
Towards Differential Program Analysis

Joel Winstead and David Evans
Department of Computer Science

University of Virginia�
jwinstead,evans � @cs.virginia.edu

Abstract

Differential Program Analysis is the task of analyzing
two related programs to determine the behavioral differ-
ence between them. One goal is to find an input for which
the two programs will produce different outputs, thus illus-
trating the behavioral difference between the two programs.
Because the general problem is undecidable, an unsound or
incomplete analysis is necessary. A combination of static
and dynamic techniques may be able to produce useful re-
sults for typical programs, by conducting a search for differ-
entiating inputs guided by heuristics. This paper defines the
problem, describing what would be necessary for this kind
of analysis, and presents preliminary results illustrating the
potential of this technique.

1. Introduction

Notkin has argued that the future of program analysis
lies in analyzing multiple versions of the same program to-
gether [4]. This allows us to amortize the cost of analysis
across the development cycle, as well as to direct analysis
efforts towards differences, and may allow kinds of analysis
that would otherwise be intractable. We agree that this is a
good strategy, and further argue that analyzing two versions
of a program to find a behavioral difference is an important
problem not just because it can reduce the cost of analysis,
but because finding behavioral differences is a useful goal
in itself: it can aid in understanding and maintaining a pro-
gram as well as in recognizing unintended side effects of
modifications.

When making a change to a program, either to correct
a known error or to add a new feature, the consequences
of the change are not always fully understood. The change
may have unintended side effects that were not anticipated
by the programmer, or may fail to accomplish the intended
goal. The change may even have no effect at all. In order to
prevent unintended side effects and verify that changes have
the intended effect, it would be helpful to have an automated

analysis showing the actual effect of the modification on the
program’s behavior.

Programs are frequently maintained by people who are
far removed from the original development process. The
intended purpose of modifications in the program’s history
is not always clear or documented. The actual effect on the
program’s behavior of the presence of a particular part of the
program may be unknown; a particular line may be crucial
or it may have no effect at all. An analysis that shows the
difference in behavior caused by the presence or absence of
a particular element would assist maintainers in understand-
ing the program.

Testing and dynamic analysis of programs could also
benefit from this sort of analysis. When a change to a pro-
gram is made, it is important that it is well tested. New
tests may need to be added to the regression test suite to test
the modification adequately. Many dynamic analysis tools
depend on the quality of the test suite for a program, and
may produce incorrect results if no tests exist that exercise
a particular modification.

What is needed is a set of automated techniques to an-
alyze the effect of modifications. We use differential pro-
gram analysis as a general term to describe analyses that
focus on the differences between two similar programs. In
the sections that follow, we outline what such an analysis
needs to do, propose some heuristics and techniques that
can be used to do this analysis, and present preliminary re-
sults showing the promise of this technique.

2. Problem Definition

One goal of differential program analysis is to generate
a test case that demonstrates the difference in behavior be-
tween the two programs. We assume that the behavioral dif-
ference is small relative to the input space (i.e., the two pro-
grams produce identical output for nearly all inputs). While
it would be interesting to analyze changes that affect the
result of every input to the program, this would require a
different kind of analysis. Our goal is to find behavioral dif-
ferences, not to analyze known ones. Once a difference is

found, existing techniques such as Zeller’s Delta Debugging
method [9] can be used to analyze the difference.

We concentrate on analyzing two versions of the same
program. The structural difference between the two pro-
grams must be small relative to the size of the program:
only a few lines of code or a few procedures in the program
should be different. We would like to develop techniques
that take advantage of the similarities between the two pro-
grams, rather than use existing techniques to analyze the
programs independently and compare the results.

Because our goals include finding unanticipated side-
effects of changes, we cannot assume that an existing re-
gression test suite is able to find all interesting behavioral
differences. Regression testing finds differences in behav-
ior that were anticipated by the designers (or testers) and
specifically checked. While regression test selection [1] is
a useful technique for reducing the cost of testing, it can-
not reveal new differences that are not already tested by the
suite. We also would like to be able to analyze undocu-
mented programs that may not have test suites.

We assume we have a generator capable of producing a
differentiating test case, but that it is not reasonable to do
an exhaustive search of the input space. It is not necessary
for all generated inputs to be valid; the search will elimi-
nate inputs that both programs consider to be errors. If the
difference in behavior is small relative to the input space,
and we have a generator that can produce the right inputs,
the analysis problem becomes one of performing a directed
search to find inputs which reveal behavioral differences.

3. Approach

This kind of analysis requires solving several subprob-
lems: we must find inputs that reach the syntactic differ-
ence, generate differences in state between the two pro-
grams, and propagate these differences to the output.

The two programs will always produce the same output
for a given input unless, at some point, they execute dif-
ferent instructions. Therefore, in order to find test cases
that result in different output, we must first figure out how
to reach the syntactic changes to the program. This sub-
problem is itself undecidable, but incomplete solutions have
been proposed for it using search techniques such as simu-
lated annealing [6] or genetic algorithms [3] [5]; these tech-
niques use fitness functions to generate test inputs that reach
particular parts of a program. Symbolic execution and con-
straint solving is also a possible approach.

Once the syntactic changes in the program have been
reached, it is also necessary for a difference in state to re-
sult, and for this difference to be propagated through the
programs far enough to result in different output. It is pos-
sible for a modification to produce changes in intermediate
values without producing any difference in the end result.

Narrowing the input space to inputs that reach the modifi-
cation will not always be sufficient: it will still be necessary
to search this space to find inputs that result in actual differ-
ences in output.

Tracey et al. [6] show how to use simulated annealing
to evolve test inputs that cause a program to reach a spec-
ified point in the code. This is accomplished by determin-
ing what branches the program must take to reach the point
of interest, and developing a fitness function that evaluates
how close the program is to taking the correct branches. For
branches that the program should take, the condition for the
branch is transformed into an expression that measures how
close the program is to taking the branch, and these expres-
sions are combined to form a fitness function which is used
to evolve test inputs that cause the program to reach the de-
sired point. In order to apply this technique to finding dif-
ferences between programs, new fitness functions must be
constructed that compare the behavior of the two programs
and guide the search towards input that is likely to reveal
differences.

In order to direct the search towards an input that pro-
duces an actual behavioral difference, we must have some
way to measure how close a particular input is to achieving
this goal even if the goal has not yet been reached. While
not all inputs will produce a difference in output, some in-
puts may produce different intermediate values, or other
measurable differences in execution that may be important
cues for finding inputs that produce a behavioral difference.
We propose several heuristics that may be useful for guid-
ing a search towards inputs that produce actual differences
in output.

First, we note that boundary conditions in the two pro-
grams indicate what decisions the programs are making,
and that differences in behavior often lie along boundary
conditions. Selecting test cases that exercise boundary con-
ditions in the two programs is a promising way to find dif-
ferences. Focusing attention on boundaries that exist in one
program but not the other is particularly interesting, because
these decisions lead to paths that are not in both programs,
and reaching these paths may reveal different behavior. This
last heuristic takes advantage of known similarities between
the programs to focus on the difference, and has the poten-
tial to be more useful than approaches that analyze the pro-
grams separately.

If we evolve test sets, instead of evolving single test
cases, there are additional heuristics we can use. We can
select for test sets that maximize the total number of paths
executed, or other coverage metrics. We could modify these
coverage metrics to include only those paths that reach the
syntactic difference between the programs, which also takes
advantage of the similarities between the programs.

Evolving test sets also allows us to compare the ways
the two programs map the input space into paths through

the program. If program P1 maps two inputs I1 and I2 to
the same path, but program P2 maps inputs I1 and I2 to two
different paths, this reveals something about how the pro-
grams divide the input space, even if the output is the same.
Selecting for test sets that do not produce isomorphic map-
pings from inputs to paths in this way may lead to revealing
behavioral differences because they indicate regions of the
input space where the two programs do not handle the input
in the same way.

In addition to these heuristics, ongoing work by Xie and
Notkin [8] examines comparing program spectra combined
with various heuristics to identify possible faults in mod-
ified programs even in cases where no actual differences
in output result. Program spectra are signatures of program
behavior (such as the distribution of paths taken, procedures
executed, and values modified by the program) that can be
used to characterize the program’s execution. Harrold et
al. [2] also investigate the effectiveness of various program
spectra in identifying differences between programs. These
studies focus on identifying differences in execution that oc-
cur in regression tests of a program, not on guiding a search
for inputs that produce actual behavioral differences. How-
ever, some of the heuristics identified there may be useful
in constructing fitness functions that are useful for this pur-
pose.

If no differentiating test case can be found, this does not
necessarily mean that no behavioral difference exists. It
would be useful to have some way of measuring how thor-
ough a search has been conducted, because this would pro-
vide a measure of confidence that the two programs actually
have the same behavior. This could be done by estimating
how much of the relevant search space has been tested, or
by coverage of the modified parts of the programs. Mutation
analysis [7] has been used to evaluate the effectiveness of a
test suite by how well it can identify differences between
the original and modified programs. It may be necessary
to develop new coverage metrics that take into account the
special problem of covering differences in code.

4. Preliminary Results

We have developed a small system to explore some of
the techniques described above. The system uses less than
1,000 lines of Java code, and is capable of evolving test
cases that show behavioral differences in small programs.
The programs must be instrumented by hand to compute the
fitness functions, but this could be automated in the future.
We will illustrate the system using a simple example.

The short procedure in Figure 1 classifies a triangle by
comparing the lengths of its three sides: it returns a value
indicating whether or not the three lengths given can form a
triangle, and if so, whether the triangle is equilateral, isosce-
les, or scalene, and whether the largest angle is right, obtuse,

int classify(int a, int b, int c) �
int kind = UNKNOWN;
if (a + b � = c ��� b + c � = a ��� c + a � = b)

return INVALID TRIANGLE;

if (a*a + b*b == c*c ��� b*b + c*c == a*a
��� c*c + a*a == b*b)

kind � = RIGHT TRIANGLE;
else if (a*a + b*b � c*c

&& a*b + c*c � a*a
&& c*c + a*a � b*b)

kind � = ACUTE TRIANGLE;
else

kind � = OBTUSE TRIANGLE;

if (a==b ��� b==c ��� c==a)

if (a==b && b==c)
kind � = EQUILATERAL TRIANGLE;

else
kind � = ISOSCELES TRIANGLE;

else
kind � = SCALENE TRIANGLE;

return kind;�

Figure 1. Triangle classification procedure

or acute. A different version of this procedure (not shown)
lacks the || c==a (shown in the box).

This procedure is simple enough that we can easily see
the effect of the modification by inspecting it: it will, in
some cases, incorrectly classify an isosceles triangle as sca-
lene (for example, the triangle with sides (3,4,3) would be
classified as scalene, even though sides a and c are the same
length). However, we will use it as an example to demon-
strate how an automated tool could generate test cases that
demonstrate the difference using the boundary condition
heuristic.

The idea behind the heuristic is that test executions that
are at or near boundary conditions in the program are more
likely to reveal differences. We can develop such test
cases by instrumenting the program to compute a measure
of nearness to boundaries, and use this measure to guide
the search for differentiating test cases. At each decision
point in the program, the conditional expression is con-
verted into an expression measuring how far the program
was from making the opposite decision, similar to the tech-
nique Tracey et al. used to select inputs that reach a par-
ticular point in the program [6]. We use the minimum of
all of these values to measure how close the program was
to taking a different path for a particular test case. We can
then use this fitness function to guide a genetic algorithm to

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.5 1 1.5 2 2.5 3

p

Number of trial executions (millions)

Guided search
Unguided search

Figure 2. Probability of finding difference vs.
number of trial executions

evolve test cases that cause the program to reach boundary
conditions.

Preliminary results show that this technique works for
the triangle classification example given above: the guided
search was able to find a differentiating test case using sig-
nificantly fewer test executions than a random, unguided
search. The graph in Figure 2 shows that fifty percent of the
time, the guided search was able to identify the difference in
120,000 trial executions or fewer, while the unguided search
required over a million trial executions before having a 50%
probability of finding one.

This technique works particularly well for this (admit-
tedly contrived) example because the behavioral difference
lies along one of the boundary conditions: c==a. For pro-
grams that have more complicated control flow, and a more
complicated relationship between the input and the control
flow, this is not sufficient. However, there are several ways
this technique can be improved. We are currently exploring
focusing on decisions that are made in only one program
but not in the other in order to guide the search, rather than
looking at all boundary conditions. We are also examining
the use of static analysis to determine which decisions are
most important and which decisions must be made to reach
the changed portion of the program.

5. Summary

The modern development process, using version control
systems like CVS and online repositories such as Source-
Forge, makes available many related versions of the same
programs. We should take advantage of this opportunity to
analyze related versions of programs to better understand
them. It is important to develop techniques to analyze two
versions of the same program together, not only because it
could reduce the overall cost of testing and analysis, but be-
cause it could reveal important facts about the differences

between the programs. This kind of information would be
useful in avoiding unintended side effects, understanding
the development history of undocumented programs, and in
identifying the actual effects of particular parts of the pro-
gram.

Many of the hard problems that must be solved before
we can achieve the goals of differential program analy-
sis have undergone rapid progress recently, such as using
global search techniques to evolve inputs that reach particu-
lar parts of programs [6], and using program spectra to com-
pare related versions of the the same program [2] [8]. We
are optimistic that we are near the point when techniques
can be combined in ways that enable useful and revealing
analyses of the differences between two similar programs.

References

[1] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pen-
nings, S. Sinha, S. A. Spoon, and A. Gujarathi. Regression
test selection for Java software. In Proceedings of the ACM
Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA ’01), 2001.

[2] M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi.
An empirical investigation of the relationship between spectra
differences and regression faults. Software Testing, Verifica-
tion and Reliability, 10(3):171–194, 2000.

[3] C. C. Michael, G. E. McGraw, M. A. Schatz, and C. C. Wal-
ton. Genetic algorithms for dynamic test data generation.
Technical Report RSTR-003-97-11, RST Corporation, Ster-
ling, VA, May 1997.

[4] D. Notkin. Keynote: Longitudinal program analysis. In Work-
shop on Program Analysis for Software Tools and Engineer-
ing (PASTE 2002), page 1, Charleston, SC, November 2002.

[5] R. P. Pargas, M. J. Harrold, and R. R. Peck. Test-data gener-
ation using genetic algorithms. Journal of Software Testing,
Verification, and Reliability, 9(4):263–282, 1999.

[6] N. Tracey, J. Clark, and K. Mander. The way forward for uni-
fying dynamic test-case generation: The optimisation-based
approach. In Internation Workshop on Dependable Comput-
ing and Its Applications (DCIA), pages 169–180. IFIP, Jan-
uary 1998.

[7] J. M. Voas and K. W. Miller. Software testability: The new
verification. IEEE Software, 12(3):17–28, May 1995.

[8] T. Xie and D. Notkin. Checking inside the black box: Regres-
sion fault exposure and localization based on value spectra
differences. FSE Poster Session, November 2002.

[9] A. Zeller and R. Hildebranst. Simplifying and isolating
failure-inducing input. IEEE Transactions on Software En-
gineering, 28(2):183–200, February 2002.

