Secure Computation

 in the
Real(ish) World

Carnegie Mellon 20 April 2011

David Evans

University of Virginia http://www.cs.virginia.edu/evans http://www.MightBeEvil.com
"Genetic Dating"

WARNING!
Don't Reproduce
WARNING!
Don't Reproduce
 TheScientist nevs current issue acchive sur
\qquad
\qquad

2 comments
By Kerry Grens
Forget mistletoe - what about DNA?

A new dating service matches singles using major histocompatibility complex genes

ScientificMatch.com "The Science of Love"

Genome Sequencing

1990: Human Genome Project starts, estimate $\$ 3 B$ to sequence one genome ($\$ 0.50 /$ base)

Steven Pinker (PGP-10)

LETTERS

On Jim Watson's APOE status: genetic information is hard to hide

Secure Two-Party Computation

Can Alice and Bob compute a function of their private data, without exposing anything about their data besides the result?

Secure Function Evaluation

Alice (circuit generator)

Bob (circuit evaluator)
Agree on
Picks $a \in\{0,1\}^{s} \quad f(a, b) \rightarrow x$
Picks $b \in\{0,1\}^{t}$

Outputs $x=f(a, b)$ without revealing a to Bob or b to Alice.

Yao's Garbled Circuits

Inputs		Output
a	b	x
0	0	0
0	1	0
1	0	0
1	1	1

Computing with Meaningless Values?

Inputs		Output
a	b	x
a_{0}	b_{0}	x_{0}
a_{0}	b_{1}	x_{0}
a_{1}	b_{0}	x_{0}
a_{1}	b_{1}	x_{1}

$a_{\mathrm{i}}, b_{\mathrm{i}}, x_{\mathrm{i}}$ are random values, chosen by the circuit generator but meaningless to the circuit evaluator.

Garbled Circuit Protocol

Alice (circuit generator)

Creates random keys: $a_{0}, a_{1}, b_{0}, b_{1}, x_{0}, x_{1}$

Sends a_{i} to Bob a_{0}
based on her input
value

Computing with Garbled Tables

Primitive: Oblivious Transfer

Rabin, 1981; Even, Goldreich, and Lempel, 1985; many subsequent papers

Threat Model

Semi-Honest (Honest But Curious) Adversary
Adversary follows the protocol as specified (!)
Curious adversary tries to learn more from protocol execution transcript

Garbled Circuits security proofs depend on this very weak model
General techniques for
converting protocols secure
in semi-honest model to
resist malicious adversary.

Amount of information that
could leak is probably small
Possibility to use software attestation to validate executing code?

Building Computing Systems

Digital Electronic Circuits	Garbled Circuits
Operate on known data	Operate on encrypted wire labels
One-bit logical operation requires moving a few electrons a few nanometers (hundreds of Billions per second)	One-bit logical operation requires performing (up to) 4 encryption operations $(\sim 100,000$ gates per second)
Reuse is great!	Reuse is not allowed!
All basic operations have similar cost	Some logical operations "free" (XOR, NOT)

Faster Garbled Circuits

Heterozygous Recessive Risk

Alice's Heterozygous Recessive genes: $\{5283423,1425236,839523, \ldots$ \}
Bob's Heterozygous Recessive genes: $\{5823527,839523,169325, \ldots$ \}

Goal: find the intersection of A and B

Bit Vector Intersection

Pairwise Comparison

randomly permute A
randomly permute B
for i in range($0, \mathrm{n}-1$):
oblivious
for j in range($0, \mathrm{n}-1$):
if $A[i]=B[j]$ output $A[i]$

Scaling

What if there are millions of possible diseases?
Length of bit vector:
number of possible values
(2^{L} where L is number of bits for each value)

Other private set intersection problems:
Do Alice and Bob have any friends in common?
Data mining problems: combine medical records across hospitals
Two companies want to do joint marketing to common customers

Short-Circuit Pairwise Comparison

for i in range($0, \mathrm{n}-1$):
mask[i] = false
for i in range($0, \mathrm{n}-1$):
for j in range($0, \mathrm{n}-1$):
if not mask[i] and $\mathbf{A}[\mathbf{i}]=\mathrm{B}[\mathrm{j}]$:
reveal A[i] to both
mask[i] = true
break

Short-Circuit Analysis

Scaling

Other private set intersection problems:
Do Alice and Bob have any friends in common?
Data mining problems: combine medical records across hospitals Two companies want to do joint marketing to common customers

This is still $O\left(n^{2}\right)$. Is there an $O(n \log n)$ solution?

Sort $2 n$ bitonic inputs with $n \log (2 n)$ CompareSwap circuits.

Oblivious Shuffling

Homomorphic Encryption Shuffling Protocol

Add random mask, permute, exchange and reveal

Expensive

Sort

Simple...but expensive

Random Permutation

A Permulation Network

BRAHAM WAKSMAN

Stanford Research Institute, Menlo Park, California
abstract. In this paper the construction of a switching network capable of $n!$-permutation of its n input terminals to its n output terminals is described. The building blocks for this net work are binary cells capable of permuting their two input terminals to their two output terminals.
The number of cells used by the network is $\left\langle n \cdot \log _{2} n-n+1\right\rangle=\sum_{n=1}^{n}\left\langle\log _{2} k\right\rangle$. It could be argued that for such a network this number of cells is a lower bound, by noting that binary decision trees in the network can resolve individual terminal assignments only and not the rtitioning of the permutation set itself which requires only $\left\langle\log _{2} n!\right\rangle=\left\langle\sum_{k=1}^{n} \log _{2} k\right\rangle$ binary :ons.

Journal of the ACM, January 1968

Waksman Network

Same circuit can generate any permutation: select a random permutation, and pick swaps
$n \log n-n+1$ gates

Private Set ntersection Protocol

Private Set Intersection Results

Some Other Results

	Problem	Best Previous Result	Our Result	Speedup
	Hamming Distance (Face Recognition, Genetic Dating) - two 900-bit vectors	$\begin{gathered} 213 \mathrm{~s} \\ {[\mathrm{SCiFI}, 2010]} \end{gathered}$	0.051s	4176
	Levenshtein Distance (genome, text comparison) two 200-character inputs	$\begin{gathered} 534 \mathrm{~s} \\ {[\mathrm{Jha}+, 2008]} \end{gathered}$	18.4s	29
	Smith-Waterman (genome alignment) - two 60nucleotide sequences	[Not Implementable]	447s	-
	AES Encryption	$\begin{gathered} 3.3 \mathrm{~s} \\ {[\text { Henecka, 2010] }} \end{gathered}$	0.2s	16.5
등 N n 2	Fingerprint Matching (1024entry database, 640x8bit vectors)	$\begin{gathered} \sim 83 s \\ {[\text { Barni, 2010] }} \end{gathered}$	18s	4.6

Scalable: 1 Billion gates evaluated at $\sim 100,000$ gates/second on laptop

Much of the early engineering development of digital computers was done in universities. A few years ago, the view was commonly expressed that universities had played their part in computer design, and that the matter could now safely be left to industry. I do not think that it is necessary that work on computer design should go on in all universities, but I am glad that some have remained active in the field. Apart from the obvious functions of universities in spreading knowledge, and keeping in the public domain material that might otherwise be hidden, universities can make a special contribution by reason of their freedom from commercial considerations, including freedom from the need to follow the fashion

Sir Maurice Wilkes (June 1913-Nov 2010), 1967 Turing Award Lecture

