
In What Should I Read Next?: 70 University of Virginia Professors Recommend Readings in

History, Politics, Literature, Math, Science, Technology, the Arts, and More edited by Jessica

Feldman and Robert Stilling, University of Virginia Press, 2008.

How Computing Changes Thinking

David Evans

In their capacity as a tool,

computers will be but a ripple on the surface of our culture.

In their capacity as intellectual challenge,

they are without precedent in the cultural history of mankind.

Edsger Dijkstra, 1972 Turing Award Lecture

Computing has changed the human condition more than any other technology invented in the

past hundred years. Without computing, the Allies may not have won World War II, humans

would not have walked on the Moon, and Wal-Mart would be a small store in Arkansas. The

commoditization of computing, along with the global communications it enabled, has

empowered ordinary people to do things the richest, most powerful, dictators could not even

dream of doing twenty years ago.

But the impact of computing goes beyond the geopolitical shifts and everyday conveniences it

enabled, to profound revolutions in the way humans understand the world, as well as our own

minds and thoughts. Whereas traditional mathematics explores declarative knowledge (“what

is”), computer science concerns imperative knowledge (“how to”). Computer scientists study

how to describe, understand, and implement information processes. The basic tool is the

procedure, a precisely defined sequence of steps.

The three most fundamental questions in computing are: (1) what can be computed? (2) what can

be computed in a reasonable amount of time? and (3) can computers think?.

The first question emerged from Alonzo Church and Stephen Kleene’s work on Lambda

Calculus in the 1930s, and was answered formally by Alan Turing in 1936. Turing proved that

any computer with some minimal functionality can simulate any other computer, and hence,

except for physical limits like the amount of memory available, all computers are equally

powerful. Not all problems, however, can be solved by computing. For some problems, there is

no program that a machine based on conventional physics can execute that always finishes and

produces the correct answer. In particular, Turing showed that it is impossible to create a

program that will always correctly answer questions about interesting properties of the

information processes described by arbitrary programs such as will this program run ever finish?

and is this program a virus?.

 2

The second question is known as P versus NP. It was posed precisely by Stephen Cook in 1971,

and remains an open problem today. It asks what problems can be solved by computers in a

reasonable amount of time, where reasonable means that the time required to solve the problem

does not grow exponentially with the size of the input (that is, when the input size increases by

one, the amount of work to solve the problem does not multiply). Many interesting problems

such as finding the shape of a protein, determining the best schedule for using a resource,

finding the minimum number of colors needed to color a map, and winning the pegboard

puzzle game, are deeply equivalent – a reasonable-time solution to any one of these problems

can be used to also solve all of the other problems. What is not known, however, is whether all

of the problems can be solved quickly, or none of them can. The question boils doing to

determining if an omnipotent machine that can always guess the correct move at every step is

able to solve problems significantly faster than a machine without this magical power.

Although it seems obvious that omnipotence should help, we are surprisingly far away from

being able to answer this question satisfactorily.

The third question concerns whether or not computing machines can think. It is the fuzziest and

most difficult to pose meaningfully. The first notable attempt was Alan Turing’s simulation test

which simplified the question into whether or not a computer could convince a human it was

thinking. Many others have since attempted to pose or answer the question differently, but no

satisfying definition of “thinking” has yet emerged. Many of the specific tests, like playing

champion-level chess and understanding language, have been achieved by computers, but by

throwing tremendous computing power and resources at the problem, not by anything most

humans would consider real thought.

The selected books explore these questions and provide insights into how computing changes

thinking, how computing has impacted history, how the state of the world today reflects the

early stages of the computing revolution, and how the continuation of that revolution will

change human existence in the coming decades. The first two books provide insights into the

fundamental questions of computing and how it changes the way we think, and the way we

think about thinking; the final three books illustrate how computing impacts the past, present,

and future of the world.

Douglas R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid (Basic Books, 1979; Twentieth-

anniversary Edition, Basic Books, 1999)

This is the most challenging, and longest, of the listed books, but I place it first because of

the elegance, wit, and insightfulness it brings to the fundamental questions of computing.

Hofstadter masterfully connects the big ideas in computing to music, art, and philosophy,

illustrating complex ideas with dialogues in the spirit of Alice in Wonderland, Escher’s

artwork, Bach’s music, and Hofstadter’s own clever and thought-provoking inventions.

Much of the book focuses on the mind-bending issues and remarkable expressiveness that

can be achieved with recursive definitions (for example, your descendants are your

children and the descendants of your descendants) and self-reference (statements like

 3

“This sentence is meaningless.”). This book won the 1980 Pulitzer Prize for non-fiction,

and was instrumental in many computer scientists’ decision to enter the field (including

my own).

Paul Graham, Hackers & Painters: Big Ideas from the Computer Age (O’Reilly Media, 2004)

This is a delightful collection of essays by Paul Graham, co-founder of the first web

application company which became Yahoo! shopping, as well as an accomplished painter.

The essays explore fundamental ideas in computing, but from a very different perspective

than Hofstadter’s. Like Hofstadter, Graham highlights connections between computing

and art, but from the viewpoint of a creative pragmatist rather than an academic

philosopher. The essays delve into topics ranging from why nerds are not popular in

high school, to what make design good, to how to grow a successful company. Each essay

is meticulously crafted, lucid and compelling, and the book is full of radically

unconventional and provocative ideas.

Simon Singh, The Code Book: The Science of Secrecy from Ancient Egypt to Quantum Cryptography

(Anchor Books, 2000)

The desire to keep and steal secrets has been with humans since before language existed.

Singh’s book tells an engaging and inspiring tale of the history of cryptography spanning

several thousand years. Since the 1940s, that history has been closely entwined with

computing. Colossus, arguably the first programmable electronic computer, was built by

the British to break Nazi command codes, and Alan Turing was instrumental in breaking

the Nazi Enigma code. Increasing computing power, combined with number theory,

enabled the development of public-key cryptography. Whereas all previous ciphers

required the sender and receiver to establish and maintain a shared secret key used for

both encryption and decryption, public-key cryptography allows different keys to be used

for encryption and decryption, eliminating the need to keep one of the keys secret. Singh

explains the mathematics and technology behind cryptography in a clear and direct way,

while conveying the excitement, adventure, and obsessive commitment of human efforts

to keep and break secrets.

Thomas L. Friedman, The World Is Flat: A Brief History of the Twenty-First Century (Farrar, Straus

and Giroux, 2005)

New York Times columnist Thomas Friedman’s widely heralded book is an entertaining

and insightful guide to the flat world that has been created by the rapid advance of

computing technology, and the global telecommunications infrastructure it enabled. Over

just the past few years, the digitization of everything and essentially free, high bandwidth

worldwide communication, has enabled work and ideas to flow freely across borders and

oceans so that the Harvard Crimson’s archives can be processed by Cambodian war

refugees, McDonald’s drive-thru orders in Missouri are taken in Colorado Springs, and

 4

hundreds of millions of Chinese and Indians have entered the middle class. Friedman’s

writing is sharp and carries an urgency in conveying both the opportunity and dangers of

the new flat world.

Peter J. Denning, editor, The Invisible Future: the Seamless Integration of Technology into Everyday

Life (McGraw-Hill, 2002)

This book grew out of a visionary conference organized by computing’s main professional

society in 2001. It contains essays from leading scientists speculating on how future

computing technology will impact science, society, and everyday life over the coming

decades. My favorite essay is Science’s Endless Golden Age, by astrophysicist Neil DeGrasse

Tyson, director of the Hayden Planetarium. It is an optimistic romp on the inexorable

advance of human knowledge. Other notable essays include How Biology Became an

Information Science, by David Baltimore, cancer researcher, president of Caltech and

winner of the Nobel prize in medicine, and Ray Kurzweil’s speculations on future

technologies that will mimic and extend human brains.

Personal Profile

David Evans (http://www.cs.virginia.edu/evans) is an Associate Professor of Computer Science in

the University of Virginia’s School of Engineering and Applied Science and Chair of the

Computer Science BA Degree Committee. His research interests include program analysis,

using diversity and properties of the physical world for security, and applications of

cryptography. He has SB, SM and PhD degrees in Computer Science from MIT.

