
Static Detection of Dynamic Memory Errors

David Evans
evs@larch.lcs.mit.edu

MIT Laboratory for Computer Science�

Abstract

Many important classes of bugs result from invalid assumptions
about the results of functions and the values of parameters and
global variables. Using traditional methods, these bugs cannot be
detected efficiently at compile-time, since detailed cross-procedural
analyses would be required to determine the relevant assumptions.
In this work, we introduce annotations to make certain assumptions
explicit at interface points. An efficient static checking tool that ex-
ploits these annotations can detect a broad class of errors including
misuses of null pointers, uses of dead storage, memory leaks, and
dangerous aliasing. This technique has been used successfully to
fix memory management problems in a large program.

1 Introduction

The LCLint checking tool [4, 2] has been used effectively in both
industry and academia to detect errors in programs, facilitate en-
hancements to legacy code, and support a programming method-
ology based on abstract types and explicit interfaces in C. In this
work, we extend LCLint to detect a broad class of important errors
including misuses of null pointers, failures to allocate or deallocate
memory, uses of undefined or deallocated storage, and dangerous or
unexpected aliasing. These errors are particularly difficult to detect
and correct through testing, since their symptoms are often platform
dependent and may be far-removed from the actual problem. Since
these errors typically involve violations of non-local constraints,
they cannot be detected efficiently at compile-time by traditional
methods.

Consider the sample code fragment in Figure 1. The function
setName assigns the formal parameter pname to the global vari-
able gname. This code may be a correct implementation of some
function, but it depends on many assumptions not apparent from
the implementation:

� before the call, gname must not be the sole reference to
allocated storage. Otherwise, the assignment statement on

�This work was supported in part by ARPA (N00014-92-J-1795), NSF (9115797-
CCR), and DEC ERP.

1 extern char *gname;
2

3 void setName (char *pname) {
4 gname = pname;
5 }

Figure 1: sample.c

line 4 loses the last reference to this storage and it can never
be deallocated.

� after the call, the actual parameter and the global gname are
aliased. The caller must not deallocate the storage pointed
to by the parameter if any code executed later depends on
gname (and vice versa).

� after the call, gnamemay not be dereferenced if the parameter
was a null pointer. Further, gname may not be dereferenced
as an rvalue if the parameter did not point to defined storage.

As is, we cannot determine if a call to setName will cause the
program to crash or leak memory without careful analysis of the
entire program. This analysis would be infeasible for all but the
most trivial programs.

To enable local reasoning, we need more information about the
code. We extend the LCL interface specification language [5, 9] to
provide ways of expressing assumptions about memory allocation,
initialization and sharing, and introduce annotations to make it con-
venient to express these assumptions using qualifiers on declarations
in C programs.

There have been many academic and commercial projects aimed at
producing tools that detect these kinds of errors at run-time (dmal-
loc [10], mprof [11], and Purify [Pure, Inc.]). These tools can be
effective in localizing the symptom of a bug — where a null pointer
is dereferenced or where leaking memory is being allocated. In
some cases, this is enough to discover the actual bug in the code.
In others, however, it may only be the beginning of the search.
Run-time checking also suffers from the flaw that its effectiveness
depends entirely on running the right test cases to reveal the prob-
lems. This is especially problematic since these tools are expensive
and intrusive enough that they are often not used when the code is
run in production.

In our work, annotations are used to make assumptions about func-
tion interfaces, variables and types explicit. Constraints necessary
to satisfy these assumptions are checked at compile-time. Places
where the constraints are violated are anomalies in the code, which

typically indicate bugs in the program or undocumented or incor-
rect assumptions. Section 2 describes how checking works at a
high level, and Section 5 describes the analysis in more detail. Sec-
tion 3 describes the storage model and what kinds of uses of storage
are irregular. Section 4 describes some of the annotations that can
be added to programs to make certain assumptions explicit, and
checking associated with each annotation. Section 6 illustrates the
process of adding annotations and detecting errors using a small ex-
ample program. Section 7 relates experience using this approach to
fix memory management problems and replace garbage collection
with explicit deallocation in a large program.

2 Analysis Overview

Since LCLint is run frequently and on large programs, it is essen-
tial that the checking be efficient and scale approximately linearly
with the size of the program. Hence, full interprocedural analysis
is too expensive to be practical. Instead, each procedure is checked
independently, but using more detailed interface information then
is normally available. This information may include constraints on
the aliases that may be introduced by a called function, constraints
on how storage for a parameter or global variable must be defined
before a call and how it will be defined after a call, whether param-
eters and return values may be null or may share storage with other
references, and other constraints on what may be modified or used
by a called function and how the result of a function call relates
to the values of its parameters. This information is available from
annotations added to the program.

When a function body is checked, annotations on its parameters and
the global variables it uses are assumed to be true when the function
is entered. The function body is checked using these assumptions.
At all return points, the function must satisfy the constraints implied
by the annotations on its return value, parameters, and the global
variables it uses.

When a function call site is encountered, LCLint checks that the
arguments and global variables used by the function satisfy the
assumptions made by the implementation of the called function.
The result of the function and the states of parameters and global
variables after the call are assumed to satisfy the constraints implied
by the function declaration.

By exploiting extra interface information in checking, a wide range
of errors can be detected through fairly simple procedural analyses.
Dataflow values keep track of extra information for variables, as
well as references derived from variables (e.g., a field in a structure
pointed to by a variable) when appropriate. This information in-
cludes whether or not the reference is defined or may be null, what
other storage it might alias or be aliased by, and what other refer-
ences might share its storage. This information may be different on
different program paths. Rules are used to combine values at con-
fluence points. In cases where values cannot be sensibly combined
an error is reported (e.g., if storage is deallocated on only one of the
paths through an if statement).

Certain simplifying assumptions are used to make compile-time
analysis feasible and efficient. The key assumptions are: any pred-
icate expression may be true or false, the effects of any while or
for loop are identical to those for executing the loop zero or one
times, compile-time unknown array indexes (or pointer offsets) are
either all the same element of the array or independent elements
(depending on an LCLint flag that may be set locally).

LCLint may produce messages for correct code (e.g., a use-before-
definition error in a branch that would only be taken if an earlier
branch initialized the variable). The alternative would be not report-
ing many anomalies that are likely errors. Since spurious messages

can be suppressed locally by placing stylized comments around the
code that produces the message, this unsoundness has rarely been a
serious problem in practice.

LCLint may also fail to produce messages for certain kinds of
incorrect code in some contexts. For example, if an alias is not
detected because it would be produced only after the second iteration
of a loop, LCLint will fail to detect an error involving the use of
released storage that is only apparent if the alias is detected. It is
harder to estimate the costs of undetected errors, since there is no
way of knowing how many undetected errors remain.

Since our goal is to detect as many real bugs as possible efficiently
and with no programmer interaction, we are willing to accept an
analysis that is neither sound nor complete. Instead of using worst-
case assumptions, LCLint uses approximations that follow from
likely-case assumptions. Clearly, this would be unacceptable in
a compiler optimizer or a theorem prover. However, for a static
checking tool it allows many more ambitious checks to be done
and more errors to be detected with only the occasionally annoying
spurious message.

3 Storage Model

This section describes execution-time concepts for describing the
state of storage. Some of these concepts correspond to analysis
properties used by LCLint. Certain uses of storage are likely to
indicate program bugs, and are reported as anomalies.

LCL assumes a CLU-like object storage model.1 An object is a
typed region of storage. Some objects use a fixed amount of storage
that is allocated and deallocated automatically by the compiler.
Other objects use dynamic storage that must be managed by the
program.

Storage is undefined if it has not been assigned a value, and defined
after it has been assigned a value. An object is completely defined
if all storage that may be reached from it is defined. What storage
is reachable from an object depends on the type and value of the
object. For example, if p is a pointer to a structure, p is completely
defined if the value of p is NULL, or if every field of the structure p
points to is completely defined.

When an expression is used as the left side of an assignment ex-
pression we say it is used as an lvalue. Its location in memory is
used, but not its value. Undefined storage may be used as an lvalue
since only its location is needed. When storage is used in any other
way, such as on the right side of an assignment, as an operand to a
primitive operator (including the indirection operator, *),2 or as a
function parameter, we say it is used as an rvalue. It is an anomaly
to use undefined storage as an rvalue.

A pointer is a typed memory address. A pointer is either live or
dead. A live pointer is either NULL or an address within allocated
storage. A pointer that points to an object is an object pointer. A
pointer that points inside an object (e.g., to the third element of
an allocated block) is an offset pointer. A pointer that points to
allocated storage that is not defined is an allocated pointer. The
result of dereferencing an allocated pointer is undefined storage.
Hence, it is an anomaly to use it as an rvalue. A dead (or “dangling”)
pointer does not point to allocated storage. A pointer becomes dead
if the storage it points to is deallocated (e.g., the pointer is passed to
the free library function.) It is an anomaly to use a dead pointer
as an rvalue.

There is a special object null corresponding to the NULL pointer in
a C program. A pointer that may have the value NULL is a possibly-

1This is similar to the LISP storage model, except that objects are typed.
2Except sizeof, which does not need the value of its argument.

null pointer. It is an anomaly to use a possibly-null pointer where
a non-null pointer is expected (e.g., certain function arguments or
the indirection operator).

To allow descriptions of memory constraints, we view each object
as having an associated owners set. The owners set indicates which
external references may legitimately refer to an object. A reference
is a variable or a location derived from a variable (e.g., a field of
a structure). Different references may share the same storage. For
example, if s and t are char pointers, and s is assigned to t,
then the references *s and *t are different ways of referring to
the same storage. The owners set for the storage *s includes both
*s and *t. In a function implementation, an external reference is
any reference that is visible in the environment of the caller (i.e., a
reference to any storage that can be reached from the parameters,
global variables, or return value).

The size of the owners set is less than or equal to the traditional
reference count since it includes only external references and refer-
ences that it is valid to dereference (constraints on memory usage
may make it invalid to dereference some references, such as those
that have been deallocated). It is an anomaly if the owners set for
an explicitly allocated object is empty, since this means there are no
valid references and the storage associated with the object cannot
be released.

Failures to free storage are relevant only when memory is explicitly
deallocated by the programmer, and could be avoided by using a
garbage collector [1]. If LCLint is used to check programs designed
for use with a garbage collector, flags can be used to adjust checking
so only those errors relevant in a garbage-collected environment are
reported.

4 Annotations

Annotations provide a convenient way of expressing interface as-
sumptions. Although many of the same assumptions are expressible
in LCL function specifications, annotations are easier to write and
have the important advantage that they can be used to determine
appropriate static checking in a straightforward way. We can use
annotations in LCL specifications, or directly in the source code as
syntactic comments (/*@[annotation]@*/). For example, null in
an LCL specification or /*@null@*/ in a C source file may be used
in a variable declaration to indicate the variable is a possibly-null
pointer (i.e., it may have the value NULL).

Annotations may be used in a type declaration to constrain all in-
stances of a type, in function parameter or return value declarations
to constrain the use and value of parameters and results, and in
global and static variable declarations to constrain the value and
use of the variable.

Annotations are syntactically similar to C type qualifiers. More
than one annotation may be used with a given declaration, although
certain combinations of annotations are incompatible and will pro-
duce static errors. An annotation applies only to the outer level
of a declaration (e.g., null char **name means that the char
** referenced by name is a possibly-null pointer, but the char *
referenced by *name is unqualified.) A type definition can be used
to apply annotations to non-outer level declarations..

The idea of keeping additional state information on variables is
similar to that used by the NIL compiler. The NIL compiler [8]
extends type checking to also check typestates. Each type has a
set of typestates defined by the programming language that can be
determined by the compiler at any point in the code. An object
can be in only one typestate at a given point in the code, but may
change typestates during execution. A subset of all operations
of a type are permitted on an object in a particular typestate and

1 extern char *gname;
2

3 void setName (/*@null@*/ char *pname)
4 {
5 gname = pname;
6 }

Figure 2: sample.c with null annotation.

operations may be declared to change the typestate of an object.
The NIL compiler detects execution sequences that violate typestate
constraints at compile time. Some of the memory annotations used
by LCLint could be emulated using typestates.

Annotations used by LCLint are simple since our main focus is
detecting errors at interface points. ADDS [6] presents an approach
for dealing with recursive data structures by constraining possible
aliasing relationships within datatypes. Better checking of internal
aliasing would improve LCLint checking, but since our focus here
is on detecting errors at interface boundaries, the annotations we
use are sufficient to detect a wide range of errors.

The remainder of this section describes some of the annotations
and associated checking done by LCLint. A complete list of the
annotations related to memory checking is found in Appendix B.

Null Pointers

A common cause of program failures is when a null pointer is deref-
erenced. LCLint detects these errors by distinguishing possibly-null
pointers at interface boundaries, and checking that a possibly-null
pointer is not dereferenced or used where a non-null pointer is
required.

In Figure 2, the null annotation is used to indicate that a possibly-
null pointer may be passed as the parameter pname. LCLint will
report an error if there is a path leading to a dereference of the
pointer along which there is no check to ensure the pointer is not
null. Code can check that a possibly-null pointer is not null by
using a simple comparison (e.g., x != NULL) or a function call. To
indicate that a function returns true when its argument is null the
truenull annotation is used on the return value; falsenull is
used to indicate that a function returns true only if the argument is
not null.

Running LCLint on the version of sample.c in Figure 2 produces
the message3:

sample.c:6: Function returns with non-null global gname
referencing null storage

sample.c:5: Storage gname may become null

The error is reported at the exit point. It would not be an anomaly
to assign gname to NULL in the body of setName, as long as it is re-
assigned to a non-null value before the function returns or another
function using the global gname is called.

The error can be fixed by removing the null annotation on the
parameter (which would produce messages elsewhere if setName
is called with a possibly null value) or adding a null annotation to
the declaration of gname (which would produce messages if gname
is dereferenced without first checking it is not null). Another fix
is shown in Figure 3. Here, a truenull function is called to test

3LCLint messages often include extra information describing the anomaly detected.
In this message, the first part explains the anomaly and where it is detected (line 6).
The indented part shows where the value may become null (line 5).

extern char *gname;
extern /*@truenull@*/

isNull (/*@null@*/ char *x);

void setName (/*@null@*/ char *pname)
{

if (!isNull (pname)) { gname = pname; }
}

Figure 3: Fixing sample.c by calling a truenull function.

whether pname is null, and the assignment is only done for non-null
values.

A variable of a pointer type with no annotation is interpreted as non-
null, unless the type was declared using null. In these cases, the
type’s null annotation may be overridden for specific declarations
of the type using the notnull annotation. This is particularly
useful for parameters to hidden (static) operations of abstract
types where the null test has already been done before the function
is called, and for return values that are never null.

An additional annotation, relnullmay be used to relax null check-
ing. A relnull pointer is assumed to be non-null when it is used,
but no error is reported if a possibly null value is assigned to it.
This is generally used for structure fields that may or may not be
null depending on some other constraint. It is up to the program-
mer to ensure that this constraint is satisfied before the pointer is
dereferenced.

De�nition

There is an implicit constraint that all function parameters and global
variables used by a function are completely defined before a call,
and that the return value is completely defined after the call. For
example, LCLint will report an error if a pointer actual parameter
is allocated but the storage it points to is not defined, or if a field in
a structure pointed to by the return value is not defined. Function
implementations are checked assuming all parameters and global
variables are completely defined at entry to the function.

Occasionally, it is desirable to have parameters or return values that
reference undefined or partially defined storage. For example, a
pointer may be passed as an argument that is intended as an address
to store a result, or a memory allocator may return allocated but
undefined storage. The out qualifier can be used to denote storage
that may be not be completely defined.

An actual parameter that corresponds to a formal parameter with an
out annotation must be defined but need not be completely defined.
That is, the actual parameter is used as an rvalue so it must be
defined, but storage reachable from the actual parameter need not
be defined. LCLint does not report an error when allocated storage
is passed as an out parameter. After the call, storage that was
passed as an out parameter is assumed to be completely defined.

Within the implementation of a function, LCLint will assume that
an out formal parameter is allocated but that storage reachable from
the parameter is undefined. Hence, an error is reported if storage
derived from it is used as an rvalue before it is defined. An error is
reported if the implementation does not define all storage reachable
from an out parameter before returning.

An analogous annotation, undef, may be used on a global variable
in the globals list for a function to indicate that the global variable
may be undefined when the function is called.

The partial qualifier can be used to relax checking of structure
fields. A structure qualified with partial may have undefined

fields. LCLint reports no errors when these fields are used. Similar
to relnull, the reldef qualifier is provided to relax definition
checking, and is sometimes useful in field declarations.

Allocation

There are two kinds of deallocation errors with which we are con-
cerned: deallocating storage when there are other live references to
the same storage, or failing to deallocate storage before the last ref-
erence to it is lost. To handle these deallocation errors, we introduce
a concept of an obligation to release storage. Every time storage is
allocated, it creates an obligation to release the storage. This obli-
gation is attached to the reference to which the storage is assigned.
Before the scope of the reference is exited or it is assigned to a new
value, the storage to which it points must be released. Annotations
can be used to indicate that this obligation is transferred through
a return value, function parameter or assignment to an external
reference.

The only annotation is used to indicate that a reference is the only
pointer to the object it points to. We can view the reference as having
an obligation to release this storage. This obligation is satisfied by
transferring it to some other reference in one of three ways:

1. pass it as an actual parameter corresponding to a formal pa-
rameter declared with an only annotation

2. assign it to an external reference declared with an only an-
notation

3. return it as a result declared with an only annotation

After the release obligation is transferred, the original reference is
a dead pointer and the storage it points to may not be used.
All obligations to release storage stem from allocation routines
(e.g., malloc), and are ultimately satisfied by calls to deallocators
(e.g., free). The standard library provides some allocation and
deallocation routines. The basic allocator, malloc, is specified as,

null out only void *malloc (size_t size);

It returns a possibly-null pointer (it returns NULLwhen the requested
memory cannot be allocated) that is not completely defined and is
not referenced by any reference other than the function return value.
The deallocator, free, is specified as

void free (null out only void *ptr);

The argument to free is a possibly-null,4 not necessarily com-
pletely defined, pointer to unshared storage. Since the parameter is
declared using only, the caller may not use the referenced object
after the call, and may not pass in a reference to a shared object.
There is nothing special about malloc and free — their behavior
can be described entirely in terms of the provided annotations.5

Other annotations can be used to express different assumptions
about memory management. The temp annotation is used on a
formal parameter to indicate that the called function may not deal-
locate the storage the parameter refers to or create new external
references to this storage. At a call site where a reference is passed
as a temp parameter, the aliases to the storage it references are the
same before and after the call.

4The ANSI Standard allows a null pointer to be passed to free. Many older
C implementations do not support this, so it may be desirable to use an alternative
specification with no null annotation.

5To check that allocated objects are completely destroyed (e.g., all unshared objects
inside a structure are deallocated before the structure is deallocated), LCLint checks
that any parameter passed as an out only void * does not contain references
to live, unshared objects. This makes sense, since such a parameter could not be used
sensibly in any way other than deallocating its storage.

1 extern /*@only@*/ char *gname;
2

3 void setName (/*@temp@*/ char *pname)
4 {
5 gname = pname;
6 }

Figure 4: sample.c with only and temp annotations.

Figure 4 shows sample.c with inconsistent only and temp anno-
tations. LCLint produces two messages:

sample.c:5: Only storage gname not released before assignment:
gname = pname

sample.c:1: Storage gname becomes only
sample.c:5: Temp storage pname assigned to only: gname = pname

sample.c:3: Storage pname becomes temp

The first message reports a memory leak. Because gname is de-
clared using the only annotation, gname is the only reference to an
object and after the assignment the storage used by this object can
never be reclaimed.

The second error warns of an anomaly that could lead to problems.
The only reference gname now references shared storage. If the
caller deallocates the actual parameter, gname will become a dead
pointer.

One way to fix the problem would be to assign to gname a copy of
the object pointed to by pname. Another fix would be to change the
declaration of pname from temp to only. This would lead to other
messages reporting places where setName is called with an actual
parameter that is not an unshared reference or where the value of
the actual parameter is used after the call to setName.

In real programs it is sometimes necessary to use weaker assump-
tions about memory use. The owned annotation denotes a refer-
ence with an obligation to release storage. Unlike only, however,
other external references (marked with dependent annotations)
may share this object. It is up to the programmer to ensure that the
lifetime of a dependent reference is contained within the lifetime
of the corresponding owned reference.

Additional annotations provided for handling reference counted
storage, unfreeable shared storage, and exposure for internal refer-
ences are described in [3].

Aliasing

Program errors often result when there is unexpected aliasing be-
tween parameters, return values, and global variables. Since alias-
ing problems sometimes lead to deallocation errors, the annotations
provided for detecting allocation anomalies also detect many of
the common aliasing anomalies. Two additional annotations are
provided to improve alias analysis and to detect other problems
involving aliases.

The returned qualifier can be used in a formal parameter decla-
ration to indicate that the return value may alias this parameter. It
may be used in conjunction with the allocation qualifiers, and is
commonly used with temp to indicate that no new aliases for the
parameter will be created except for the return value.

The unique qualifier is similar to only except it does not transfer
the obligation to release storage and does not prevent aliasing that
is invisible to the called function.

1 typedef /*@null@*/ struct _list
2 {
3 /*@only@*/ char *this;
4 /*@null@*//*@only@*/ struct _list *next;
5 } *list;
6

7 extern /*@out@*//*@only@*/ void *
8 smalloc (size_t);
9

10 void
11 list_addh (/*@temp@*/ list l,
12 /*@only@*/ char *e)
13 {
14 if (l != NULL)
15 {
16 while (l->next != NULL)
17 {
18 l = l->next;
19 }
20

21 l->next = (list)
22 smalloc (sizeof (*l->next));
23 l->next->this = e;
24 }
25 }

Figure 5: Buggy list addh implementation.

5 Analysis

The annotations and type definitions determine the initial dataflow
values of variables and constrain the acceptable values for parame-
ters, global variables, and function results at interface points. Three
values are associated with each reference: the definition state (de-
fined, partially defined, allocated, etc.), the null state (definitely
null, possibly null, not null, etc.), and the “allocation” state (cor-
responding to the allocation annotation, e.g., only, temp). These
values may change when assignments or function calls occur in the
program. An anomaly is reported if values are inconsistent at an
interface point.

Figure 5 shows a buggy program to add a node at the end of a linked
list. There are two problems: the case where the parameter l is
null is not handled correctly and the next field of the new node
allocated on line 21 is never defined. Figure 6 shows the control
flow graph that corresponds to list addh. The circled numbers
are used to refer to execution points.

Point 1 is the function entry point. Here, the dataflow values are
set according to the annotations and type definitions. For parameter
l, the type definition for list has a null annotation so its null
state is possibly-null. It has no definition annotation, so it
is completely-defined. Because of the temp annotation, its
allocation state is temp. Similarly, the parameter e is characterized
as completely-defined, not-null, and only.

Since the function parameter may be assigned to a new value in the
function implementation, we need a way of distinguishing a refer-
ence that corresponds to the actual parameter from the parameter
inside the function body. We introduce a local variable l to repre-
sent the parameter in the function body. In this discussion, we use
l to refer to the local variable and arg1 to refer to the externally
visible parameter. At the function entrance, l aliases arg1.

At point 2, the null state of l is not null. Because of the if statement
in line 14, we know at compile-time that l is non-null if point 2 is

Function Entrance 1

16: while (l->next != NULL)

2

true false

true

18: l = l->next

21: l->next = smalloc (...)

23: l->next->this = e

false
3

4
5

6

7

8

9

10

Function Exit

14: if (l != NULL)

11

Figure 6: Control flow graph for list addh.

reached. Conversely, at point 3 we know that l is null.

The while loop is treated identically to an if statement — there is
no back edge to represent normal loop execution. This means the
analysis can be done efficiently without any need to do iteration.
This results in a less accurate approximation for the actual pro-
gram execution than would be achieved using an iterative dataflow
analysis, but it is good enough for the kinds of analyses we do here.

The body of the while loop assigns l->next to l. At point 6, l
may alias arg1->next. At point 7, the branches merge. The only
difference is that on the true branch l aliases arg1->next and on
the false branch l aliases arg1. The possible aliases at confluence
points is the union of the possible aliases on each branch. So, at
point 7, l may alias arg1 or arg1->next. In reality, l may alias
arg1->nexti for any i >= 0 (i.e., the loop may be executed any
number of times). Since LCLint does not model executions over
the loop back edge, the only aliases of l that are detected are arg1
and arg1->next.

At line 21, the result of a call to smalloc is assigned to l->next.
The return value of smalloc is annotated out and only, so after
the assignment (point 8) l->next is characterized as allocated,
non-null, and only. Since l->nextmay alias arg1->next (and
arg1->next->next), the state ofarg1->next is alsoallocated,
non-null, and only.

The change in definition state propagates to its base reference, l
(and arg1, because of aliasing). Before the assignment, l was
completely defined. Now, we have assigned storage derivable from
l to a value that is incompletely defined, so l is now characterized
as partially-defined.

Line 23 assigns e to l->next->this. Before the assignment, e
is defined, not-null, and only. The assignment transfers the
obligation to release storage, since the this field of the list type

is annotated with only. So, the allocation state of e becomes kept.
This means its obligation to release storage has been satisfied, but it
can still be safely used. (If it had been passed as an only parameter
instead, its definition state would become dead to indicate that is
may not be used.) Since e aliases arg2, the allocation state of arg2
is also set to kept, and the obligation to released storage implied
by the only annotation on the parameter e has been satisfied on
this path. After the assignment in line 23, l->next->this is
defined. As before, this definition propagates to its base storage,
and l->next and l (which is already partially-defined) are
marked partially-defined.

At point 10, the two branches merge. On the true branch, the
allocation state of e is kept. On the false branch, it is only. This
is a confluence error since there is no sensible way to combine the
allocation states — one means the storage must be released, and
the other means it must not be released. LCLint reports this as a
program anomaly. To prevent further errors, the allocation state of
e is set to a special error marker.

Also at point 10, we need to merge the dataflow values associ-
ated with l and arg1. On the true branch from point 9, l and
l->next arepartially-defined,l->next->this isdefined,
and l->next->next is undefined. On the false branch, l is
completely defined. Definition states are combined using the
weakest assumption. Hence, at point 10, l and l->next are
partially-defined, and l->next->next is undefined. The
definition states for arg1 and its derived storage are handled simi-
larly.

Point 11 is the function exit. LCLint checks that the function
implementation satisfies the external constraints. One implicit con-
straint is that arg1 must be completely defined when the call re-
turns. Since the definition state of arg1 is partially-defined,
LCLint checks that all storage derivable fromarg1 is defined. Since
arg1->next->next is undefined, LCLint produces an error re-
porting an incomplete definition anomaly.

6 Example

This section demonstrates how annotations can be added to an
existing program, thereby improving its documentation and main-
tainability, and detecting errors in the process. For this example,
we use the toy employee database program (1000 lines of source
code and 300 lines of interface specifications) described in [5]. In
[2], we described how LCLint without dynamic memory checking
was used on the original database program. Here, we start with the
database program after correcting the errors described there. (For
information on obtaining the complete code used in this example,
see Appendix A.)

We start with a program with no annotations. LCLint’s interpre-
tations of declarations with no annotations are chosen to make it
possible to begin finding errors in an existing program without hav-
ing to spend a lot of time adding annotations or being overwhelmed
by messages. The default interpretations can be controlled by flags,
to better suit a particular program.

The interpretation of a declaration with no null pointer or definition
annotation is chosen so that the interpretations when annotations
are missing place the strictest constraints on actual parameters and
return values — they may not be null, and must be completely
defined. LCLint checking will alert the programmer to places where
this is not the case. These may be errors in the code or places where
a null or out annotation should be added.

An unqualified formal parameter is assumed to be temp storage.
This places the weakest constraints on actual arguments, but con-
strains how the parameter may be used in the function implementa-

typedef struct _elem {
eref val; struct _elem *next;

} *ercElem;

typedef struct {
ercElem *vals; int size;

} *erc;
...

16 erc erc_create (void) {
17 erc c = (erc) malloc (sizeof (*c));
18

19 if (c == NULL) {
20 error ("malloc returned null");
21 exit (EXIT_FAILURE);
22 }
23

24 c->vals = NULL;
25 c->size = 0;
26 return c;
27 }

Figure 7: erc create from erc.c

tion. Implicit only annotations can also be applied to return values,
structure fields and global variables. For this example, we have not
used any of the implicit only annotations, so we will see how the
checking leads us to make these annotations explicit.

Adding annotations is an iterative process. With each iteration,
LCLint detects some anomalies, annotations are added or discov-
ered bugs are fixed, and LCLint is run again to propagate the new
annotations up the call chain. The rest of this section will show
how different types of checking lead us to add annotations and
make changes to the code. Only a few annotations are necessary to
get useful checking, to detect a few real problems in the code, and
to enhance the interface documentation.

Null Pointers

One anomaly involving null pointers is reported for the function
erc create (shown in Figure 7):

erc.c:26: Null storage c->vals derivable from return value: c
erc.c:24: Storage c->vals becomes null

The vals field of c was assigned to NULL on line 24. In this case,
the code is correct and the reported anomaly suggests that a null
annotation is needed on the vals field in the type definition for
erc:

typedef struct {
/*@null@*/ ercElem *vals; int size;

} *erc;

Running LCLint after this change detects three new anomalies. One
is in the macro definition of erc choose for the parameter c of type
erc:

erc.h:14: Arrow access from possibly null pointer c->vals:
(c->vals)->val

Since we have added the null annotation to the vals field of erc,
c->vals may be a null pointer. So, LCLint detects an anomaly
when it is dereferenced by the arrow operator. The specification for
erc choose includes a requires clause6 constraining the size of the

6A requires clause in an LCL specification places constraints on the caller before
the function is called. If the requires clause is not satisfied, the behavior of the
implementation is unconstrained. The requires clause is not interpreted by LCLint.

collection to be greater than 0. From this it follows that the value
of c->vals is not null. An assertion is added to the code to check
that c->vals is not null.

The other two anomalies involve similar problems in other func-
tions. While none of these indicate a bug in the code because of the
requires clauses, they do draw our attention to places where there
are dependencies on external constraints and the added assertions
may be helpful in debugging clients that do not satisfy the requires
clauses. The checking has directed us to places where adding
assertion checks would be good defensive programming practice.
Further, the null annotation on the vals field of the type definition
serves as useful documentation.

Allocation

Next, we look for errors involving deallocation. We are starting with
a program with no allocation annotations, but using a standard li-
brary with annotated versions of malloc and free. For expository
purposes, we run LCLint with a command line flag (-allimponly)
that turns off the implicit only annotations on return values, global
variables, and structure fields. Hence, LCLint will produce a mes-
sage everywhere newly allocated storage is returned or external
storage is deallocated. (It would be impractical to check a real
program without using implicit annotations.) Seven anomalies are
detected by LCLint, all resulting from missing only annotations.

Two messages concern the return statements in erc create and
erc sprint. Both functions return a pointer that was the result of
a call to malloc. Since the function result has no only annotation,
the obligation to release this storage is not transferred to the caller
and a memory leak is suspected. Hence, only annotations are
added to the function return value declarations.

Four messages concern assignment of allocated storage to fields of
a static variable (eref Pool in eref.c). These are fixed by adding
only annotations to two fields of the type declaration.

The remaining message concerns the call to free in erc final:

erc.c:49: Implicitly temp storage c passed as only param: free (c)

Since c is an external parameter with no only qualifier, an anomaly
is detected when it is passed to free since it matches a formal
parameter declared with an only annotation. The only annotation
needs to be added to the parameter declaration for erc final.

After the changes, LCLint detects six new anomalies. They result
from the only annotations that were added to erc propagating to
calling functions. They are similar to those we have already seen and
can be fixed by adding only annotations to function declarations.

As before, the new annotations propagate up the call chain to pro-
duce more messages. Six memory leaks are detected in the test
driver code where variables referencing allocated storage are as-
signed to new values before the old storage is released. After these
are fixed by adding calls to free, no allocation anomalies are de-
tected by LCLint. If we had not used the flag to disable the implicit
annotations, these six errors would have been found directly. The
only annotations that would be needed are the annotations on the
parameters.

Aliasing

One aliasing anomaly is reported in employee setName (shown in
Figure 8):

employee.c:13: Parameter 1 (e->name) to function strcpy is declared
unique but may be aliased externally by parameter 2 (s)

4 bool
5 employee_setName (employee *e, char *s)
6 {

... (checks size of s)
13 strcpy(e->name, s);
14 return TRUE;
15 }

Figure 8: employee setName from employee.c

The specification of strcpy in the standard library is:

char *strcpy
(out returned unique char *s1, char *s2);

The unique qualifier indicates that s1 must refer to storage that
is not shared by any other parameter or accessible global (in this
case, the parameter s2). This is necessary since the behavior of
strcpy is undefined if the arguments share storage space. Since
the arguments toemployee setName are not qualified, it is possible
that e->name and s refer to the same storage. We add a unique
qualifier to the parameter declaration for s to document that the
parameter must not reference any external storage reachable from
this function. Since there are no global variables, this means the
parameters e and s must not share any storage. Now, if a client
calls employee setName with dependent parameters, LCLint will
report an anomaly.

Summary

A total of 15 annotations were needed to resolve all detected anoma-
lies — one null annotation on a structure field, one out annota-
tion on a parameter (that was detected through complete definition
checking), and 13 only annotations. Of the 13 only annotations,
only 2 would have been necessary if we had set command-line flags
to use implicit annotations. With minimal effort in adding annota-
tions, a few errors in the code were found and the documentation
was improved considerably.

7 Experience

Part of the motivation for this work was my own troubles deal-
ing with memory management in the implementation of LCLint.
LCLint is over 100 000 lines of source code7 and incorporates code
from at least three different authors employing different memory
management styles. The original implementation did not attempt
to deallocate memory completely, and a garbage collector was used
to reclaim storage. Although this was satisfactory as a research
vehicle, it had practical disadvantages and limited the number of
platforms to which LCLint could be easily ported. Several earlier
attempts to fix LCLint’s memory management by myself and oth-
ers had failed. One frustrated person who attempted to port LCLint
wrote

...its implementation with regard to memory manage-
ment is horrible. Memory is allocated willy-nilly with-
out any way to track it or recover it. Malloced pointers
are passed and assigned in a labyrinth of complex in-
ternal data structures. It becomes impossible to find

7LCLint does many checks not described in this paper (and not related to dynamic
memory management). Approximately 7000 lines of code are directly related to the
checks described here.

their true scope, let alone determine when they might
be safely freed. [7]

We used the annotations and associated checking described in this
paper to make substantial improvements to LCLint. Garbage col-
lection was replaced by explicit memory deallocation, producing a
more portable system with improved performance. Numerous bugs
relating to null pointer dereferences, incomplete definition (usually
forgetting to initialize a structure field), and aliasing were detected.
Memory annotations also enabled certain efficiency improvements
(such as sharing storage or using NULL to represent the empty string)
that were considered too risky to attempt without them. Further,
the resulting system is clearly documented with checked memory
annotations. This allows maintenance changes to be made easily,
and their external effects to be detected quickly.

Annotations were added in an iterative process, similar to that de-
scribed in Section 6. Running LCLint on the code with no anno-
tations produced on the order of a thousand messages. Nearly all
of these messages, however, were quickly eliminated by adding an
annotation or making a small change to the code (usually adding a
missing free to fix a storage leak). Often, adding a single annota-
tion on a type declaration or parameter would eliminate dozens of
messages.

Since LCLint was run repeatedly on the code after changing anno-
tations, it was important that the checking was efficient. It takes
less than four minutes (on a DEC 3000/500) to check the entire
program. During the later phases, checking became more modular
as I focused on subtle problems in a single file. By using libraries
to store interface information, a representative 5000 line module is
checked in under 10 seconds.

It took a few days (split over several weeks) to add all the annotations
and fix the detected problems. This compares favorably to more than
a week spent previously trying to fix these problems unsuccessfully
using run-time methods. For the most part, adding annotations is
a fairly methodical process, and I hope future work will make it
possible to automate a large portion of it.

In the course of checking, the need for the relaxed checking an-
notations (relnull, partial, and reldef) became apparent.
There were situations where simple annotations were not expressive
enough to describe constraints, so checking needed to be relaxed
to eliminate spurious messages. This eliminates many messages
without much effort, but it also means less checking is done and
more errors may be undetected.

Some of the reported messages were considered spurious. There
were 75 places where stylized comments were used to suppress
messages relating to checks described in this paper. The most
common problem was where different branches of an if statement
used storage inconsistently. Many of these were places where the
code was attempting to recover from a failed assertion or handling an
error condition (e.g., a new object denoting an error is returned from
a function that does not normally return only storage), so LCLint
was correct in reporting an anomaly but it was not considered a bug
that needed to be fixed. The remaining spurious messages resulted
from places where either LCLint’s alias analysis is not good enough
to handle the code correctly, LCLint’s execution flow analysis is not
good enough to determine that a particular path through the code
will never be taken, or where the code violates constraints imposed
by the annotations in a way that I believed to be safe because of
external constraints. The dangers of suppressing messages became
clear when testing revealed that one of these suppressed messages
indicated a real bug.

After checking was complete, I tested the program with explicit
deallocation. As expected, not all memory management bugs had
been detected statically. There were a few errors involving incor-

rectly freeing storage resulting from pointer arithmetic, two errors
resulting from freeing static storage,8 two errors resulting from
missing annotations in the standard library specification, and one
error involving a complex dependency on a global variable. Then,
run-time tools were used to look for remaining memory leaks. Sev-
eral were detected, relating to storage reachable from global and
static variables that was not deallocated. Since LCLint does not do
interprocedural program flow analysis, it cannot detect failures to
free global storage before execution terminates.9

8 Conclusion

In this paper, we have seen how annotations can be added to make
assumptions about memory management explicit at interface points.
The annotations improve program documentation, and can be used
by a static checker to detect anomalies that typically indicate bugs
or incorrect annotations. We were able to use this approach to
fix memory allocation problems in a large program where ad hoc
and run-time checking methods had failed. Annotations and static
checking made it possible to fix memory management problems in
a systematic, goal-directed manner. The memory annotations were
a great help in maintaining and developing code. It is easy to see
the effect of a change in memory sharing by changing an annotation
and running LCLint.

Static checking cannot detect all errors, and certainly does not
eliminate the need for run-time checking and extensive testing.
However, a combination of static checking using annotations and
run-time checking and testing can help produce reliable code with
less effort than traditional methods.

We do not yet have experience using this approach as a new program
is developed. I suspect adding annotations while a new program is
being developed would not pose a major overhead. Programmers
should consider their assumptions about external constraints, and
the annotations provide a convenient and precise way of document-
ing some of these assumptions.

Acknowledgements

I thank John Guttag for help with this research and writing this
paper, Thomas Reps from the program committee for constructive
comments well beyond the call of duty, Raymie Stata for reviewing
a draft of this paper, and Sheryl Risacher for help with the abstract.

References

[1] Hans-J. Boehm and Mark Weiser. Garbage collection in an
uncooperative environment. Software Practice and Experi-
ence, September 1988.

[2] David Evans. Using Specifications to Check Source Code,
MIT/LCS/TR-628, MIT Laboratory for Computer Science,
June 1994.

[3] David Evans. LCLint User’s Guide, Version 2.0. February
1996. (http://larch-www.lcs.mit.edu:8001/larch/lclint/guide/)

[4] David Evans, John Guttag, Jim Horning and Yang Meng
Tan. LCLint: A tool for using specifications to check code.
SIGSOFT Symposium on the Foundations of Software En-
gineering, December 1994.

8LCLint has since been improved to detect freeing offset pointers and static storage.
9If the program is run in an environment where all memory is reclaimed when

execution exits, this is not a serious problem.

[5] J.V. Guttag and J.J. Horning with S.J. Garland, K.D. Jones,
A. Modet, and J.M. Wing. Larch: Languages and Tools for
Formal Specification, Springer-Verlag, 1993.

[6] Laurie Hendren and Joseph Hummel. Abstractions for recur-
sive pointer data structures: improving the analysis and trans-
formation of imperative programs. SIGPLAN Conference on
Programming Language Design and Implementation, 1992.

[7] Posting in comp.os.linux, August 1994.

[8] Robert Strom and Nagui Halim. A new programming
methodology for long-lived software systems. IBM-RC
9979, IBM T. J. Watson Research Center, March 1983.

[9] Yang Meng Tan. Formal Specification Techniques for Pro-
moting Software Modularity, Enhancing Software Documen-
tation, and Testing Specifications, MIT/LCS/TR-619, MIT
Laboratory for Computer Science, June 1994.

[10] Gray Watson. Debug Malloc Library, November 1994.
(ftp://ftp.letters.com/src/dmalloc/docs/dmalloc.ps)

[11] Benjamin Zorn and Paul Hilfinger. A memory allocation
profiler for C and Lisp programs.

(ftp://gatekeeper.dec.com:/pbu/misc/mprof-3.0.tar.Z)

A Availability

The web home page for LCLint is
http://larch-www.lcs.mit.edu:8001/larch/lclint/index.html

LCLint can be downloaded from
http://larch-www.lcs.mit.edu:8001/larch/lclint/download.html

or obtained via anonymous ftp from
ftp://larch.lcs.mit.edu/pub/Larch/lclint/

Several UNIX platforms are supported and source code is available.

LCLint can also be run remotely using a form at
http://larch-www.lcs.mit.edu:8001/larch/lclint/run.html

The example described in Section 6 is found at
http://larch-www.lcs.mit.edu:8001/larch/lclint/samples/db/

To receive announcements of new releases, send a (human-readable)
message to lclint-request@larch.lcs.mit.edu.

B Memory Management Annotations

All annotations may be used in either an LCL specification or in a C
source or header file preceded by /*@. Unless excluded explicitly,
annotations can be applied to a type definition, variable declara-
tion, parameter declaration, or function return value. At most one
annotation in any category can be used on a given declaration.

Null Pointers

null May have the value NULL.

notnull Not permitted to have the value NULL. This is implied if
there is no annotation, but may be necessary for some decla-
rations to override null in a type definition.

relnull Relax null checking. Value assumed to be non-NULL
when it is used, but may be assigned to NULL.

De�nition

out Referenced storage need not be defined. For parameters, this
means passed memory must be allocated but not necessarily
defined. For return values, it means the result is allocated but
not necessarily defined.

in Referenced storage is completely defined. (Normally, this is
assumed if no other definition annotation is used. Flags can
be used to allow the out annotation to be assumed for unan-
notated parameters where it would prevent a message.)

partial Referenced storage is partially defined. No errors are
reported when incompletely defined storage is transferred as a
partial, and no error is reported when storage derived from
a partial is used.

reldef Relax definition checking. Value assumed to be defined
when it is used, but need not be assigned to defined storage.

Allocation

only Refers to unshared storage; confers obligation to release this
storage or transfer the obligation.

keep Like only, except that the caller may safely use the reference
after the call. (Function parameters only.)

temp Temporary storage. Function may not deallocate or add new
external references to storage. (Function parameters only.)

owned Refers to storage that may be shared by dependent refer-
ences. This reference is responsible for releasing the storage.

dependent Refers to storage that may be shared by an owned
reference. This reference may not release the storage.

shared Refers to arbitrarily shared storage; may not be deallo-
cated. (For use with garbage collectors.)

Parameter Aliasing

unique May not share storage with any other function parameter
or accessible global. (Function parameters only.)

Returned References

returned A reference to the parameter may be returned. (Func-
tion parameters only.)

Exposure

observer Returned storage must not be modified (this disallows
deallocation also) by caller. (Return values only.)

exposed Mutable returned storage from internal abstract type or
passed mutable storage assigned to field of abstract type. May
be modified but not deallocated. (Return values and function
parameters only.)

