
A Biological Programming Model for Self-Healing

Selvin George David Evans Steven Marchette

Department of Computer Science
University of Virginia
Charlottesville, VA

[selvin, evans, sam7p]@cs.virginia.edu

Abstract

Biological systems exhibit remarkable adaptation and
robustness in the face of widely changing environments. By
adopting properties of biological systems, we hope to design
systems that operate adequately even in the presence of
catastrophic failures and large scale attacks. We describe a
programming paradigm based on the actions of biological
cells and demonstrate the ability of systems built using our
model to survive massive failures. Traditional methods of
system design require explicit programming for fault
tolerance, which adds substantial costs and complexity to the
design, implementation and testing phases. Our approach
provides implicit fault tolerance by using simple programs
constructed following guiding principles derived from
observing nature. We illustrate our model with experiments
producing simple structures and apply it to design a
distributed wireless file service for ad hoc wireless networks.

1. Introduction
Fault tolerant system design has traditionally explored explicit
mechanisms for error checking, introducing redundancies to
account for failure of components and designing signaling
mechanisms to alert other systems or interfaces. This
involves analysis and formal verification of processes in the
system and explicit programming of recovery mechanisms. In
this paper we consider an alternative to traditional fault-
tolerant systems design based on a style of programming
based on local interactions and responsiveness to
surroundings in which robustness is intrinsic to the
programming process.

The key contributions of this paper are the development of the
cell-based programming paradigm we introduced in
[George02], a description of how the paradigm can be used to
construct structures that heal themselves, an analysis of the
robustness properties and the capacity to withstand
catastrophic failures of systems constructed using our cell-
based programming paradigm, and a framework and example
for applying our approach to system design.

2. Nature’s Programs
Nature has evolved programs that exhibit remarkable
robustness properties over billions of years through the
untimely deaths of trillions of organisms. Programs that
don’t produce organisms reliably simply don’t survive to
future generations. Programs that produce organisms that
cannot adapt to failures and changes in their environment are
not transmitted to future generations.

The hallmark of biological development is that a single cell
undergoes successive (often asymmetrical) divisions and all
the newly created cells regulate the development process to
form a complete organism. Biological programs are able to
withstand a large number of individual cell failures
(approximately 100 million of your cells died during the
time you spent reading this parenthetical clause!) and adapt
to many different environments; nevertheless they are
remarkably expressive compared to human-engineered
programs. The human genome consists of approximately
three billion base pairs (which could easily be encoded on a
single CD-ROM); the difference between the genome of any
two human beings fits on a fraction of a floppy disk.

A cell is the basic unit of life and all living organisms are
composed of one or more cells. The capacity of organisms
to adapt to changing and often hostile environments, tolerate
limited failures and heal damaged organs is not because of
the robustness of individual cells, but because of the
interactions between large numbers of cells. A cell is able to
divide into two daughter cells, emit chemicals to the
surrounding environment, and actively deform by applying
physical forces across its walls. Different chemicals within
and around the cell control these actions. A cell can sense
chemicals on its walls, as well as in its environment. The
nucleus of the cell contains DNA, which encodes different
genes that have been retained through evolution. A gene is
activated when a certain condition is true. This condition
could be a critical concentration level of a chemical or a set
of chemicals that the cell possesses or that the cell has
sensed. When a gene is activated it may cause certain cell
actions, which could result in the turning other genes on or
off.

Morphogenesis is the development of form in an organism
and typical multi-cellular organisms develop from a single
fertilized egg cell. Morphogenesis is robust to many kinds
of local failures and adapts to a wide range of environments.
For example, during the development of a sea urchin even
when one of two cells dies at the second stage of

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SSRS ’03, October 31, 2003, Fairfax, VA
Copyright 2003 ACM 1-58113-784-2/03/0010…$5.00.

development, the remaining cell develops into a complete
(albeit smaller) organism ([Wolpert02], original experiments
by Driesch, 1892). This is in contrast to mosaic development
(first proposed by Weismann in the 1880s) where cells are
differentiated after the very first division. If one of the cells
in a frog embryo is destroyed after the first division, the other
cell will not develop into a viable frog, but rather into
something resembling half an embryo.

Almost all complex organisms have some sort of mechanism
for healing simple wounds. In humans, when a minor injury
happens, an inflammatory response occurs and the cells below
the dermis (the deepest skin layer) begin to increase collagen
(connective tissue) production. Later, the epithelial tissue
(the outer skin layer) is regenerated. Apart from the fact that
cells around the injury are able to adapt to a different function
based on the new circumstances, it is their level of awareness
that these cells possess that makes such healing possible
[Mazzotta94].

Many organisms can regenerate new heads, limbs, internal
organs or other body parts if the originals are lost or damaged.
Organisms take two approaches to replacing a lost body part.
Some, such as flatworms and the polyp Hydra, retain
populations of stem cells throughout their lives, which are
mobilized when needed. These stem cells retain the ability to
re-grow many of the body’s tissues. Other organisms,
including newts, segmented worms and zebrafish, convert
differentiated adult cells that have stopped dividing and form
part of the skin, muscle or another tissue back into stem cells.
When a newt’s leg, tail or eye is amputated or damaged, cells
near the stump revert from specialized skin, muscle and nerve
cells into blank progenitor cells. These progenitors multiply
quickly to about 80,000 cells and then grow into specialized
cells to regenerate the missing part [Pearson01].

Nature also exhibits self-organization at the level of societies.
Ant colonies are examples where self-organization achieves
robustness to large-scale attacks (often by competing
colonies). A colony has many different types of ants –
workers, warriors, drones and a queen. If all the warrior ants
die, then some of the worker ants transform into warrior ants
so that activities such as nest patrolling continue. Ants
deposit chemicals into the atmosphere, which are then sensed
by other ants and appropriately decoded. In the case, where
all warriors are killed, the concentration of chemicals
deposited by warriors reduces dramatically and hence this
absence of chemicals induces many more worker ants to
convert into warrior ants [Bonabeau99]. Thus, the ant colony
organizes itself automatically to tolerate failures.

In summary, nearly all programs for multi-cellular organisms
in nature exhibit several properties, which are essential to
their ability to survive failures of large numbers of their cells
and thrive in hostile conditions:

• Environmental Awareness. Cells behave in different
ways depending upon properties (including chemical
concentration) they sense about their surroundings.
Cells communicate with nearby cells using a shared
environment.

• Localization. Cells can communicate over short
distances using chemical diffusion. For most of the
development process there is no global coordination
and limited synchronization: an organism needs to
know how to make a central nervous system before it
has one.

• Adaptation. Cells are capable of performing different
functions depending upon changes in the environment.
All cells contain the same program and can hence
respond to aberrant behavior from neighbors by
adapting their own behavior.

• Redundancy. Typical organisms have many cells
devoted to the same function throughout development,
so that failures of individual cells are usually
inconsequential. Biological systems also exhibit
redundancy of function, where several distinct
mechanisms evolve for the same purpose in a single
organism so that failure of one mechanism will not
cause system failure.

Although it may be possible to achieve robustness without
these properties, nearly all robust programs found in nature
exhibit all of these properties. Hence, studying
programming models designed around these properties
offers a promising approach to building robust systems.

3. Cell-Based Programming Model
Cellular automata have been studied extensively since von
Neumann’s early work [vonNeu53] (the related work section
summarizes more recent work). Our model of cell-based
programming adds to traditional cellular automata the notion
of cell division and a rudimentary model of the physical
forces involved. In our model, cells live in an environment
and can sense properties of that environment and take
actions that effect that environment. This enables inter-cell
communication based on chemical diffusion through a
shared environment. We describe a few key aspects of our
model next.

Cell Division. A cell can divide into two daughter cells that
may be dissimilar in orientation and chemical composition
but have the same program. A cell has an axis called the
apical-basal axis. Divisions can be either perpendicular to
this cell axis or along the plane containing the axis. In our
model, cells can divide in any direction. Cell divisions may
be asymmetrical. Differences in chemical composition as
well as different chemicals on their cell walls cause the two
daughter cells to behave differently. Cell division is
modeled by using a transition from one state to two states as
shown in Figure 1. Parameters to the division control the
locations and orientations of the daughter cells.

Gene Actions. Genes can activate or deactivate depending
on the presence or absence of a particular protein or a certain
degree of chemical concentration. Activation or deactivation
of a gene results in cell actions like production of chemicals.
The combination of active genes defines the state of the cell.

Cell Actions. Cells produce different proteins depending on
what genes are active. Chemicals produced this way diffuse

into the environment. They may affect nearby cells that can
sense the concentration of particular chemicals.

We abstract the complexities of communication in natural
systems with two types of communication between cells:
diffusion and emission. Cells can communicate with
neighboring cells by diffusing chemicals over a limited range
as illustrated in Figure 2. Diffusions are omnidirectional:
they spread in all directions, and cells cannot determine from
which direction they came. The characteristics of the
diffusion process are related to the properties of the
environment such as viscosity of the medium and gravity.
Emissions model communication directly through cell walls.
They are directional: cells can emit chemicals in a particular
direction, and sense from which direction emissions came.

Cells can induce nearby cells into performing specific actions
by using chemical emission or diffusion. Similarly the death
of a cell causes cessation of chemical diffusion and induces
nearby cells into actions such are regenerating the dead cell.
This awareness is essential for self-healing mechanisms.

Simulating Cell Programs

We built a simulator for cell programs to study their
properties and conduct experiments involving simulated
random and catastrophic failures. Our simulator is freely
available from http://swarm.cs.virginia.edu/cellsim.

A cell program begins with cells in an initial configuration.

The cells change state or divide based on sensed chemicals
that can be either caused by the environment or by nearby
cells. The simulator computes the state of each cell and
simulates cell division and cell death to determine the new
set of cells for the next step. It also simulates chemical
diffusion that results when a cell diffuses chemicals so that
neighboring cells can sense them. State transition and cell
division by a cell occur in response to the sensed chemicals.

Our simulator supports several different models of cells and
environments. Environments control physical constraints on
cell placement and how chemicals spread. Environments
allow us to experiment with different parameters that control
the amount of random variance in the location of a new
daughter cell, what happens when a cell divides into space
that is already occupied by another cell, and how chemicals
diffuse and evaporate, and how modeled forces in the
environment affect the rate of diffusion in different
directions. For this paper, we use the simplest cell and
environment model: cells have a single state and live in a
discrete space; diffusions are linear, travel the same distance
in all directions, and evaporate completely every time step.
In addition, a simple cell model is used: cells divide only in
orthogonal directions, and only have orthogonal neighbors.
A forthcoming paper will consider how different cell and
environment models affect the behavior and robustness of
programs.

4. Fault Tolerance and Healing
We illustrate the fault-tolerance and healing properties of
structures built using our programming model. The physical
environment for the system is based on coordinate geometry.
Cells can divide along the three axes (x, y and z) in either

direction (+ or −). We use a simple diffusion model in
which the chemical concentration decreases linearly with
increasing distance (a more physically realistic exponential
decay model is not necessary for these experiments). Next,
we demonstrate three examples of structures produced using
our programming model.

Sphere

B

C

A

Figure 1. Cell division. The initial cell in state A
divides into two daughter cells in states B and C.

C

A

B
C

A’

B’

a b

Figure 2. Diffusion. (a) Cell C diffuses chemical; nearby cells sense varying concentrations of the chemical based on their
proximity and may change state in response. (b) Cell C dies and ceases diffusing the chemical; nearby cells sense the absence of
the chemical and change state.

The cell program shown in Figure 3 generates a sphere. The
radius of the sphere is determined by the amount of chemical
radius that the center cell produces. The initial configuration
is a single cell in the center state. That cell will emit one unit
of the alive chemical in all directions. In this program (and
many others), we use the alive chemical as an indicator of the
presence of a cell. The center state also diffuses the radius

chemical. The diffusions amount indicates the maximum
distance from this cell where the diffused chemical will reach
in measurable concentrations. Here, the diffusion amount
controls the radius of the sphere.

On each simulation step, all cells will evaluate their transition
rule conditions in order and select the first rule for which the
condition is true. For state center, the first transition rule
condition is:

alive from dir < 1

This will be true if there is any direction from which the
concentration of alive is less than 1. The direction variable
dir will be bound to a direction which makes the condition
true. If more than one direction satisfies the condition, dir
will be bound to one of the satisfying directions selected at
random.

The action part of the transition rule,

 (center, body) in dir

indicates what action to take when the condition is satisfied.
Listing two states in an action indicates a division, so the
effect of the transition is to divide into two daughter cells
one in state center and the other in state body, in the
direction dir bound as necessary to satisfy the condition.
Following this transition rule, the center cell will keep
producing body cells as long as there is some direction from
which alive is not sensed. If alive is sense in all directions,
no transition condition is satisfied and the cell will remain in
its current state. Cells in the body state will keep dividing as
long as there is some direction from which they do not sense
alive and they sense at least one unit of the radius chemical.
Hence, the body cells will fill in the sphere.

When an initial configuration of one cell in state center is
given as shown in Figure 4, the program develops a sphere
of radius 10 units. This program has simple fault tolerance
capabilities. The sphere will regenerate no matter how many
of the body cells are killed as long as the center cell
continues to function. Notice that this program does not
explicitly mention the actions to be taken when a failure
occurs. Instead, recovery is intrinsic in the way the program
is written in terms of local interactions through sensed
chemicals.

The performance of the development and regeneration of the
sphere program is shown in Figure 5. In this graph, the

state center { emits (alive, 1)

 diffuses (radius, 10)

 transitions (alive from dir < 1) -> (center, body) in dir; }

state body { emits (alive, 1)

 transitions (alive from dir < 1) & (radius > 1) -> (body, body) in dir; }

Figure 3. Sphere program.

 Initial Configuration Step 1 (2 cells) Step 5 (32 cells)

 Step 10 (353 cells) Step 20 (3978 cells) Step 30 (5257 cells)

Figure 4. Sphere Growth.

sphere’s ability to withstand any degree of damage to its body
and recover quite quickly from it is shown by plotting sphere
quality against number of steps for different degrees of
damage. Sphere quality is measured as (n1 – 2n2)/N where

 n1 = # of cells in formed sphere lying within ideal sphere
 n2 = # of cells in formed sphere lying outside ideal sphere

 N = # of cells in ideal sphere which is (4/3)πr3

A sphere of radius 10 grows within 30 steps. Regeneration of
sphere after a damage of 66%-99% of the body cells takes
between 9 and 15 steps.

To produce a more robust sphere, we need a mechanism for
regenerating the sphere even when the center cell is killed.
One approach is to create a core of cells around the center
which will regenerate a center cell if the radius chemical is
not sensed. The robust sphere program requires one extra

state and three addition transition rules. It will regenerate
the sphere as long as the center cell and all core cells are not
killed simultaneously.

Cube

Cubes do not appear often in nature, but can be constructed
using our model. It is not surprising, however, that the
program to generate a robust cube is more complex than that
required to produce a sphere.

The program shown in Figure 6 uses four states and nine
transition rules to generate a cube from the initial condition
of one cell of state A located where the front bottom left
corner of the cube will be. The initial cell differentiates into
B, C, and D cells which divide in the x, y, and z directions
respectively. The B cells traverse horizontally in a line,
dividing into C and D cells which subsequently divide to fill
the vertical and depth directions. As in the sphere programs,
the alive chemical is emitted so cells can sense the presence
or absence of neighbors in each direction. Chemical
diffusion is used by the cube cell program as well to restrict
the dimensions of the cube: chemicals X, Y, and Z for the
respective directions. The diffused chemicals also implicitly
locate damaged areas of the cube and instruct the B, C, or D
cells to grow in the appropriate direction that will heal it.
With our current simulator, cells are oriented in absolute
space; taking advantage of relative cellular orientations
could reduce the number of states and transitions needed.

The simple cube program is robust to failures of all cells
except the initial A cell. If that cell stops diffusing the X
chemical, the B horizontal cells will fail to regrow. To
improve robustness, we introduce specialized self-healing
cells to recover critical cells. The robust cube program
generates a cube in the same manner as above, but includes

Figure 5. Sphere recovery.

state A { emits (alive, 1)

 diffuses (X, 8), (Y, 8), (Z, 8)

 transitions

 (alive from X+ < 1) -> (A, B) in X+;

 (alive from Y+ < 1) -> (A, C) in Y+;

 (alive from Z+ < 1) -> (A, D) in Z+; }

state B { emits (alive, 1)

 diffuses (Y, 8), (Z, 8)

 transitions

 (alive from X+ < 1) & (X > 0) -> (B, B) in X+;

 (alive from Y+ < 1) -> (B, C) in Y+;

 (alive from Z+ < 1) -> (B, D) in Z+; }

state C { emits (alive, 1)

 diffuses (Z, 8)

 transitions

 (alive from Y+ < 1) & (Y > 0) -> (C, C) in Y+;

 (alive from Z+ < 1) -> (C, D) in Z+; }

state D { emits (alive, 1)

 transitions

 (alive from Z+ < 1) & (Z > 0) -> (D, D) in Z+; }

Figure 6. Simple cube program.

additional self-healing mechanisms to recover from failures of
key cells. Instead of relying on a single corner cell, each of
the corners of the cube is differentiated into a set of similar
states that diffuse regulator chemicals. Regulation chemicals
control division and specialization into the eight corner states
as the cube develops. They also mutually inhibit, such that
one in the presence of any of the neighboring corner’s states
has no effect. Should any corner cell fail, its absence will be
detected and the nearby cells will recreate the corner. The
regulation chemical secreted by adjacent corners controls the
regrowth of corner cells. Hence, the cube will recover from
any failure that does not kill at least four corners
simultaneously.

Mesh

Figure 7 shows a program for producing a three-dimensional
regular mesh structure. As long as a corner survives, the
mesh will continue to heal and grow. Because of the final
segment transition that results in a die command, segment
cells that are not connected to a corner will commit suicide.
The mesh program could be used to construct an overlay
network. Hence, killing cells that are not able to
communicate with a corner cell conserves resources.

Summary

These experiments show that many unreliable cells running a
single program and having no global knowledge of position
or identification and without using global communication can
organize themselves and create desired structures using
chemical diffusion and cell induction. Although the
structures we have built may not be intrinsically useful,
building simple shapes provides a good experimental platform
for exploring the expressiveness, scalability and robustness of
our programming model.

5. A Framework for Building Systems
While it is interesting to observe properties of cell programs
applied to structure growing tasks, our real interest is in
building systems that perform useful functions in a robust
and scalable way. By applying this model to building
systems, we endeavor to create distributed systems that
achieve many of the desirable properties commonly found in
biological systems such as reliability, scalability, self-healing
and survivability. Our programming paradigm requires
programmers to design systems by engineering the local
interactions that produce the desired global functionality.

To implement real systems with current technology, we need
ways of emulating cell actions (including division) and
communication. It is hard to produce physical divisions, but
easy to create new processes. We can model division by
finding a suitable host and starting a new process on that
host. Communication by diffusion and emission
corresponds well to networking. In a wireless network, a
single transmission diffuses over an area; to achieve longer
diffusions, a transmission may be repeated over multiple
hops.

To create an application, a programmer must describe the
desired behavior in terms of actions in response to current
state and received messages. If the programmer can provide
a self-awareness and activation mechanism (in the form of
status and control variables), define the local neighborhood
within which each cell communicates and provide a
mechanism for diffusing chemicals (i.e., delivering
messages) to cells within that local neighborhood, then
applying the cell based programming approach reduces to
plugging a piece of software that follows the transitions of a
cellular automaton and acts accordingly.

5.1 Distributed Wireless File Service
We illustrate our programming paradigm with DWFS, an
application layer peer-to-peer file sharing service. It is
designed to run on wireless nodes that may be mobile. All
nodes are identical and have low power and low network
transmission and reception capacity. The radio transmission
and reception associated with the wireless communication is
expensive with respect to energy. As with most applications,

state corner {

 emits (A, 6), (alive, 1)

 transitions

 (alive from dir < 1) -> (corner, segment) in dir; }

state segment {

emits (alive, 1)

forwards (A, A - 1);

 transitions

 (A from dir > 1.5) & (alive from opposite(dir)) > 0

 -> (segment);

 (A from dir > 1.5)

 -> (segment, segment) in opposite(dir);

 (A > 0.1) -> (corner);

 (A < 0.1) -> die; }

Figure 7. Mesh program.

the DWFS should balance the conflicting goals of reliable
functionality and network longevity. New nodes can be
added and nodes can enter and leave the network at any time.
The design should scale to very large networks.

Our implementation is intended as a proof of concept to show
that applications built using our programming model have
useful robustness properties, rather than as a fully functional
and useful file sharing service. Hence, we limit our
implementation to immutable files where once a file is
published it cannot be modified. The only two operations are
read (file) and store (file). Files are identified using a number
(which could correspond to a URL). A realistic file sharing
service would need to also support other operations such as
deleting and updating a file.

5.2 Protocol
The DWFS protocol provides mechanisms for requesting and
publishing a file.

File Request. The file request protocol is shown in Figure
8(a). A client sends a file request in the form of a broadcast
with the file identifier. This is similar to the cell-
programming notion of diffusion. All the servers within the
one-hope transmission range receive this message. The server
on a node that contains the file responds to this request by
transmitting the requested file. Note that requests are not
forwarded: a server node that receives a request for a file it
does not have simply ignores the request. Our publication
protocol is designed to ensure that there is a high probability
that at least one node within the transmission distance will be
able to respond to a request for a published file.

File Publication. The file publication protocol is shown in

Figure 8(b). When a new file is published, the publishing
server diffuses two chemicals: one represents the inhibit
message and the other represents the replicate message. The
inhibit chemical is diffused over a smaller range than the
replicate chemical. Nodes that receive the replicate chemical
but not the inhibit chemical will replicate the file. Each
node that replicates the file in turn diffuses both the
chemicals as the original publisher did. This distributes the
file throughout the network and builds up the required
redundancy necessary for fault-tolerance. Given sufficient
density of nodes, we have high confidence that there will be
at least one copy of the file within the broadcast range of the
inhibit message of any node. File propagation occurs when
nodes replicating the file in turn publish it to their neighbors.

5.3 Handling Failures
Failures include movement or death of a node, breaking of a
network path (even when a file operation is in progress),
failure of a significant percentage of the nodes, non-
simultaneous failure of all nodes caching a particular file.
Failure handling in DWFS is inherent in the way the system
is programmed. Failures are sensed by the absence of
chemicals and servers react accordingly. Nodes periodically
emit the inhibit and replicate chemicals for each file they
store. All nodes that receive a particular publication’s
replicate chemical but do not receive the corresponding
inhibit chemical will replicate the files that node holds. If
that node fails, it will stop transmitting both the inhibit and
replicate chemicals. The replicating nodes will continue to
transmit those chemicals, and now a new node in the region
previously covered by the failed nodes inhibit signal is likely
to start replicating the file.

 Node containing
file (Server)

Node

Node requesting
file (Client)

Response(file)

Request (file)

Node
publishing file

(Server)

Node replicating file Replicate (file)

Inhibit (file)

Node inhibiting
file

(a) (b)

Figure 8. DWFS Protocols. (a) File request and response. (b) File publication.

The other type of failure to consider is an overload. When a
node receives more requests to store files and it is running out
of storage space, it initiates an asymmetric cell division. The
subsequent publication requests now cause transfer of the file
onto the new node. A node may periodically rate files based
on access frequency and transfer half of the frequently used
files onto a different close-by server in order to reduce traffic
on itself.

5.4 Evaluation
Our evaluation focuses the robustness of file availability
provided by DWFS in the face of individual node failures.
File availability is the ratio of the number of successful file
requests to the total number of file requests. In our
experiments, every request is for a published file, so an ideal
system would achieve 100% file availability.

Figure 9 shows the degradation of file availability with
increasing node speed with constant initial node energy of
100. If a node does not receive a file after a timeout, it
retransmits the request. In the simulation we varied both the
timeout interval from 0.5s to 2.5s and the number of
retransmissions from 0 to 3. These graphs indicate that with a
few retransmissions, we can achieve high file availability even
for nodes that move rapidly relative to their broadcast range.

Figure 10 shows the variation of file availability over time for
different values of initial energy. File availability degrades
only gradually provided the nodes have sufficient energy. For
example, with initial energy = 50, even after 75% of nodes
have expired the file availability exceeds 90%.

Our results show that by appropriate choice of timeouts and
retransmission attempts, we can achieve a high degree of file
availability even with nodes that move at high speeds and fail
due to loss of battery power. As larger numbers of nodes fail,
file availability degrades gradually. Our design incorporates
the biological metaphor of chemical diffusion and sensing
chemicals (inhibit and replicate) to achieve a robust design
with a simple and flexible program.

For our experiments, sending or receiving a request or
response uses 5 energy units, so with initial energy = 100, a
node will expire after 10 messages. At each time step, each
node has a 1% probability of requesting a file.

Experiments were also conducted to study the behavior of
DWFS using networks of different densities. Nodes are
randomly distributed within an area of size 2km by 2km and
the node density was varied from 1 to 20 within each
broadcast area. Figure 11 shows the variation of file
availability over different values of network density. It was
observed that after reaching a critical network density of
about 6 nodes per broadcast area, the file availability
improves sharply and becomes very close to the maximum at
a density of 8. Shivendra et al. showed experimentally that in
packet radio networks, the local neighborhood should at
least be 5 to ensure connectedness [Philips98]. In this
experiment DWFS is able to maintain high file availability at
network densities close to this critical value.

6. Related Work
The very first engineers were inspired by biology, as have
been thousands of mythical (e.g., Daedalus) and real (e.g.,
Leonardo DaVinci) engineers since. John von Neumann
studied cellular automaton [vonNeu53] and Alan Turing
studied morphogenesis [Turing52], although he did not draw
analogies between biological programs in genes and
computer programs [Saunders93]. More recently, several
active research areas in computer science have emerged
inspired by biology including evolutionary computation and
swarm intelligence.

Evolutionary computation (also known in various forms as

Figure 10. File availability over time.

Figure 9. File availability with mobile nodes.

Figure 11. File availability v/s Network density.

genetic algorithms and genetic programming) attempts to
apply principles of biological evolution to produce computer
programs by devising a fitness function that evaluates how
well a program satisfies a goal, breeding successive
generations of programs using various combination and
mutation strategies, and selecting survivors based on how
well programs satisfy the fitness function. Evolutionary
computation has been demonstrated to produce solutions to
complex problems that improve on the best human developed
solutions [Koza99]. Our work differs from this in that we are
not using evolutionary approaches to develop solutions, but
rather developing solutions by observing the solutions nature
has evolved. The key advantage is that since the solutions we
produce are designed by humans, we are likely to have
designs that are easier to understand, modify and reason
about.

Embryonics [Mange96, Mange98] is an architecture for
hardware inspired by biological development. A system is
implemented as a grid of artificial cells implemented by
electronics. Cells compute their location within two-
dimensional space and differentiate their behavior based on
that position. Embryonics assumes cells continuously
conduct a self-checking test and issue a failure signal when
the test fails. Systems built using the embryonic architecture
exhibit self-healing based on coordinates being automatically
reassigned when faults are detected based on inter-cell
communications [Stauffer01]. Ortega and Tyrrell analyzed
the reliability of embryonic systems [Ortega99] and
concluded that simple design combined with automatic
reconfiguration provided advantages in enabling a high
probability of reliable operation in the presence of failures.

Swarm intelligence looks primarily to social insect behaviors
for inspiration [Bonabeau99]. Biologically inspired
algorithms have been developed for many problems including
network routing [DiCaro98a, DiCaro98b, Scho96, White97],
distributed intrusion detection and response [Fenet01], graph
exploration [Yano01], terrain coverage [Koenig01] and peer-
to-peer applications [Mont01]. Fisher and Lipson proposed
using techniques based on social insects to design survivable
systems [Fisher98]. As with our work, all of these use
independent agents interacting in a common environment to
achieve global properties. Our work differs in that by using
cells as the inspiration for our computing units instead of
complex organisms like insects, our designs assume more
limited devices and place more emphasis on the local
interactions instead of long distance and time interactions
through an environment. Second, instead of focusing on
optimization problems, we are interested in controlling and
reasoning about behavior produced through local interactions.

A related approach is amorphous computing [Abel00], which
considers approaches for programming a medium of randomly
distributed computing particles. The Growing Point
Language (GPL) [Coore98], Origami Shape Language (OSL)
[Nagpal01], and Paintable Programming [Butera02] are
examples of programming mechanisms for producing global
self-organization using simple local coordination. As with
our work, the challenge is to produce programs that generate
predictable behavior with a locally unpredictable and non-
traditional programming model. Because the underlying

execution environment is inherently redundant and
decentralized, robustness is practically inevitable if
programs are constructed in the right way.

Researchers have also studied more formal models of
computation based on nature. The chemical abstract
machine [Berry90] is an abstract machine based on the
chemical metaphor. States of a machine are chemical
solutions where floating molecules can interact according to
reaction rules derived from lambda calculus. Solutions can
be stratified by encapsulating sub solutions within
membranes that force reactions to occur locally. We have
not yet developed a formal semantics for our programming
model.

7. Conclusions
Nature has evolved clever and robust solutions to
challenging engineering problems. By learning from those
solutions, we can design distributed systems that have
similar robustness properties. In the future, systems with
very large number of often-unreliable agents will be
deployed. These systems will need to operate robustly
without manual intervention and be able to adapt to a wide
variety of failures. A biological approach to programming
these applications offers the promise of achieving
robustness, scalability and survivability from small and
simple programs.

Acknowledgements
This work has been funded in part by the National Science
Foundation through NSF CAREER (CCR-0092945) and
NSF ITR (EIA-0205327) grants. The authors thank Lance
Davidson, Salvatore Guarnieri, Qi Wang, and Brad Zhang
for their contributions to this work.

References
[Abel00] H. Abelson, D. Allen, D. Coore, C. Hanson, G.

Homsy, T. Knight, R. Nagpal, E. Rauch, G. Sussman
and R. Weiss, Amorphous Computing,
Communications of the ACM, Volume 43, Number 5,
p. 74-83. May 2000.

[Berry90] G. Berry and G. Boudol, The Chemical Abstract

Machine. ACM Symposium on Principles of
Programming Languages, January 1990.

 [Bonabeau99] Eric Bonabeau, Marco Dorigo, Guy
Theraulaz. Swarm Intelligence: from Natural to

Artificial Systems, Santa Fe Institute, Oxford
University Press, 1999.

[Butera02] William Butera. Programming a Paintable

Computer. MIT Media Lab, PhD Thesis 2002.
[Coore98] Daniel Coore. Botanical Computing: A

Developmental Approach to Generating Interconnect

Topologies on an Amorphous Computer. MIT PhD
Thesis. December 1998.

 [DiCaro98a] Gianni Di Caro, AntNet: Distributed

Stigmergic Control for Communications Networks,
Journal of Artificial Intelligence Research 9 (1998):
317-365.

[DiCaro98b] Gianni Di Caro. Two Ant Colony Algorithms for

Best-effort Routing in Datagram Networks. 10th
IASTED International Conference on Parallel and
Distributed Computing and Systems (PDCS’98).
IASTED/ACTA Press, 1998.

[Fenet01] Serge Fenet, Salima Hassas. A distributed Intrusion

Detection and Response System Based on mobile

autonomous agents using social insects communication

paradigm. First International Workshop on Security of
Mobile Multiagent Systems, 2001.

[Fisher98] David A. Fisher and Howard F. Lipson. Emergent

Algorithms - A New Method for Enhancing

Survivability in Unbounded Systems. Proceedings of the
Thirty-second Annual Hawaii International Conference
on System Sciences. 1998.

[George02] Selvin George, David Evans and Lance Davidson.
A Biologically Inspired programming model for self

healing systems. Workshop on Self-Healing Systems
November, 2002.

[Koenig01] Sven Koenig, B. Szymanski and Y. Liu. Efficient

and Inefficient Ant Coverage Methods. Annals of
Mathematics and Artificial Intelligence. Vol 31, Issue
1/4. 2001.

[Koza99] Koza, John R., Bennett III, Forrest H, Andre,
David, and Keane, Martin A. 1999. Genetic

Programming III: Darwinian Invention and Problem

Solving. San Francisco, CA: Morgan Kaufmann
Publishers.

[Mange96] D. Mange, M. Goeke, D. Madon, A. Stauffer, G.
Tempesti and S. Durand. Embryonics: A New Family

of Coarse-Grained Field-Programmable Gate Arrays

with Self-Repair and Self-Reproducing Properties. In
Toward Evolvable Hardware, Springer Lecture Notes
in Computer Science, Volume 1062, 1996.

[Mange98] D. Mange, A. Stauffer, G. Tempesti. Embryonics:

A Macroscopic View of the Cellular Architecture. In
Evolvable Systems: From Biology to Hardware, M.
Sipper, D. Mange, A. Pérez-Uribe, editors, Springer
Lecture Notes in Computer Science Volume 1478,
1998.

[Mazzotta94] Mary Y. Mazzotta. Nutrition and wound

healing. Journal of the American PodiatricMedical
Association. Volume 84, Number 9, p. 456–62.
September 1994.

[Mont01] Alberto Montresor. Anthill: a Framework for the

Design and Analysis of Peer-to-Peer Systems. 4th
European Research Seminar on Advances in Distributed
Systems. May 2001.

[Nagpal01] Radhika Nagpal, Programmable Self-Assembly:

Constructing Global Shape using Biologically-inspired

Local Interactions and Origami Mathematics, PhD
Thesis, MIT Department of Electrical Engineering and
Computer Science, June 2001.

[Ortega99] C. Ortega and A. Tyrrell. Self-Repairing

Multicellular Hardware: A Reliability Analysis.
Proceedings of the 5th European Conference on
Artificial Life. September 1999.

[Pearson01] Helen Pearson, The regeneration gap, Nature
Science Update. 22 November 2001.

[Philips98] Philips, Shivendra, Panwar and Tatami,
Connectivity properties of a packet radio network

model, IEEE Transactions on Information Theory,
35(5), Sept 1998

[Saunders93] P. T. Saunders. Alan Turing and Biology.

IEEE Annals of the History of Computing, 15(3):33-
36, 1993.

[Scho96] R.Schoonderwoerd, O.Holland, J.Bruten and
L.Rothkrantz. Ant-based load balancing in

telecommunications networks. Adapt. Behav. 5
(1996): 169-207.

[Sipper97] M. Sipper, E. Sanchez, D. Mange, M. Tomassini,
A. Pérez-Uribe, A. Stauffer. A Phylogenetic,

Ontogenetic, and Epigenetic View of Bio-Inspired

Hardware Systems. IEEE Transactions on
Evolutionary Computation, Vol. 1, No 1, April 1997.

[Stauffer01] A. Stauffer, D. Mange, G. Tempesti and C.
Teuscher. A Self-Repairing and Self-Healing

Electronic Watch: The BioWatch. Springer Lecture
Notes in Computer Science Volume 2210, 2001.

[Turing52] Alan Turing. The Chemical Basis of

Morphogenesis, Philosophical Transactions of the
Royal Society B (London). 1952.

[vonNeu53] John von Neumann, Theory of Self-

Reproducing Automata. University of Illinois Press,
1966 (Originally published in 1953).

[White97] T. White. Routing with swarm intelligence.
Technical Report SCE97-15, Systems and Computer
Engineering Department, Carleton University,
September, 1997.

[Wolpert02] Lewis Wolpert, Rosa Beddington, Peter
Lawrence, Thomas M. Jessell, Principles of

Development, Oxford University Press. 2002.
[Yano01] Vladimir Yanovski, Israel A. Wagner, Alfred M.

Bruckstein. Computer Vertex-Ant-Walk – A robust

method for efficient exploration of faulty graph.

Annals of Mathematics and Artificial Intelligence.
Volume 31, Issue 1/4. 2001.

