Research in Security and Privacy

David Evans www.cs.virginia.edu/evans www.jeffersonswheel.org

cs6190 - 21 September 2011

Image: Roger Halbheer

My Life Story!

Finding a Research Area

Semiconductor Design?

20T 10

Temperature-Aware Computing?

Information Retrieval?

Simplicity is the ultimate sophistication.

Introducing Apple II, the personal computer. MAY 5 1978

Marc Raibert

David (C.) Evans (and Ivan Sutherland) Computer Graphics Pioneer

2000

2011

Programming Languages

Software Engineering

Networking, Sensor Networks

Applied Cryptography

Operating Systems

Security

Computer Security

Study of computing systems in the presence of *adversaries*

about what happens when people don't follow the rules

Security Research Group

At USENIX Security Symposium, San Francisco, August 2011

Main Active Projects

DHOSA: End-to-end Security for Web and Smartphone Applications

(MURI with UC Berkeley, Harvard, UIUC, Stonybrook)

Secure Computation (www.securecomputation.org)

(NSF with abhi shelat, UMd, Indiana)

Resilient Clouds

(DARPA with JHU, Purdue)

I am looking for 1-3 students for each of these, but will only talk about Secure Computation today.

Secure Computation with Garbled Circuits

(UVa Computer Science PhD Student)

(University of Maryland)

Genome Sequencing

1990: Human Genome Project starts, estimate \$3B to sequence one genome (\$0.50/base)

2000: Human Genome Project declared complete, cost ~\$300M

Whitehead Institute, MIT

Year	reference	Technology	Sample	Average Reported Coverage depth (fold)	Reported sequencing consumables cost	Estimated cost per 40-fold coverage
	<u>\$4</u>	Sanger (ABI)	JCV	7	\$10,000,000	\$57,000,000
	<u>S5</u>	Roche(454)	JDW	7	\$1,000,000	\$5,700,000
	<u>S6</u>	Illumina	NA18507	30	\$250,000	\$330,000
	S7	Helicos	SRQ	28	\$48,000	\$69,000
2009	this work	this work	NA07022	87	\$8,005	\$3,700
2009	this work	this work	NA19240	63	\$3,451	\$2,200
2009	this work	this work	NA20431	45	\$1,726	\$1,500

Human Genome Sequencing Using Unchained Base Reads on Self-Assembling DNA Nanoarrays. Radoje Drmanac, Andrew B. Sparks, Matthew J. Callow, Aaron L. Halpern, Norman L. Burns, Bahram G. Kermani, Paolo Carnevali, Igor Nazarenko, Geoffrey B. Nilsen, George Yeung, Fredrik Dahl, Andres Fernandez, Bryan Staker, Krishna P. Pant, Jonathan Baccash, Adam P. Borcherding, Anushka Brownley, Ryan Cedeno, Linsu Chen, Dan Chernikoff, Alex Cheung, Razvan Chirita, Benjamin Curson, Jessica C. Ebert, Coleen R. Hacker, Robert Hartlage, Brian Hauser, Steve Huang, Yuan Jiang, Vitali Karpinchyk, Mark Koenig, Calvin Kong, Tom Landers, Catherine Le, Jia Liu, Celeste E. McBride, Matt Morenzoni, Robert E. Morey, Karl Mutch, Helena Perazich, Kimberly Perry, Brock A. Peters, Joe Peterson, Charit L. Pethiyagoda, Kaliprasad Pothuraju, Claudia Richter, Abraham M. Rosenbaum, Shaunak Roy, Jay Shafto, Uladzislau Sharanhovich, Karen W. Shannon, Conrad G. Sheppy, Michel Sun, Joseph V. Thakuria, Anne Tran, Dylan Vu, Alexander Wait Zaranek, Xiaodi Wu, Snezana Drmanac, Arnold R. Oliphant, William C. Banyai, Bruce Martin, Dennis G. Ballinger, George M. Church, Clifford A. Reid. *Science*, January 2010.

Dystopia

Personalized Medicine

Secure Two-Party Computation

Can Alice and Bob compute a function of their private data, without exposing anything about their data besides the result?

Secure Function Evaluation

Outputs x = f(a, b)without revealing *a* to Bob or *b* to Alice.

Andrew Yao, 1982/1986

Yao's Garbled Circuits

	Inp	Output			
	а	b	$\boldsymbol{\chi}$		
	9 9.	Ø jo	đ	0	
	Ø 9.	x 5,	Ø	0. ~	
	X 9,	Ø 5.	Ń	6,	\mathbf{N}
	¥ 9,	× 6,	<u>م</u>	0,	Λ
				\mathbf{X}	EN (0.)
		L=	= En	$\int \int $	90
End	$(m) \neq c$		k=	(vo	\mathcal{D}
	K		Enc. (0)	
たれ	$(c) \rightarrow w$	\	a, b, '/		

Computing with Garbled Tables

Garbled Circuit Protocol

How does the Bob learn his own input wires?

Primitive: Oblivious Transfer

Oblivious: Alice doesn't learn which secret Bob obtains **Transfer:** Bob learns one of Alice's secrets

Rabin, 1981; Even, Goldreich, and Lempel, 1985; many subsequent papers

Chaining Garbled Circuits

We can do *any* computation privately this way!

Building Computing Systems

144	-
CI ICI	
E	Carlo
	이빙이빙거
	 ننك س

$$Enc_{x00, x11}(x2_1)$$

$$Enc_{x01, x11}(x2_1)$$

$$Enc_{x01, x10}(x2_1)$$

$$Enc_{x00, x10}(x2_0)$$

Digital Electronic Circuits	Garbled Circuits
Operate on known data	Operate on encrypted wire labels
One-bit logical operation requires moving a few electrons a few nanometers (hundreds of Billions per second)	One-bit logical operation requires performing (up to) 4 encryption operations (~100,000 gates per second)
Reuse is great!	Reuse is not allowed!
All basic operations have similar cost	Some logical operations "free" (XOR, NOT)

Problems?

An alternative approach ... would have been to apply Yao's generic secure two-party protocol.... This would have required expressing the algorithm as a circuit ... and then sending and computing that circuit.... **[We] believe that the performance of our protocols is significantly better than that of applying generic protocols.** Margarita Osadchy, Benny Pinkas, Ayman Jarrous, Boaz Moskovich. *SCiFI – A System for Secure Face Identification*. Oakland 2010.

[Generic SFE] is very fast ... but the circuit size is extremely large.... Our prototype circuit compiler can compile circuits for problems of size (200, 200) but uses almost 2 GB of memory to do so.... **larger circuits would be constrained by available memory for constructing their garbled versions.** Somesh Jha, Louis Kruger, Vitaly Shmatikov. *Towards Practical Privacy for Genomic Computation*. Oakland 2008.

Faster Garbled Circuits

Gates can be evaluated as they are generated: **pipelining**

Results

Scalability

Performance

Private Personal Genomics

Applications

Privacy-Preserving Biometric Matching

Private AES Encryption

Private Set Intersection

Heterozygous Recessive Risk

Alice's Heterozygous Recessive genes: { 5283423, 1425236, 839523, ... } Bob's Heterozygous Recessive genes: { 5823527, 839523, 169325, ... }

Goal: find the intersection of A and B

Bit Vector Intersection

Scaling

What if there are millions of possible diseases? Length of bit vector:

number of possible values

(2^L where L is number of bits for each value)

Other private set intersection problems:

Do Alice and Bob have any common address book contacts? Data mining problems: combine medical records across hospitals Two companies want to do joint marketing to common customers Sort-Compare-Shuffle

	Problem	Best Previous Result	Our Result	Speedup
USENIX Security 2011	Hamming Distance (Face Recognition, Genetic Dating) – two 900-bit vectors	213s [SCiFI, 2010]	0.051s	4176
	Levenshtein Distance (genome, text comparison) – two 200-character inputs	534s [Jha+, 2008]	18.4 s	29
	Smith-Waterman (genome alignment) – two 60- nucleotide sequences	[Not Implementable]	447s	-
	AES Encryption	3.3s [Henecka, 2010]	0.2s	16.5
NDSS 2011	Fingerprint Matching (1024- entry database, 640x8bit vectors)	~83s [Barni, 2010]	18 s	4.6

Scalable: 1 Billion gates evaluated at ~100,000 gates/second on laptop

Android Apps v Movies v Books v My Library

Search

Q

Home > Android Market > Productivity

46

Current Projects

Genomics Applications (Aaron Mackey)

- Taking advantage of **third-party randomness** (Peter Chapman, Yan Huang)
- Using Partial Evaluation (PL) (Samee Zahur)
- Auditing Leakage: when is it safe to reveal result? (Yikan Chen)
- Stronger threat model (Yan Huang, students in abhi's group)

What Next?

Visit our research group blog: http://www.jeffersonswheel.org Project site for today: www.mightbeevil.com Come to our research group meetings Mailing list: <u>http://www.cs.virg</u>inia.edu/evans/srg Read our recent publications: http://www.cs.virginia.edu/evans/pubs/ Arrange to meet with me or come by Rice 507