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ABSTRACT 
There is an increasing need for software systems to be able to 
adapt to changing conditions of resource variability, component 
malfunction and malicious intrusion. Such self-healing systems 
can prove extremely useful in situations where continuous service 
is critical or manual repair is not feasible. Human efforts to 
engineer self-healing systems have had limited success, but nature 
has developed extraordinary mechanisms for robustness and self-
healing over billions of years. Nature’s programs are encoded in 
DNA and exhibit remarkable density and expressiveness. We 
argue that the software engineering community can learn a great 
deal about building systems from the broader concepts 
surrounding biological cell programs and the strategies they use to 
robustly accomplish complex tasks such as development, healing 
and regeneration. We present a cell-based programming model 
inspired from biology and speculate on biologically inspired 
strategies for producing robust, scalable and self-healing software 
systems. 

Categories and Subject Descriptors 
D.1.0 [Programming Techniques]: General; D.2.4 
[Software/Program Verification] – reliability; F.1.1 [Models of 
Computation]. 

General Terms 
Design, Reliability, Experimentation, Security, Languages 

Keywords 
Biological programming; self-healing systems; amorphous 
computing. 

1. INTRODUCTION 
Biology is replete with examples of systems with remarkable 
robustness and self-healing properties.  These include 
morphogenesis, wound healing and regeneration: 

Morphogenesis. A single cell develops into a full organism 
following a program encoded in its DNA that evolved over 
billions of years.  Cells perform various actions like division, 
deformation and growth based on gene actions. The actions of the 
genes are dictated by the presence of chemical substances. Gene 
actions coupled with physical forces acting on a cell from its 
neighboring cells and external environment lead to a developed 
organism. Even in simple organisms, development is robust to 
many kinds of local failures and adapts to a wide range of 
environments.  For example, when a cell dies, the neighboring 
cells sense changes in the environment and adapt their own 
development to correct the problem [6]. 

Wound Healing. Almost all complex organisms have some sort 
of mechanism for healing simple wounds. In humans, when a 
minor injury happens, an inflammatory response occurs and the 
cells below the dermis (the deepest skin layer) begin to increase 
collagen (connective tissue) production. Later, the epithelial tissue 
(the outer skin layer) is regenerated. The interesting point here is 
the apparent level of awareness of the cells. Also, cells around the 
injury are able to adapt to a different function based on the new 
circumstances [2]. 

Regeneration. Many organisms can regenerate new heads, limbs, 
internal organs or other body parts if the originals are lost or 
damaged. Organisms take two approaches to replacing a lost body 
part. Some, such as flatworms and the polyp Hydra, retain 
populations of stem cells throughout their lives, which are 
mobilized when needed. These stem cells retain the ability to 
regrow many of the body’s tissues. Other organisms, including 
newts, segmented worms and zebrafish, convert differentiated 
adult cells that have stopped dividing and form part of the skin, 
muscle or another tissue back into stem cells. When a newt’s leg, 
tail or eye is amputated or damaged, cells near the stump begin an 
extraordinary change. They revert from specialized skin, muscle 
and nerve cells into blank progenitor cells. These progenitors 
multiply quickly to about 80,000 cells and then grow into 
specialized cells to regenerate the missing part [5]. 

We observe that nature’s approach to programming has the 
following properties: 

1. Environmental Awareness. Though the cells may have 
limited communication capabilities, they act differently in 
response to sensed properties of the surrounding 
environment.  This enables cells to react to changes in nearby 
cells, as well as the surrounding environment. 
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2. Adaptation. Many cells have a great amount of adaptability. 
In many organisms, at the beginning of morphogenesis, if 
one of the initial cells obtained by the first division of the 
germ cell dies then the surviving cell is often able to 
complete the development of the organism. This indicates 
that enough information is preserved to be able to 
“backtrack” to a previous state of development. This is due 
to the fact that all cells run the same cell-program and can 
hence respond to aberrant behavior from neighbors 

3. Redundancy. A non-redundant organism would have every 
cell assigned a fixed role in the development process. Any 
failure during the development process would produce a 
defective organism. Typical organisms have many cells 
devoted to the same function throughout development, so 
that failures of individual cells are inconsequential.  
Biological systems also exhibit redundancy of function, 
where several distinct mechanisms evolve for the same 
purpose in a single organism. 

4. Decentralization. There is no global coordination and 
limited communication for most of the development process.  
Cells sense properties of their environment, and are most 
affected by nearby cells.  Cells can induce neighboring cells 
to do a particular action, but there is no centralized control 
and limited long-distance communication. 

2. CELL-BASED PROGRAMMING  
Inspired by biological systems, we propose a cell-based 
programming model that can be used for software systems 
operation and healing. Our model is similar to the cellular 
automata that have been studied extensively since von Neumann’s 
early work [4], but differs in that it is more closely related to 
biological processes.  In particular, we support a notion of cell 
division, a communication model based on chemical diffusion, 
and a rudimentary model of the physical forces involved.  By 
developing a programming model more like nature’s, we believe 
we will produce more robust programs with natural self-healing 
properties.   
 
A related approach is amorphous computing, which considers 
approaches for programming a medium of randomly distributed 
computing particles. The Growing Point Language [1] and 
Origami Shape Language [3] both illustrate mechanisms for 
global self-organization using simple local communication of the 
agents. Self-healing properties are also being studied using GPL.  
As with our work, the challenge is to produce programs that 
generate predictable behavior with a locally unpredictable and 
non-traditional programming model.  Because the underlying 
execution environment is inherently redundant and decentralized, 
robustness is practically inevitable if programs are constructed in 
the right way. 
 
We represent a cell program as an automaton containing discrete 
states and transitions between these states. Every cell comprising 
the program is in one of these states. The input to each cell state is 
the sensed properties of the local environment and the output is a 
transition to another state, or a division into two (possibly 
different) states. States are represented by circles and state 
transitions by directional arrows. Dots represent cell divisions. 

Our cell programming model incorporates: 

1. Cell Division. A cell can divide into two daughter cells that 
may be dissimilar in orientation and chemical composition 
but have the same program (DNA). A cell has an axis called 
the apical-basal axis. Divisions can be either perpendicular to 
this cell axis or along the plane containing the axis. The 
difference in chemical composition and also the different 
chemicals on their cell walls causes the two daughter cells to 
behave differently from that point onwards. Cell division is 
modeled by using a transition from one state to two states. 

2. Cell Actions. Cells can produce proteins and signaling 
chemicals depending on what genes are active. Chemicals 
produced this way affect the environment and neighboring 
cells through chemical diffusion. 

3. Gene Actions. Genes can activate or deactivate depending 
on the presence or absence of a particular protein or a certain 
degree of chemical concentration. Activation or deactivation 
of a gene results in cell actions like production of chemicals. 

The varying degrees of concentration produced by earlier cell 
actions (both by the cell and its neighbors) cause gene actions and 
gene actions cause cell actions; this results in a powerful 
programming paradigm. Cell actions such as production of 
chemicals are modeled using messages. Gene actions are modeled 
using cell state transitions; these are a result of received messages. 

A cell program begins with cells in an initial configuration, and 
all the cells follow transition rules like a finite state machine.  
Between steps, an environment simulator determines changes in 
external stimuli.  The changes to the environment can be due to 
operations of the software system, expected input conditions or 
failure conditions. Since cells can sense their local environment it 
is possible for them to be able to perform failure recovery 
(healing) or re-composition of appropriate components 
(regeneration).  Our simulator also provides opportunities to 
conduct experiments involving random and catastrophic failures. 

Two simple examples of cell programs are shown in Figure 1.  
Automaton A produces a line of cells as long as the input 
condition a exists.  The condition a may represent the presence of 
food for growth.  Automaton B produces cells to combat intruders 
as long as it detects unfavorable conditions. This approach creates 
excess cells so that some may survive the malicious action. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Example Cell Programs 
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3. SIMULATING CELL PROGRAMS 
Using a simulator, we have conducted simulations of different cell 
programs. The simulator simulates a cell program on a simulation 
configuration. The simulation configuration is used to introduce 
new cells, chemical concentrations or failures. Our simulator is 
available at http://swarm.cs.virginia.edu/cellsim.  

A sample program for creation of a self-healing blastula is shown 
below. A blastula is a spherical structure that is the first stage of 
development of many large organisms.  A sufficient number of 
cells are needed before organism development proceeds to the 
next stage. 

state s1 {  
    emits (sig, 0.1) 

transitions 
  (0 <= sig <= 0.375) -> (s2, s2) axis; 
                      -> (s1); 

} 
state s2 {  

emits (sig, 0.1) 
transitions 
  (0 <= sig <= 0.375) -> (s3, s3) normal-X; 
                      -> (s2); 

} 
state s3 {  

emits (sig, 0.1) 
transitions 
  (0 <= sig <= 0.375) -> (s1, s1) normal-Y; 
                      -> (s3); 

} 

In the above cell automaton there are three cell-states – s1, s2 and 
s3. They are similar in that they emit the same signaling chemical 
sig and divide into two cells each if they sense that the 
concentration of sig is less than 0.375. The cell remains in its 
current state if the concentration of sig is above 0.375. 

 
(a)   (b) 

 
(c) 

Figure 2. Simulated Blastula Program.   (a) Blastula in 8-cell 
stage – starting from one cell; (b) damaged blastula – after killing 
one cell (c) after the blastula regenerates. 

This self-healing blastula has the property that if a few cells are 
killed, it will automatically heal itself by producing the required 
number of cells. Figure 2 shows a simulation of the blastula 
program for four steps, after which one of the cells was killed to 
observe the self-healing behavior. The surviving cells regenerate 
additional cells to continue the process. The principle behind this 
type of healing is that the once a cell was killed, it stopped 
producing the particular chemical that was being sensed by its 
neighbors.  Note that nothing in the cell program explicitly deals 
with healing and regeneration.  The neighbors of a failed cell just 
follow a different path in the cell-program due to the changed 
environmental conditions.  

4. TOWARDS SELF-HEALING SYSTEMS 
Although our initial experiments have focused on mimicking 
simple biological processes and generating basic geometric 
structures, our long-term goal is to develop techniques that can be 
used to produce robust, self-healing systems designed to perform 
a complex task. Developing complex programs using state 
diagrams, however, is infeasible.  A high-level programming 
abstraction for cell-based programs is needed in which a 
programmer can describe desired processes at a high-level and a 
cell-program compiler will produce the steps of the automaton. 
An important design issue is which operations or abstractions 
should be part of the language and which can be composed of the 
elementary operations and hence can be kept outside the 
language.  We are currently working on programming abstractions 
based on the biological cell model. If successful, programs 
described in this way will have intrinsic robustness, scaling and 
self-healing properties.  We hope that our experiments with 
biological programs will provide insights into how to build more 
robust computer systems.  
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