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Abstract. Concurrent languages have offered parallel loop constructs
for some time to allow a parallel computation to be expressed in a sim-
ple and straightforward fashion. Modern programming languages include
exceptions to allow for clean handling of errors or unexpected conditions,
but few concurrent languages incorporate exception handling into their
models for parallel loops. As a result, programmers that use parallel
loops cannot use exceptions to simplify their programs. We present a
semantics for handling exceptions in parallel loops that is predictable
and that reduces to the familiar semantics for sequential loops. This se-
mantics provides guarantees about the behavior of parallel loops even in
the presence of exceptions, and facilitates the implementation of parallel
algorithms. A Java library implementation of this semantics is presented,
along with a description of a source-to-source translation.

1 Introduction

Exceptions generated in parallel loops create problems that can be difficult to
resolve. Parallel loop semantics allow more than one iteration of a loop to be ex-
ecuted at a time. Because any statement can generate an exception, this makes
it possible for more than one unhandled exception to be raised concurrently in
the same loop, a situation that does not occur in sequential loops. However, the
exception semantics of most languages do not allow more than one exception
to be raised at a time. It is not clear how to deal with this situation in a con-
sistent way. It may not be consistent with the language’s exception model to
propagate both exceptions; if only one exception is allowed, one must be chosen
and the others ignored, and there may be consequences for ignoring an excep-
tion generated by the program. Although sequential loops simply stop executing
once an exception occurs, there are several ways abnormal termination could
be handled in the parallel case, and one must be chosen that is reasonable and
understandable.

Exception handling should be well-integrated with other parts of the language
and exceptions should be handled in a consistent way regardless of the context
in which they are generated. One proposed way of dealing with the problem of
exceptions in parallel loops is simply to forbid them, and treat any exception that
reaches the top level of a parallel loop as a fatal error. This is an unsatisfactory
solution because exceptions in the context of a parallel loop are not handled in a



manner that is consistent with the way exceptions in other contexts are handled,
and it does not allow them to be caught by handlers higher in the call chain than
the parallel loop, even if matching handlers exist. Ideally, an uncaught exception
generated in a parallel loop should propagate out of the loop like any other
exception, and be handled in a way that is consistent with the way exceptions
are handled in other contexts.

Even in the event of exceptions, a loop may produce partial results that are
still useful, so it is important to be able to make strong assertions about the
state of the program after a parallel loop has terminated exceptionally. A good
semantics for exception handling in parallel loops should provide a way to assert
strong postconditions for both normal and exceptional loop terminations.

We propose a semantics for exceptions in parallel loops that solves these prob-
lems by always propagating the exception that occurs structurally first in the
loop, not the exception that occurs first in time. This removes the nondetermin-
ism that results when more than one iteration of the loop throws an exception,
and allows exceptions to be handled in a manner that is consistent with the way
exceptions are handled in sequential loops. It allows stronger postconditions to
be asserted about the result of the loop even in the case when an exception is
thrown, because it allows the exception handler to know that all structurally
prior iterations of the loop have completed without exceptions.

The semantics presented here should be useful for scientific computing and for
applications where parallelism in the program is used to improve performance,
and where partial results are useful. It allows a large class of sequential loops to
be parallelized with predictable and consistent semantics even in the presence
of exceptions. It may be useful for debugging these kinds of applications, even
where partial results are not useful, because it allows determinism in the case
of multiple exceptions. It may also be useful in libraries where exceptions are
caused not by programming errors in the library, but by bad data passed to
the library. Because it integrates the exception semantics with the concurrency
constructs, a programmer need not know whether a method in a library uses
parallel loops in order to write correct code that uses exceptions.

Our semantics is most likely not useful for systems programming or real-
time systems where concurrency is an inherent part of the problem to be solved,
rather than a means to better performance. These kinds of computations do
not benefit from parallel loops, and are better expressed as separate routines
executing concurrently rather than one loop executing in parallel. The kind of
concurrency normally provided by Java Threads [1] or Ada tasks [2] is probably
more appropriate for this kind of system.

2 Parallel Loops

A parallel loop is a for loop in which the iterations of the loop execute con-
currently rather than sequentially. When the program reaches a parallel loop it
spawns multiple threads to execute the iterations of the loop, and requires that
all threads complete before the program continues with the next statement. Each



thread within the loop receives its own copy of the iteration variable so that the
threads can perform independent computations. For example, the following loop
computes the vector sum of two arrays in parallel:

parfor (int i=0; i<N; i++)
alil = b[i] + cl[il;

Each iteration of the loop has its own value for ¢ and operates on a different
part of the data. Assuming that a does not share storage with b or ¢, all iterations
of the loop can execute simultaneously. The program does not return to the
surrounding block and continue with the next statement until all iterations have
completed. This particular loop can be executed efficiently in parallel because it
has no data dependencies between iterations.

Parallel loops may be either synchronous or asynchronous. Synchronous loops
imply synchronization between statements in different iterations of the loop; the
form of the implied synchronization varies from language to language, but all
generally require each iteration to execute the same statement at the same time.
A Fortran forall loop containing a single assignment statement as its body, for
example, requires that the value of the right-hand sides of the assignments must
be computed first for every iteration of the loop before any actual assignments are
made, thus avoiding potentially harmful effects. This semantics is particularly
well-suited to vector machines.

Asynchronous loops do not have any implicit synchronization between state-
ments in different iterations. This allows the iterations of the loop body to pro-
ceed independently of one another. Explicit synchronization statements can be
used to provide a stronger ordering on loops that require it. Asynchronous loop
semantics are well-suited to systems that implement parallelism as threads that
are scheduled independently. Asynchronous loops have appeared in Composi-
tional C++ [3], Modula-3* [4], and other parallel languages.

Some implementations, such as the forall loops in Fortran 95 [5], require
that the number of iterations of the loop, and their index values, be known when
the loop starts; this simplifies the implementation and allows all iterations to
start immediately, at the cost of flexibility. Other parallel loop constructs, such
as the parfor construct in Compositional C++, do not have this restriction,
and have the control portion of the loop execute sequentially while spawning
threads to execute the body of the loop [3]; this allows loops where the number
of iterations is not known in advance, or that do not have integer indices.

3 Exception Semantics for Parallel Loops

Although parallel loops have been implemented in a number of languages, few
have been implemented in languages that have exceptions, and even fewer have
attempted to address the semantics of an uncaught exception that occurs within
a parallel loop. Exceptions in parallel loops introduce several difficult situations
that must be addressed, especially when exceptions occur within more than one
iteration of the loop. When an exception occurs within a sequential loop, the



loop simply stops executing and the exception is propagated to the calling block;
because of sequential loop semantics, the handler may assume that this was the
only exception that occurred, and that all iterations up to the exception com-
pleted normally. When an exception occurs within a parallel loop, the iteration
that generated the exception necessarily stops executing, but it is less clear what
to do about the other iterations, and how or if the exception should be propa-
gated. The question of what to do if more than one iteration of the loop throws
an exception is a difficult issue as well, because the exception semantics of most
languages do not allow two exceptions to be raised simultaneously.

3.1 Goals for Exception Semantics

A simple approach to the problem of exceptions in parallel loops is to ignore
uncaught exceptions in concurrent code, or to forbid them altogether. The de-
signers of Ada, when confronted by the issues exceptions raise in a concurrent
context, chose to ignore uncaught exceptions that reach the top level of a task.
If an uncaught exception occurs in an Ada task, the task terminates without
handling the exception or passing it on to an outer block that can handle it; this
policy was chosen to prevent the problems that would result if the exception
was passed to a parent task asynchronously [6]. The designers of pSather chose
to forbid exceptions in a concurrent context [7] [8] [9]. These solutions deny
concurrent programmers the expressive and robustness benefits of exceptions.

Programmers should be able to use exceptions in concurrent constructs as
they would normally in the programming language, and be able to reason about
their behavior. A good semantics for uncaught exceptions in parallel loops should
be consistent. If the exception which is propagated from the loop is chosen non-
deterministically, this could make the program difficult to reason about. Some
forms of nondeterminism are unavoidable and even desirable in an asynchronous
loop, because the parallel loop semantics impose only a partial order on the
statements in the loop; however, the ability to predict and reason about the
exception, if any, produced by the loop would make programs easier to write.

In order to recover from an exception in a loop, it is important to know the
state of the program after loop termination. A good exception semantics should
allow a strong postcondition to be asserted about the state of the program after
an exception has been thrown. This postcondition can then be assumed by the
exception handler, which can use the information in its recovery.

An exception semantics should also enable a clear termination condition for
the loop. If an iteration within a loop terminates with an exception, and other
threads within the loop depend on the normal completion of that iteration,
a deadlock could result. A good exception semantics should provide a way to
prevent this sort of problem from occurring whenever possible.

3.2 Exception Propagation

Java, C++, and other object-oriented languages which have exceptions can only
raise one exception at a time. In a parallel loop, however, it may be possible to



raise multiple exceptions within the same block of code. It is important to have
a clear semantics for what should happen in this case.

One possibility is to handle each exception in the loop as it happens, while
allowing other iterations in the loop to continue, possibly generating more excep-
tions. This solution would create consistency problems because it would allow
code within the loop to run at the same time as code in outer blocks, and could
even result in destroying stack frames that are part of the loop’s context. This
would create code safety problems, and is inconsistent with the concurrent loop
semantics defined in the previous section, because the semantics state that all
iterations of the loop must complete before any outside exception handler begins.

Another possibility is to merge all of the exceptions together into a single
exception that contains an array storing the exceptions generated by each it-
eration of the loop. This allows all exception information to be kept. The cost
of this approach is that each iteration of the loop must be allowed to run to
completion in order to determine which exceptions will be thrown. This could
result in deadlock if there are dependencies between events in different iterations
of the loop. Code written to catch and handle exceptions would need to be more
complicated, because either catch expressions would need to be able to match
patterns in the array, or some mechanism would be required to apply the chain
of exception handlers to each exception in the array. This would be particularly
complex if some exceptions were handled higher in the call chain, while others
were handled at lower levels.

A scheme for collapsing multiple exceptions into a single exception in a
Modula-3* parallel loop is described by Heinz [10]. If a single exception is gener-
ated by the loop, or if all exceptions in the loop are identical, a single copy of the
exception is propagated out of the loop. If the exceptions are not all identical,
a special exception is generated to note the inconsistency. This approach allows
multiple exception cases to be handled in languages that can only raise a single
exception at a time. However, it requires all iterations of the loop to complete,
and requires programmers to handle the case of inconsistent exceptions.

In many cases, if multiple exceptions occur in a parallel loop, the exceptions
are all related to the same problem, and it is only necessary to propagate one of
the exceptions to ensure a proper recovery; other exceptions can be discarded.
Philippsen and Blount describe an implementation of asynchronous parallel loops
in Java that uses this approach [11] [12]. The first exception that occurs in time
is propagated out of the loop; other iterations are canceled, and any exceptions
they generate are ignored. This approach loses some information and introduces
nondeterminism in the exception that is returned, but keeps within the single-
exception model of the language, and does not require every iteration of the loop
to complete.

Our approach is to return not the first exception that occurs in time, but
the exception that occurs structurally first in the loop. This removes the non-
determinism in the exception that is propagated, and loops can be written in
a way that guarantees that the most important exception, if any, will be the
one that is propagated out of the loop. Our semantics requires structurally prior



iterations of the loop to complete so that any structurally earlier exceptions can
be obtained. Structurally later iterations, however, can be canceled, thus elimi-
nating deadlock in situations where no iteration of the loop waits for an event
in a structurally later iteration.

3.3 Cancellation and Loop Termination

In order to determine what exception semantics is most appropriate for parallel
loops, the termination condition imposed by each exception semantics must be
considered. A straightforward solution is to require all iterations of the loop to
terminate, even in the event of an exception. This approach is used by Heinz in
Modula-3* loops [10]. In cases where some iterations of the loop wait or depend
on events that occur in other iterations, the loop may deadlock. In particular, if
an iteration of the loop terminates with an exception before creating an event
that some other iteration is waiting for, the loop will deadlock because the
second iteration is waiting for an event that will never occur. This situation
can be created by the use of mutual exclusion for a shared resource, which is
common in asynchronous parallel programs. Requiring all iterations of the loop
to terminate even in the event of an exception is practical if it is known that
there is no communication or explicit synchronization between iterations, but
many loops do not satisfy this condition, so this solution cannot be used for a
general parallel loop.

Another solution is to cancel some iterations of the loop in the event of an
exception in order to guarantee that the loop terminates. One approach is to
cancel all iterations in the loop other than the one that generated the excep-
tion. This approach guarantees that the loop will terminate in the event of an
exception. Because it cancels some iterations, this cancellation strategy is not
consistent with any approach to exception propagation that requires all itera-
tions to complete. In addition, because this approach cancels both structurally
prior and structurally later iterations, it cannot be used if the semantics requires
the structurally first exception from the loop to be propagated. This approach
is consistent with an exception propagation semantics that requires the first
exception in time to be propagated.

Because canceling structurally prior iterations is inconsistent with a seman-
tics that propagates the structurally first exception, we adopt a cancellation
strategy that cancels structurally later iterations only. Because it requires some
iterations of the loop to complete, it can result in deadlock if an iteration waits
for an event that is generated by a structurally later iteration; however, if no iter-
ation waits for an event generated by a later iteration, this cancellation strategy
guarantees that the loop will terminate in the event of an exception, provided
that the structurally prior iterations themselves terminate. This approach is con-
sistent with a semantics that propagates the structurally first exception out of
the loop.



3.4 Loop Postconditions

In order to write correct programs, it is important be able to make assertions
about the state of the program after loop termination, even in the event of an
exception. The exception semantics directly affects the kinds of postconditions
that can be asserted about a loop that terminates with an exception.

Because different iterations of a parallel loop may share some context and
data, and there is no explicitly defined order between events in one iteration
of the loop and events in another, the postcondition that can be asserted of
one iteration of the loop is not necessarily the same as the strongest postcon-
dition that could be asserted of the same sequence of statements if executed in
a sequential context. The postcondition for each iteration of the loop must be
true for any possible interleaving of the different iterations of the loop and any
potential interactions between them, and may not assume anything about the
progress of other iterations. For example, consider the following loop:

parfor (int i=0; i<100; i++)
Ali] = ix*i;

If this loop were executed sequentially, the postcondition of iteration ¢ = 0
would be A[0] = 0 with all other elements of A unchanged, or A[0] = 0 A Vi :
i >0: A[i] = Appeli]. It it were executed concurrently, however, the strongest
postcondition that can be asserted for iteration i = 0is A[0] = 0A Vi : 0 <
i < 100 : (A[i] = Apreli] V A[i] = i?) AVi = i >= 100 : A[i] = Ap[i]. This
weaker postcondition takes into account the fact that the other iterations may
not have completed by the time iteration ¢ = 0 has. If different iterations of the
loop attempted to write different values to the same variable without explicit
synchronization, the postconditions for all iterations of the loop must account
for each possible ordering of the writes.

The loop guarantee is the strongest condition that can be asserted of the
loop at all times, and must allow for every possible interleaving of iterations,
and every possible partial result. For this loop, this is (Vi : 0 < i < 100 : A[i] =
Apre[i] V Ali] = i%) A (Vi 24 > 100 : A[i] = Apreli]), expressing the fact that any
combination of the iterations may have completed.

The postcondition of the loop as a whole is the conjunction of the loop
guarantee and the postconditions of all iterations of the loop that are known
to have completed. For the above example, this is (Vi : 0 < ¢ < 100 : A[i] =
i) A (Vi =i > 100 : A[i] = Appeli]), assuming that all iterations complete.
The terms in the individual iteration postconditions that expressed uncertainty
about the progress of the other iterations are absorbed when the fact that each
iteration has completed is included in the postcondition.

If one or more iterations of the loop terminate with exceptions, the postcon-
ditions for these iterations may not be true, and they cannot be used in the loop
postcondition. The cancellation strategy may prevent further iterations from
completing, and the postconditions of these iterations may not be used either.
In addition, although the exception propagation policy does not affect which
iterations will complete, it may limit the knowledge the exception handler has



of the completion status of the loop. For any iteration that does not complete,
the strongest postcondition that can be asserted is the uncertainty about how
much progress the iteration made, which includes each potential partial result
of the iteration; this condition of uncertainty is included in the loop guarantee.

If the first exception thrown in time is propagated from the loop, and other
exceptions are ignored, an exception handler may not assume anything about
the termination of other iterations of the loop, regardless of the termination
strategy used. Even if the cancellation strategy allows other iterations of the
loop to complete, it is possible that some of them may terminate exceptionally,
and it would not be safe for the exception handler to assume anything about
them. In this case, no iteration of the loop can be assumed to have completed,
and no postcondition can be asserted of the loop that is stronger than the loop
guarantee.

If the structurally first exception is propagated from the loop, and other
exceptions are ignored, then all iterations structurally prior to the one that
terminated abnormally are known to have completed. However, nothing can be
asserted about the completion status of any other iterations, because any of
them may have terminated exceptionally. If this exception propagation policy
is used, the strongest postcondition that can be asserted of the loop as the
exception handler is entered is the conjunction of the loop guarantee with the
postconditions of all iterations structurally prior to the one that terminated with
the exception. In the above example, if an exception occurred in iteration ¢ = 50,
the exception handler could assume (Vi : 0 <i < 50: A[i] =i®) A (Vi :50<i <
100 : Afi] = Apreli] V Ali] = i?).

Because propagating the structurally first exception in the loop yields the
most useful loop postcondition, and because canceling structurally later threads
in the loop increases the class of problems for which the loop terminates in the
exception case, we propose a semantics for parallel loops that propagates the
structurally first exception. Under this semantics, the effect and postcondition
of a loop that terminates with an exception is determined by the structure of
the loop, not by the accident of its execution.

4 Extending Java with Parallel Loops

We chose to implement this semantics for parallel loops using Java as the base
language. Although Java is not as commonly used for scientific computing as
C++, its language specification includes concurrency, and its class hierarchy in
which all exceptions are derived from a single Throwable type makes it possible
to implement the extensions using a source-to-source translation. Because the
C++ specification does not offer these features, a C++ implementation could
probably not be done as a source-to-source translator. While we chose Java for
its simplicity, we believe these ideas could be implemented in C++ or other
object-oriented languages.

Concurrency in Java is expressed using objects, rather than through a control
flow construct. Each thread of control in the program is implemented as a sep-



arate object that either extends the Thread class or implements the Runnable
interface and has a controlling Thread object. Every object in Java has its own
associated monitor which is used for synchronization. There are no explicit par-
allel constructs similar to parallel loops. This model is well suited for writing
programs with separate, unrelated tasks that execute concurrently, such as hav-
ing one thread compute in the background while another thread handles the user
interface. This technique is used mainly to separate the tasks in an application
and to reduce latency in user interfaces. This thread model is not well suited for
data parallelism, where many threads are to perform the same or similar opera-
tions on different pieces of data as part of the same task, because the constructs
for declaring, starting, and joining tasks are not control flow constructs that can
easily be used in an algorithm description.

In order to define a parfor loop for Java that uses the structured exception
semantics, we must modify the Java language semantics for a for loop. The Java
Language Specification [13] defines a sequential for loop in terms of a condition
Expression, a ForUpdate statement, and a contained body Statement:

— If the Ezpression is present, it is evaluated, and if evaluation of the Fxpres-
sion completes abruptly, the for statement completes abruptly for the same
reason. Otherwise, there is then a choice based on the presence or absence
of the Expression and the resulting value if the Ezpression is present:

o If the Fxpression is not present, or it is present and the value resulting
from its evaluation is true, then the contained Statement is executed.
Then there is a choice:

x If execution of the Statement completes normally, then the following
two steps are performed in sequence:

- First, if the ForUpdate part is present, the expressions are eval-
uated in sequence from left to right; their values, if any, are
discarded. If evaluation of any expression completes abruptly for
some reason, the for statement completes abruptly for the same
reason; any ForUpdate statement expressions to the right of the
one that completed abruptly are not evaluated. If the ForUpdate
part is not present, no action is taken.

- Second, another for iteration step is performed.

x If execution of the Statement completes abruptly, see §14.13.3 below.

o If the Ezpression is present and the value resulting from its evaluation
is false, no further action is taken and the for statement completes
normally.

In order to achieve parallel execution of the loop, we must modify this defini-
tion so that instead of executing the Statement directly, it starts a thread which
executes the Statement concurrently. The Statement thread receives its own copy
of the iteration variable so that it may execute independently of the loop control
and the other iterations. In addition, we must add a rule that states that when
the loop completes, either normally or abruptly, it must wait for all concurrent
Statement threads to complete.



These changes allow the loop to execute concurrently, but further changes
are needed to handle abrupt termination in the event of an exception. Section
14.13.3 of the specification describes abrupt termination of a for loop in the
case of a break or continue statement, and states that “If execution of the
Statement completes abruptly for any other reason, the for statement completes
abruptly for the same reason.” For simplicity, we do not allow break, continue,
or return statements in parfor loops, although they could be introduced in
ways consistent with our semantics. Hence, the only form of abrupt termination
we consider here is through exceptions. In the event of an abrupt termination,
the control portion of the loop should complete immediately, and no further
Statement threads should be started. Any running Statement threads that were
started after the Statement that generated the exception should be interrupted,
which will allow them to terminate cleanly. Once all Statement threads have
completed, the loop should terminate by propagating the structurally earliest
exception.

Together, these changes produce the following specification for a Java parfor
loop:

— First, the parfor control loop is executed:

If the Expression is present, it is evaluated, and if evaluation of the Expres-
sion completes abruptly, the parfor control completes abruptly for the same
reason. Otherwise, there is then a choice based on the presence or absence
of the Fxpression and the resulting value if the Ezpression is present:

o If Expression is not present, or it is present and the value resulting from
its evaluation is true, and no existing Statement thread has terminated
exceptionally, then a thread is started to execute the contained Statement
concurrently with the parfor control. A copy is made of the iteration
variable, the new thread uses the copy.

* Then the parfor control performs the following two steps in se-
quence:

- First, if the ForUpdate part is present, the expressions are eval-
uated in sequence from left to right; their values, if any, are
discarded. If evaluation of any expression completes abruptly for
some reason, the parfor control completes abruptly for the same
reason; any ForUpdate statement expressions to the right of the
one that completed abruptly are not evaluated.

- Second, another parfor control step is performed.

e If the Ezpression is present and the resulting value of its execution is
false, no further action is taken and the parfor control completes nor-
mally.

— If a Statement thread terminates abruptly, all running Statement threads
that were started after the one that terminated abruptly are interrupted.
The parfor control then completes without starting any new Statement
threads.

— When the parfor control completes, it must wait for all of its Statement
threads to complete before terminating. If any errors or exceptions occurred



in the execution of either the parfor control or any Statement threads, the
error or exception from the earliest iteration is propagated as the reason for
the parfor statement’s termination.

To illustrate the semantics, consider the array assignments example intro-
duced in §3.4. If A is an array of size 50 instead of size 100, any attempt to
access elements 50 through 99 will result in an ArrayBoundsException. Be-
cause the iterations of the loop execute in parallel, however, it is not possible to
know in advance which iteration will cause an exception to be thrown first, nor
is it possible, once that statement has been reached, to know which iterations of
the loop have already completed or how much of the array has been filled.

With the proposed semantics for abnormal loop termination, although it
cannot be known which iteration will generate the first exception, we do know
that the structurally first exception will be the one that is propagated, and
that all lower iterations will complete before the loop terminates. This means
that even though we cannot know whether iteration ¢ = 50 or iteration : = 60
will generate an exception first, we do know that the ArrayBoundsException
generated by iteration ¢ = 50 will be the one propagated by the loop, and the
handler for that exception may safely assume that iterations ¢ = 0..49 have
completed and that the array up to the point the exception occurred has been
filled, and this can be asserted as a postcondition of the loop.

The result of an exception with this semantics is consistent with the seman-
tics of a normal sequential for loop. In a normal for loop, only one iteration
of the loop executes at a time, and the iterations execute in order. If an excep-
tion is thrown in one iteration of the loop, the loop terminates immediately and
propagates the exception to the calling block, and no further iterations of the
loop are executed. The program may safely assume that all iterations up to the
iteration that threw the exception have completed normally, and the handler
for the exception can use this information when recovering. Even if there are
additional problems that would have caused higher-numbered iterations of the
loop to throw exceptions, only the first such problem is caught and reported.
Our proposed exception semantics for parallel loops shares these properties: the
lower-numbered iterations of the loop are guaranteed to have terminated nor-
mally, and the exception that is propagated is the one from the lowest-numbered
iteration that threw an exception.

4.1 Handling Exceptions from Parallel Loops

In order for an exception handler to be able to make use of the loop postcondi-
tion described above, it must know how much of the loop completed and what
iteration it was that generated the exception. To support this, we allow catch
and finally clauses to be attached directly to parfor statements. The iteration
variable for the loop remains in scope within these clauses. Because more than
one copy of the iteration variable exists in the parallel loop semantics, we must
specify what the iteration variable in the exception handlers refer to.



If an exception occurs within the body of the parallel loop, the value of the
iteration variable in the handler should be the same as the value of the iteration
variable in the instance of the body that raised the exception. If an exception is
generated in the sequential control portion of the loop, then the handlers should
see the current value of the iteration variable from the control portion when it
stopped. This allows the handler to know which iteration caused the exception,
so that it can use this information when recovering from the exception.

If an exception occurs in the initialization statement of the loop, which
declares the iteration variable, the variable is undefined, and the catch and
finally clauses of the loop cannot be allowed to execute because the result
would be undefined and could introduce a code safety issue. For these purposes,
the initialization statement can be considered to be outside of the loop, and out-
side of any attached catch and finally clauses. Exceptions generated by the
initialization statement can still be handled, but they must be handled outside
of the loop.

If no catch clause attached to the loop handles the exception, the exception
will propagate up the call chain normally, and the information about which it-
eration caused the exception will be lost. An alternative might be to include the
information about which loop and which iteration threw the exception in the
exception object itself. However, this is undesirable. It would require a funda-
mental change to Java’s exception model which would affect much more than
just loops, and that would make the parallel exception semantics inconsistent
with all normal Java programs. Furthermore, it is unlikely that the informa-
tion about which iteration caused the exception would be useful outside of the
context of the loop.

Although an exception handler inside the loop body, rather than outside the
loop, would also have access to the value of iteration variable, such a handler
would not have the knowledge that all iterations of the loop have completed.
An exception handler outside the loop body, but without access to the iteration
variable, would not be able to take advantage of the fact that all structurally prior
iterations have completed normally. The possibility that an exception handler
could use both the value of the iteration variable and the knowledge that all loop
iterations have completed (and structurally prior iterations completed normally)
justifies allowing a special handler to be attached to the loop which preserves
the value of the iteration variable.

4.2 Safe Thread Cancellation

The semantics require that all iterations structurally prior to an iteration that
causes an exception must be allowed to complete, because they may also throw
exceptions, and we want to propagate the exception that is structurally first, not
first in time. Any higher iterations that have not yet started will never be started,
and higher iterations that are already running are interrupted. The purpose of
this is to cancel those iterations that occur logically after the exception and are
therefore invalid.



Cancellation of running threads is difficult to do safely in an object-oriented
language [7]. Simply terminating a thread with no mechanism to allow cleanup
is unsafe and deadlock-prone, because the thread may be holding locks or may
have temporarily placed an object in an inconsistent state. For this reason, a
mechanism to allow the thread to exit cleanly is needed.

One mechanism for terminating a thread provided by early versions of Java
allowed an exception to be delivered to a thread asynchronously, though the
Thread.stop() method. This is dangerous, however, because it can deliver an
exception to code that was not designed to handle that particular exception.
Although it is theoretically possible to write code that can handle asynchronous
exceptions, it is very cumbersome to read and very difficult to get correct, par-
ticularly when the exception is delivered in a finally clause or synchronized
block. In any case, the mechanism is not guaranteed to cause the thread to stop:
the thread’s code could be written in a way to trap such exceptions and ignore
them. Because of these problems, Sun chose to deprecate this feature of Java
[14].

Instead, Sun recommends using the Thread.interrupt () mechanism to can-
cel running threads, which is safe because it causes the thread to be interrupted
only at well-defined points in the code. Certain library routines can generate an
InterruptedException, which is a checked exception which must be caught or
declared. Other code can explicitly check to see if it has been interrupted by
using the Thread.interrupted() call, and it is the responsibility of the pro-
grammer to make sure that the thread exits cleanly. Although it is possible for
code to ignore the interruption and continue running, this is not worse than
the Thread.stop() method, which cannot provide this guarantee either, and is
much harder to use safely [1].

For these reasons, we attempt to terminate running iterations of the loop
using the interrupt mechanism. Because poorly written code could ignore the
interrupt mechanism, the semantics cannot provide a guarantee that canceled
iterations will terminate promptly, or even that they will terminate at all; how-
ever, correct Java code should terminate when interrupted. Because the loop
semantics require all iterations of the loop to terminate before the loop itself
terminates, the semantics cannot guarantee for arbitrary loops that the loop as
a whole terminates either, even when a loop iteration raises an exception. Care
must be taken to make sure that loops are written such that they will terminate
cleanly, even in the presence of exceptions. This is already the case for sequential
loops, and for all Java code, so this limitation of the parallel loop semantics is
not worse than the limitations of the exception semantics for any other construct
of Java.

4.3 Example

Suppose we wished to use a computer to render frames of an animation. Because
each frame is independent of other frames in the video, they can be rendered in
parallel, saving computation time. A procedure to do this is:



void render frames(Frame[] frames,int start,int end) {
parfor (int i=start; i<end; i++) {
images[i] = frames[i].render();

}

This loop would render the separate frames of the sequence in parallel. How-
ever, if an exception occurred while rendering the frames, the loop would stop.
Because many frames have already been rendered at this point, and because ren-
dering is a computationally expensive task, we would prefer to keep the partial
results even in the event of an exception, and use these when recovering from
the exception. For example, if the machine runs out of memory while rendering
the frames, we would like to be able to recover from this situation by saving
the completed frames to disk, and then continuing where the program left off.
It is advantageous to save a contiguous block of frames together because this
maximizes the effectiveness of a compression algorithm. Our proposed exception
semantics allows this to be expressed easily:

void render frames(Image images[],Frame[] frames,
int start,int end) {

parfor (int i=start; i<end; i++) {
images[i] = frames[i].render();

} catch (OutOfMemoryException e) {
// Delete frames that come after the exception
for (int j=i; j<end; j++) {

images[j] = null;

}

// Save earlier, completed images
save_images (images,start,i-1);
// Delete completed images to recover memory
for (int j=0; j<i; j++) {
images[j] = null;
frames[j] = null;
}
// Render remaining images through recursive call
render frames (images,frames,i,end);

}

This example recovers from an exception by deleting all rendered images that
come logically after the frame that caused the exception, and saving all images
that come logically before the exception. Images that come logically after the
exception are not saved, because they may not be complete, and would not
be contiguous with the earlier frames. Because the postcondition guarantees
that the exception thrown is the structurally first exception and that all prior
iterations have completed, these images can be saved to disk together and do not



need to be recomputed. Because these images are in a contiguous block without
holes, it should be possible to compress them easily; this would not be possible if
all completed images were saved, including any completed frames logically after
the image that caused the exception.

5 Implementation

The proposed language extensions can be implemented using a library of new
classes that encapsulate the loop and exception semantics, and a source-to-source
translator that translates the extensions into standard Java code that uses the
library. The resulting code can then be compiled by any Java compiler. This
chapter describes the implementation of the library, and the design of a source-
to-source translator. The source-to-source translator for our extensions has not
yet been implemented, but similar extensions have been implemented as source-
to-source translators before, and implementation of our extensions would be
straightforward.

5.1 Strategy

An extension to Java could be implemented as a Java library, a source-to-source
translator, a full compiler generating standard JVM bytecode, or a compiler
generating special bytecode for a modified JVM.

A modified JVM would allow the most flexibility in what can be implemented,
but would come at the cost of portability and interoperability with existing Java
code. The JVM’s built-in Thread class could be redefined so that uncaught
exceptions generated by the thread would be passed to the parent thread upon
termination; the parent thread could receive the exceptions when it attempts to
join the child threads. This implementation technique would require a compiler
to recognize the parfor loops and generate the code needed to implement them.

A full compiler has the ability to perform some transformations that generate
valid JVM bytecode but cannot be expressed in Java in source form, but is also
complex and can introduce interoperability problems. A source-to-source trans-
lator cannot perform as many transformations as a full compiler, but because
its output is standard Java source code, it does not introduce any portability or
interoperability problems. In addition, the code generated by a source-to-source
translator is readable, which makes debugging and analysis easier. For these rea-
sons, we chose to implement the extensions as a library along with a description
of a source-to-source translation. A more detailed analysis of these options for
implementing parallel loops in Java is provided by Philippsen [11].

The implementation described here uses an inner class to represent each
parallel loop, and a set of methods that spawn threads, execute the loop, and
wait for the threads to terminate. If an exception is generated by the loop, the
loop class waits for structurally prior iterations to complete, and re-throws the
structurally first exception to the calling code. This allows the parallel loop



constructs to be implemented without changing the virtual machine, and allows
code with parallel loops to work transparently with standard Java code.

Although we have not implemented an automatic source-to-source translator
for our proposed extensions, we describe here how the extended features could
be translated mechanically into normal Java code. Other researchers have im-
plemented automatic translators that generate standard Java code for parallel
loops using similar techniques [12] [11] [15] [16], and it should be straightforward
to modify one of these translators to use our proposed exception semantics.

5.2 Loop Translation

To implement parfor loops, the ParforLoop class manages a single parallel loop
and is responsible for creating threads, waiting for them to complete, catching
exceptions, interrupting running threads, and propagating exceptions back to
the caller. ParforLoop has undefined abstract methods for the condition expres-
sion, update statement, and loop body; each method takes an Object parameter
that holds the current value of the loop’s iteration variable. The class is not in-
stantiated directly: in order to use the class, a child class must be derived from
it that defines these methods for the particular loop that is to be executed.

A parfor loop is translated as an inner class that extends the ParforLoop
class and defines the abstract methods, and executed by calling the ParforLoop
class’s 1loop method. This transformation requires a few fairly simple substitu-
tions.

The loop is described by overriding the abstract condition, update, and
body functions to contain the loop’s condition expression, update statement,
and body implementation, respectively. These functions each take a reference
to the iteration variable as a parameter. The loop is actually executed by a
call to the ParforLoop.loop method, which is passed the initial value of the
iteration variable. This method executes the control portion of the loop and
starts threads to execute the body of the loop, and does not return until the
loop has terminated.

Each iteration of the loop is executed by an instance of the Structured-
Thread class. This class calls the ParforLoop’s body method, and catches any
exceptions that occur. If an exception occurs, it passes it to the ParforLoop ob-
ject’s catchException method, which actually implements the exception seman-
tics by storing the exception along with its iteration number in the ParforLoop
object, and interrupting any structurally later threads that are still running.

Once all iterations have stopped executing, ParforLoop.loop propagates
any exception that occurred by re-throwing it to the calling block. If the loop
has any extended catch or finally clauses attached, for which the iteration
variable is to remain in scope, the handlers described there are made part of
a try..catch block surrounding the call to loop. The value of the iteration
variable is retrieved by calling the getIteration() method of the ParforLoop
object, so that the handlers may use this information in their recovery.



5.3 Performance

The overhead associated with our exception semantics should not significantly
affect the performance of concurrent Java programs. The cost of setting up the
loop and starting threads is linear in the number of iterations of the loop. In the
normal case in which there are no exceptions, the cost of joining the threads in
the loop and cleaning up is also linear in the number of iterations of the loop,
and introduces little overhead.

If the loop terminates exceptionally, the running time may be longer than
other methods because our semantics requires all earlier iterations of the loop to
complete when an exception is thrown, while other semantics allow all threads
to be terminated immediately in this situation. However, the running time of
this should not be any worse than that of normal execution of the loop. It is
possible that a loop which uses concurrency control constructs incorrectly or
which ignores the InterruptedException may deadlock or enter an infinite
loop if an exception occurs; however, this is the result of an incorrect program
and not the result of the translation.

The translation does increase code size. Any program using the translation
must use the ParforLoop library. The translation itself creates a new inner class
and several methods for each loop, and creates additional code to handle each
type of exception that could be expected from the loop. The increase in code
size is linear in the number of translated parfor loops. Relaxation of the Java
requirement that all exceptions must be caught or declared (except for errors
and run-time exceptions) would make the translation simpler and would reduce
the size of the translated code.

The library described here uses the simple approach of spawning a separate
Java thread to execute each iteration of the body of the loop. Other methods of
implementing parallel loops in Java achieve higher performance by not using a
one-to-one mapping of loop iterations to threads; see [15] for a comparison. How-
ever, such a strategy must deal with the possibility that there are dependencies
between different iterations, and it can be difficult to determine when two itera-
tions can be executed sequentially and when they must be executed concurrently.
The mechanisms needed to deal with this situation are complex. Because our
purpose here is to demonstrate our proposed exception semantics, rather than
how to achieve optimum performance, we chose the simpler one-to-one mapping
of iterations to threads. Our exception semantics could be incorporated into an
implementation that uses a more efficient mapping of iterations to threads.

6 Conclusions

The goal of our semantics for exceptions in parallel loops is to facilitate the writ-
ing of parallel programs by making them more predictable and understandable,
while allowing exceptions to be used in a consistent way with other language
features. Under our semantics, exceptions can be used in any context, and have
a well-defined meaning even in parallel loops. Exceptions in parallel loops behave



in a manner analogous to exceptions in sequential loops, because in both cases
the structurally first exception thrown is the one that is propagated out of the
loop. The attempt to cancel later iterations through interruption is consistent
with the fact that later iterations in a sequential loop do not run. The pro-
posed exception semantics are a generalization of the standard Java semantics
for sequential loops, and remain consistent with them.

Our semantics allow strong postconditions to be asserted in the presence of
exceptions, because the exception that is propagated is chosen deterministically,
based on the structure of the program rather than on the accident of its exe-
cution. This also provides repeatability for some kinds of errors in concurrent
programs, which facilitates debugging. Other semantics for exceptions in parallel
loops, such as propagating the first exception that occurs in time, do not have
this property. Of course, there are other sources of nondeterminism in concur-
rent programs, and this semantics does not eliminate all of them; indeed, that
would not be possible without giving up the benefits of parallelism. But it does
eliminate some nondeterminism in a way that should make program behavior
more predictable and easier to understand and reason about.

The semantics also allows stronger assertions about what partial results have
been computed in the exception case. Keeping partial results in the case of an
exception can save time when recomputing or recovering from the exception.
Partial results may be useful in some cases even when the program does not
attempt to repair and recompute after the exception has been handled. Other
choices for an exception semantics do not allow strong postconditions to be
asserted.

For some loops, it does not matter which exception is structurally first, or
what partial results have been computed, and for these loops, propagating the
first exception in time and canceling or interrupting all remaining threads in the
loop may make more sense. One possibility is to use one keyword to indicate
parallel loops for which partial results are useful and deterministic exception
semantics is desired, in which our exception semantics would be used, and an-
other keyword to indicate parallel loops which express inherently concurrent
algorithms for which it is not important which exception is structurally first.

Our semantics is presented in the context of Java, but it could be applied
to other languages. The partial results feature may be particularly helpful in
implementing the retry keyword in languages that have one, such as Eiffel [17].
This would allow the loop to restart at the point the logically first exception
occurred, while keeping previously computed partial results.

The ability to express concurrency in a clean and natural way is an impor-
tant feature to have in modern programming languages. Parts of programs that
express concurrency or parallelism should be well integrated with the rest of
the language, and it is important for language designers to consider how con-
currency interacts with exception handling in particular. We have presented a
concurrency construct for Java that provides exception semantics that are con-
sistent and integrated with the language, and that can be implemented with
modest overhead.
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