
A Biologically Inspired Programming Model
for Self-Healing Systems

Selvin George
Department of Computer Science

University of Virginia
Charlottesville, VA

selvin@virginia.edu

David Evans
Department of Computer Science

University of Virginia
Charlottesville, VA

evans@virginia.edu

Lance Davidson
Department of Biology
University of Virginia
Charlottesville, VA

lance_davidson@virginia.edu

ABSTRACT
There is an increasing need for software systems to be able to
adapt to changing conditions of resource variability, component
malfunction and malicious intrusion. Such self-healing systems
can prove extremely useful in situations where continuous service
is critical or manual repair is not feasible. Human efforts to
engineer self-healing systems have had limited success, but nature
has developed extraordinary mechanisms for robustness and self-
healing over billions of years. Nature’s programs are encoded in
DNA and exhibit remarkable density and expressiveness. We
argue that the software engineering community can learn a great
deal about building systems from the broader concepts
surrounding biological cell programs and the strategies they use to
robustly accomplish complex tasks such as development, healing
and regeneration. We present a cell-based programming model
inspired from biology and speculate on biologically inspired
strategies for producing robust, scalable and self-healing software
systems.

Categories and Subject Descriptors
D.1.0 [Programming Techniques]: General; D.2.4
[Software/Program Verification] – reliability; F.1.1 [Models of
Computation].

General Terms
Design, Reliability, Experimentation, Security, Languages

Keywords
Biological programming; self-healing systems; amorphous
computing.

1. INTRODUCTION
Biology is replete with examples of systems with remarkable
robustness and self-healing properties. These include
morphogenesis, wound healing and regeneration:

Morphogenesis. A single cell develops into a full organism
following a program encoded in its DNA that evolved over
billions of years. Cells perform various actions like division,
deformation and growth based on gene actions. The actions of the
genes are dictated by the presence of chemical substances. Gene
actions coupled with physical forces acting on a cell from its
neighboring cells and external environment lead to a developed
organism. Even in simple organisms, development is robust to
many kinds of local failures and adapts to a wide range of
environments. For example, when a cell dies, the neighboring
cells sense changes in the environment and adapt their own
development to correct the problem [6].

Wound Healing. Almost all complex organisms have some sort
of mechanism for healing simple wounds. In humans, when a
minor injury happens, an inflammatory response occurs and the
cells below the dermis (the deepest skin layer) begin to increase
collagen (connective tissue) production. Later, the epithelial tissue
(the outer skin layer) is regenerated. The interesting point here is
the apparent level of awareness of the cells. Also, cells around the
injury are able to adapt to a different function based on the new
circumstances [2].

Regeneration. Many organisms can regenerate new heads, limbs,
internal organs or other body parts if the originals are lost or
damaged. Organisms take two approaches to replacing a lost body
part. Some, such as flatworms and the polyp Hydra, retain
populations of stem cells throughout their lives, which are
mobilized when needed. These stem cells retain the ability to
regrow many of the body’s tissues. Other organisms, including
newts, segmented worms and zebrafish, convert differentiated
adult cells that have stopped dividing and form part of the skin,
muscle or another tissue back into stem cells. When a newt’s leg,
tail or eye is amputated or damaged, cells near the stump begin an
extraordinary change. They revert from specialized skin, muscle
and nerve cells into blank progenitor cells. These progenitors
multiply quickly to about 80,000 cells and then grow into
specialized cells to regenerate the missing part [5].

We observe that nature’s approach to programming has the
following properties:

1. Environmental Awareness. Though the cells may have
limited communication capabilities, they act differently in
response to sensed properties of the surrounding
environment. This enables cells to react to changes in nearby
cells, as well as the surrounding environment.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

WOSS '02, Nov 18-19, 2002, Charleston, SC, USA.

Copyright 2002 ACM 1-58113-609-9/02/0011 ...$5.00

2. Adaptation. Many cells have a great amount of adaptability.
In many organisms, at the beginning of morphogenesis, if
one of the initial cells obtained by the first division of the
germ cell dies then the surviving cell is often able to
complete the development of the organism. This indicates
that enough information is preserved to be able to
“backtrack” to a previous state of development. This is due
to the fact that all cells run the same cell-program and can
hence respond to aberrant behavior from neighbors

3. Redundancy. A non-redundant organism would have every
cell assigned a fixed role in the development process. Any
failure during the development process would produce a
defective organism. Typical organisms have many cells
devoted to the same function throughout development, so
that failures of individual cells are inconsequential.
Biological systems also exhibit redundancy of function,
where several distinct mechanisms evolve for the same
purpose in a single organism.

4. Decentralization. There is no global coordination and
limited communication for most of the development process.
Cells sense properties of their environment, and are most
affected by nearby cells. Cells can induce neighboring cells
to do a particular action, but there is no centralized control
and limited long-distance communication.

2. CELL-BASED PROGRAMMING
Inspired by biological systems, we propose a cell-based
programming model that can be used for software systems
operation and healing. Our model is similar to the cellular
automata that have been studied extensively since von Neumann’s
early work [4], but differs in that it is more closely related to
biological processes. In particular, we support a notion of cell
division, a communication model based on chemical diffusion,
and a rudimentary model of the physical forces involved. By
developing a programming model more like nature’s, we believe
we will produce more robust programs with natural self-healing
properties.

A related approach is amorphous computing, which considers
approaches for programming a medium of randomly distributed
computing particles. The Growing Point Language [1] and
Origami Shape Language [3] both illustrate mechanisms for
global self-organization using simple local communication of the
agents. Self-healing properties are also being studied using GPL.
As with our work, the challenge is to produce programs that
generate predictable behavior with a locally unpredictable and
non-traditional programming model. Because the underlying
execution environment is inherently redundant and decentralized,
robustness is practically inevitable if programs are constructed in
the right way.

We represent a cell program as an automaton containing discrete
states and transitions between these states. Every cell comprising
the program is in one of these states. The input to each cell state is
the sensed properties of the local environment and the output is a
transition to another state, or a division into two (possibly
different) states. States are represented by circles and state
transitions by directional arrows. Dots represent cell divisions.

Our cell programming model incorporates:

1. Cell Division. A cell can divide into two daughter cells that
may be dissimilar in orientation and chemical composition
but have the same program (DNA). A cell has an axis called
the apical-basal axis. Divisions can be either perpendicular to
this cell axis or along the plane containing the axis. The
difference in chemical composition and also the different
chemicals on their cell walls causes the two daughter cells to
behave differently from that point onwards. Cell division is
modeled by using a transition from one state to two states.

2. Cell Actions. Cells can produce proteins and signaling
chemicals depending on what genes are active. Chemicals
produced this way affect the environment and neighboring
cells through chemical diffusion.

3. Gene Actions. Genes can activate or deactivate depending
on the presence or absence of a particular protein or a certain
degree of chemical concentration. Activation or deactivation
of a gene results in cell actions like production of chemicals.

The varying degrees of concentration produced by earlier cell
actions (both by the cell and its neighbors) cause gene actions and
gene actions cause cell actions; this results in a powerful
programming paradigm. Cell actions such as production of
chemicals are modeled using messages. Gene actions are modeled
using cell state transitions; these are a result of received messages.

A cell program begins with cells in an initial configuration, and
all the cells follow transition rules like a finite state machine.
Between steps, an environment simulator determines changes in
external stimuli. The changes to the environment can be due to
operations of the software system, expected input conditions or
failure conditions. Since cells can sense their local environment it
is possible for them to be able to perform failure recovery
(healing) or re-composition of appropriate components
(regeneration). Our simulator also provides opportunities to
conduct experiments involving random and catastrophic failures.

Two simple examples of cell programs are shown in Figure 1.
Automaton A produces a line of cells as long as the input
condition a exists. The condition a may represent the presence of
food for growth. Automaton B produces cells to combat intruders
as long as it detects unfavorable conditions. This approach creates
excess cells so that some may survive the malicious action.

Figure 1. Example Cell Programs

 1

 2
a

A. Creating a line of Cells

 1 2

b

a

a – Condition favorable
 to continued cell
 production

B. Robustness through replication

a – Favorable conditions

b – Unfavorable conditions

Numbered Circle – State
Arrow – Transition
Dot – Cell division

3. SIMULATING CELL PROGRAMS
Using a simulator, we have conducted simulations of different cell
programs. The simulator simulates a cell program on a simulation
configuration. The simulation configuration is used to introduce
new cells, chemical concentrations or failures. Our simulator is
available at http://swarm.cs.virginia.edu/cellsim.

A sample program for creation of a self-healing blastula is shown
below. A blastula is a spherical structure that is the first stage of
development of many large organisms. A sufficient number of
cells are needed before organism development proceeds to the
next stage.

state s1 {
 emits (sig, 0.1)

transitions
 (0 <= sig <= 0.375) -> (s2, s2) axis;
 -> (s1);

}
state s2 {

emits (sig, 0.1)
transitions
 (0 <= sig <= 0.375) -> (s3, s3) normal-X;
 -> (s2);

}
state s3 {

emits (sig, 0.1)
transitions
 (0 <= sig <= 0.375) -> (s1, s1) normal-Y;
 -> (s3);

}

In the above cell automaton there are three cell-states – s1, s2 and
s3. They are similar in that they emit the same signaling chemical
sig and divide into two cells each if they sense that the
concentration of sig is less than 0.375. The cell remains in its
current state if the concentration of sig is above 0.375.

(a) (b)

(c)

Figure 2. Simulated Blastula Program. (a) Blastula in 8-cell
stage – starting from one cell; (b) damaged blastula – after killing
one cell (c) after the blastula regenerates.

This self-healing blastula has the property that if a few cells are
killed, it will automatically heal itself by producing the required
number of cells. Figure 2 shows a simulation of the blastula
program for four steps, after which one of the cells was killed to
observe the self-healing behavior. The surviving cells regenerate
additional cells to continue the process. The principle behind this
type of healing is that the once a cell was killed, it stopped
producing the particular chemical that was being sensed by its
neighbors. Note that nothing in the cell program explicitly deals
with healing and regeneration. The neighbors of a failed cell just
follow a different path in the cell-program due to the changed
environmental conditions.

4. TOWARDS SELF-HEALING SYSTEMS
Although our initial experiments have focused on mimicking
simple biological processes and generating basic geometric
structures, our long-term goal is to develop techniques that can be
used to produce robust, self-healing systems designed to perform
a complex task. Developing complex programs using state
diagrams, however, is infeasible. A high-level programming
abstraction for cell-based programs is needed in which a
programmer can describe desired processes at a high-level and a
cell-program compiler will produce the steps of the automaton.
An important design issue is which operations or abstractions
should be part of the language and which can be composed of the
elementary operations and hence can be kept outside the
language. We are currently working on programming abstractions
based on the biological cell model. If successful, programs
described in this way will have intrinsic robustness, scaling and
self-healing properties. We hope that our experiments with
biological programs will provide insights into how to build more
robust computer systems.

5. ACKNOWLEDGMENTS
This work was funded in part by grants from the National Science
Foundation (CCR-0092945 and EIA-0205327) and NASA
Langley Research Center.

6. REFERENCES
[1] H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T.

Knight, R. Nagpal, E. Rauch, G. Sussman and R. Weiss,
Amorphous Computing, Communications of the ACM,
Volume 43, Number 5, p. 74-83. May 2000.

[2] Mary Y. Mazzotta. Nutrition and wound healing. Journal of
the American Podiatric Medical Association. Volume 84,
Number 9, p. 456–62. September 1994.

[3] Radhika Nagpal, Programmable Self-Assembly:
Constructing Global Shape using Biologically-inspired
Local Interactions and Origami Mathematics, PhD Thesis,
MIT Department of Electrical Engineering and Computer
Science, June 2001.

[4] John von Neumann, Theory of Self-Reproducing Automata.
University of Illinois Press, 1966 (Originally published in
1953).

[5] Helen Pearson, The regeneration gap, Nature Science
Update. 22 November 2001.

[6] Lewis Wolpert, Rosa Beddington, Peter Lawrence, Thomas
M. Jessell, Principles of Development, Oxford University
Press. 2002.

