In other words, our method found an evasive
variant for each seed in 16 minutes on average running on
a commodity desktop. Evasive variants were found against
Hidost three times faster, taking 5 minutes per seed in average.

The main computation time is running the generated vari-
ants in the Cuckoo sandbox, which we use as the oracle in
our process. The machine with 16 virtual machines running
in parallel is able to test 1,000 samples per hour. This could
easily be accelerated by using more machines, since there are
no dependencies between the executions.

We also observed that the time spent on other tasks (includ-
ing mutation) in attacking PDFrate takes a larger proportion
of the total duration than for Hidost (8.3% vs. 4.1%). This is
because the benign files used as external object genome are
larger than those in attacking Hidost. Hence, it produced larger
variants, increasing the computational burden for parsing,
manipulating, and repacking.

VII. DISCUSSION

In this section we discuss the potential defenses and future
directions suggested by our results.

A. Defense

Beyond understanding the vulnerabilities of current clas-
sifiers, our ultimate goal is to improve the robustness of

classifiers under attack. Based on the evasive samples we
generated, and the non-robust features we found in Section V,
we consider several possible approaches.

Information Hiding and Randomization. One of the most
direct solutions to protect classifiers is hiding the classification
scores from the users or adding random noise to the scores [2].
Another proposed method is the multiple classifier system, in
which the classification scores are somewhat randomly picked
from different models trained with disjoint features [3]. As our
method heavily relies on the classification scores of variants
to calculate fitness scores that direct the evolution, the lack of
accurate score feedback makes the search for evasive variants
much harder and may make our approach infeasible.

However, the intrinsic non-robustness of superficial fea-
tures should not be simply ignored. Considering the potential
cross-evasion effects (Section VI-C), hiding or randomizing the
information may not help much against an adversary who can
infer something about the types of features used by the target
classifier. Moreover, previous work has shown that accurately
re-implementing a similar classifier with a surrogate training
set is possible (indeed, this is what the authors of Mimicus did
to experiment with evadability of PDFrate [26, 29]).

Adapting to Evasive Variants. Our experiments assume that
adversary can test samples without exposing them to the
classifier operator. In an on-line scenario, the classifier may
be able to adapt to attempted variants. Note, however, that
retraining is expensive and opens up the classifier to alternate
evasion strategies such as poisoning attacks.

Chinavle et al. proposed a method that would automatically
retrain the classifier with pseudo labels once evasive variants
were detected by a mutual agreement measure on the ensemble
model, which had been shown effective on a spam detection
task [6]. However, adapting to users’ input without true labels
introduces a new risk of poisoning attacks.

Defeating Overfitting. The evadability of classifiers we
demonstrate could be just an issue of overfitting, in which case,
well known machine learning practices should work to defeat
overfitting. For example, collecting a much larger dataset for
training the model, or using model averaging to lower the
variance.

We don’t expect these conventional methods will help,
however. It is impossible to collect a complete dataset of future
malware, and none of these techniques anticipate an adversary
who is actively attempting to evade the classifier.

Selecting Robust Features. We found many non-robust fea-
tures from the two classifiers in the evasion experiments.
Obviously, they should be removed from the feature set as they
can be easily manipulated by the attacker without corrupting
the malicious properties. The problem with the features used
by both Hidost and PDFrate, however, is that all of the features
are likely non-robust. The superficial features used by these
classifiers do not have any intrinsic distinguishability between
benign and malicious PDFs, and it would be very surprising
if superficial features were found that could be used for
robust classification. Instead, it seems necessary to use deeper
features to build classifiers that can resist evasion attempts
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by sophisticated adversaries. Such features will depend on
higher-level semantic analysis of the input file, in ways that are
difficult to change without disrupting the malicious behavior.

B. Improving Automatic Evasion

Our automatic evasion method provides a general method
to evaluate the robustness of classifiers for security tasks.
Its ability to find evasive variants against a target classifier
demonstrates clear weaknesses, but if our method fails to find
evasive variants against a particular classifier this is certainly
not enough to be confident that other techniques (including
manual effort) would not be able to find evasive variants.
Hence, it is valuable to improve the method to enable more
efficient searching to target more challenging classifiers.

Parameter Tuning. In this work, we just arbitrarily choose
the search parameters. Tuning the parameters, or even trying
dynamic mechanisms like parameter decay, could make the
search algorithm more efficient.

Learnable GP. The current method we use to generate evasive
variants is essentially a random search algorithm. Hence,
it often generates corrupted variants that lose the malicious
behavior. A probabilistic model would learn which mutations
are more effective for generating evasive variants to direct the
search more efficiently.

Other Applications. Our case study focused on PDF malware,
but we believe similar approaches could be effective against
other machine-learning based malware classifiers. The main
challenges in applying our approach to a new domain are
to develop suitable genetic mutation operations and find an
appropriate oracle.

VIII. RELATED WORK

There have been several papers on evasion attacks against
classifiers in the machine learning community, mostly focused
on spam detection with simple models (e.g., [6, 10, 18].
Chinavle et al. argued that the adversarial problem is essen-
tially concept drift, which is a well studied field in machine
learning that considers data distributions which change over
time [6]. However, the concept drift solutions assume the data
distribution changes are not due to the classifier itself, not
resulting from an adversary intentionally adapting to it.

Evasion attacks against malware classifiers have been stud-
ied previously by Biggio et al. from the angle of classification
models [4] and by Šrndic et al. [28]. However, these studies
assumed that attackers can only insert new features and they
conducted evasion experiments in the feature space without
generating actual evasive PDF malware. In fact, the experi-
ments in our work show attackers can also delete features while
preserving maliciousness, and our experiments verified that
the resulting evasive variants preserved maliciousness through
dynamic execution in a test environment.

Šrndic et al. demonstrated how PDFrate could be evaded
by exploiting an implementation flaw in the feature extrac-
tion [29]. Our method does not rely on any particular imple-
mentation flaw in a target classifier. Instead, it exploits the

weak spots in a classifier model’s feature space and employs
a stochastic method to manipulate samples in diverse ways.

Maiorca et al. proposed reverse-mimicry attacks against
PDF malware classifiers [20]. In reverse-mimicry, a benign
sample is manipulated into a malicious one by inserting
malicious payloads into the structure. The attack is generic
to a class of classifiers based on structural features. However,
the hand-crafted attack only works on malware with simple
payloads. In contrast, our GP-based method is automatic and
does not have this limitation.

Evolutionary algorithms have also recently been used to
fool deep learning-based computer vision models [22]. In con-
trast, this work uses genetic programming, an important branch
of evolutionary algorithms for generating highly-structured
data like computer programs.

IX. CONCLUSIONS

Our experiments show how the traditional approach of
building machine learning classifiers can fail against deter-
mined adversaries. We argue that it is essential for designers
of classifiers used in security applications to consider how
adversaries will adapt to those classifiers, and important for
the research community to develop better ways of predicting
the actual effectiveness of a classifier in deployment.

AVAILABILITY

The source code of our automatic evasion tool, along
with the data from all of our experiments, is available at
http://www.EvadeML.org.
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APPENDIX

A. Mutated Features in PDFrate

The 68 features mutated in our experiments evading
PDFrate are listed in Table VI. It is important to note, however,
that just because a feature does not appear here does not mean
it is robust to evasion. The features listed are those that were
sufficient for achieving 100% evasion rate in our experiment.
Similarly, the unidirectional mutations are how observed in
the evasion attack experiment. It doesn’t necessarily mean that
these features cannot also be mutated in the reverse direction
without corrupting malware samples in practice.

TABLE VI. 68 FEATURES MODIFIED EVADING PDFRATE

Feature Name Mutability Feature Name Mutability
box nonother types ↓ image totalpx ↑

box other only ↑ len obj avg ↑↓
count acroform ↑↓ len obj max ↑↓

count action ↑↓ len obj min ↑↓
count box letter ↓ len stream avg ↑↓
count box other ↑↓ len stream max ↑

count endobj ↑↓ len stream min ↑↓
count endstream ↑↓ pos acroform avg ↑↓

count font ↑↓ pos acroform max ↑↓
count image med ↑ pos acroform min ↑↓
count image small ↑ pos box avg ↑↓
count image total ↑ pos box max ↑↓

count image xsmall ↑ pos box min ↑↓
count javascript ↓ pos eof avg ↑

count js ↓ pos eof max ↑
count obj ↑↓ pos eof min ↑

count objstm ↓ pos image avg ↑
count page ↑↓ pos image max ↑

count page obs ↓ pos image min ↑
count stream ↑↓ pos page avg ↑↓

createdate mismatch ↑ pos page max ↑↓
createdate ts ↑ pos page min ↑↓
createdate tz ↓ producer dot ↑↓

createdate version ratio ↑ producer lc ↑↓
creator dot ↑↓ producer len ↑↓
creator lc ↑↓ producer mismatch ↑
creator len ↑↓ producer num ↑↓

creator mismatch ↑ producer oth ↑↓
creator num ↑↓ producer uc ↑↓
creator oth ↑↓ ratio imagepx size ↑↓
creator uc ↑↓ ratio size obj ↑↓

delta ts ↑ ratio size page ↑↓
delta tz ↓ ratio size stream ↑↓

image mismatch ↑ size ↑

B. Mutated Features in Hidost

The 24 inserted features and the 19 deleted features in
finding the 2,859 evasive variants against Hidost are listed in
Table VII. As with PDFrate, the features that are not listed are
not necessarily robust features.

The “counts” are the number of evasive variants mutated
that feature. Note that some features are hierarchically depen-
dent in the PDF object structure, so one insertion or deletion
may impact many features. For example, inserting a complete
Metadata object (as is done in 2,507 of the variants) also
introduces several child objects: Metadata/Length, Metadata/-
Subtype and Metadata/Type.

TABLE VII. FEATURES ALTERED EVADING HIDOST

Counts Inserted Feature
2,507 Metadata
2,507 Metadata/Length
2,507 Metadata/Subtype
2,507 Metadata/Type
2,454 PageLabels
2,363 ViewerPreferences/Direction
1,991 Pages/Resources/ProcSet
1,968 Pages/Resources
1,702 Pages/Rotate
1,382 Pages/MediaBox

825 Threads
718 OpenAction/MediaBox
385 OpenAction/Contents/Filter
385 OpenAction/Contents/Length
369 OpenAction/Contents
319 OpenAction/Resources
319 OpenAction/Resources/ProcSet
158 OpenAction/Rotate
158 OpenAction/CropBox
51 OpenAction/Type
51 OpenAction
41 PageLabels/Nums
41 PageLabels/Nums/S
40 PageLayout

Counts Deleted Feature
1,345 Names/JavaScript/Names/S

865 PageLayout
615 Outlines/Type
615 Outlines
615 Outlines/Count
502 AcroForm/Fields
500 AcroForm
330 OpenAction/JS/Length
54 Pages/Rotate
14 Pages/Resources/ProcSet
12 AcroForm/DR/Encoding/PDFDocEncoding
12 AcroForm/DR/Encoding/PDFDocEncoding/Differences
12 AcroForm/DR/Encoding/PDFDocEncoding/Type
11 Pages/Resources

9 AcroForm/DA
8 Pages/MediaBox
4 OpenAction/S
3 Names/EmbeddedFiles
2 Names
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