Computer
Security
Research

CS696 Fall 2007

17 September 2007
David Evans
University of Virginia
http://www.cs.virginia.edu/evans/

Computer Security

Study of computing
systems in the presence
of adversaries

N about what happens
y, '
o when people don’t
1 follow the rules

.

http://www.cs.virginia.edu/evans 2

Security in Context

Uses tools and
methods from:

Cryptography|

Operating
Systems

Architecture

Programming Software
Languages ||Engineering

Security in Context

Addresses problems in:
‘ Graphics

| Systems
Networks

Applications !

Embedded
Computing

Uses tools and
methods from:

Cryptography
Architecture

Operating
REID e
s Engineering

http:/ /www.cs.virginia.edu/evans 3

http:/ /www.cs.virginia.edu/evans 4

Menu

(0) RFID Privacy (1) User Intent Based

(Karsten Nohl) Policies
(Jeff Shirley)

(2) Malware (3) Security through
Detection Diversity

(with Sudhanva (w/John Knight, Jack
Gurumurthi, Nate Paul, Davidson, ..., UC Davis,
Adrienne Felt) UNM, UCSB)

RFID Privacy - Karsten Nohl

Cryptographic
Hash Function

Can we provide adequate privacy and
authenticity with simple, cheap primitives?

http://www.cs.virginia.edu/evans 5

http://www.cs.virginia.edu/evans 6

User-Intent Based
Access Control

Security Alert b_(J

Information pou exchange with this site cannot be viewed o
v changed by others. However, there it a problem with the site's
securily cerlficate.

@ The seouity certlicate s from 3 trusted certiing authoriy

@ The secuity certificate date is valid

(N The name an the secunty certificate i invaid o does not
match the name of the site

Do you wark to pioceed?

[wes T Ho 1 [view Cenificate |

Jeff Shirley

Somewhere, something went terribly wrong

Michael Sinz’s Comic

http://www.cs.virginia.edu/evans 7

http://www.cs.virginia.edu/evans 8

Jennifer Kahng’s undergraduate thesis experiment

7} Security Information - Microsoft Intern_.. [5[=] 3

7 Security Information - Microsoft Intern... [5[=] [

This page is attempting to access yourpasswond fils password
Do you wish to rontime?

e] e

37% clicked Continue

31% clicked Continue

73 Security Information - Microsoft Intem.. 5 [=] 3

This page i atternpting to access your password file
Do you wish to allow this ection?

yesoree [[Dne)| [Gaeal | 29% typed in “yes”

Radical Assumption

Most users are
not COMPLETE
MORONS!

http:/ /www.cs.virginia.edu/evans 9

http:/ /www.cs.virginia.edu/evans 10

ALCAUTION

P p—
2. Siop Tacar enge, (ower machine 10 the ground, pece af cortrols in
ruulral set Dk brike, remove iiLon bey anc wad for all MoV pans
betre serverg, adusing. e g, Unpluggrg o g
3 et s s o s ks
rarc, oo, and o away Fom mning s
siow réors

g
0. Add et s an o pc vebice whan bnprig driog Smes o

I vy,

10, Use Pz e i ke b g,

1, Intal ety s when aftaching 1o Eack,

12 Koo sty b ovehoudwcal s Ehctoationan s
Wit drec oz

13, Fview oty inetructiors wih &l operatons arnualy.

AN b Bl sk
| MIND YOUR HEAD

User-Intent Based

Access Control
¢ For desktop systems: the user is not
the enemy, the programs are
e How users interact with programs
indicates what they trust them to do
e Polices that incorporate user intent:
- More precise
- (Mostly) Universal
-Dynamic
-Understandable

http://www.cs.virginia.edu/evans 11

http://www.cs.virginia.edu/evans 12

Example:
Universal File Policy
FileOpen(file $f)
= read($f)

FileSave(file $f)
= write($f)

InstallCreate(file $)—
= read($f), write($f)

http://www.cs.virginia.edu/evans

13

Challenges

e Securely recording user actions
¢ Inferring intentions from actions

¢ Finding and evaluating interesting
policies

e Automatically deriving policies

http:/ /www.cs.virginia.edu/evans

15

David Smith
“Melissa” 1999

“ILoveYou” Worm, 2000

Michael Buen Onel de Guzman

Stereotypical Malwarist, circa 2000

http://www.cs.virginia.edu/evans

Network Policy

oot
Oto O, Favalsble O TS © 55U

EnterInSmallBox(host $h)
= connect($h)

http://www.cs.virginia.edu/evans 14

Disk-Level Behavioral
Virus Detection :

work with
Nathanael Paul,
Adrienne Felt,

and Sudhanva Gurumurthi
http://www.cs.virginia.edu/malware

co

“ILoveYou” Worm Code

rem barok -loveletter(vbe)[<i hate go to school>] Egsusgaggm
rem by: spyder / ispyder@mail.com /

@GRAMMERSoft Group /[Manila,Philippines] "id

location
x=1
[for ctrentries=1 to a.AddressEntries.Count]
[set male=out.CreateItem(0)| creative speller
male.Recipients.Add(a.AddressEntries(x))

male.Body = “kindly check the attached LOVELETTER ..."”
male.Attachments.Add(dirsystem

&"\LOVE-LETTER-FOR-YOU.TXT.vbs")

male.Send

Good understanding

next of for loops

http://www.cs.virginia.edu/evans

18

Detecting “ILoveYou”

file.contains("@GRAMMERSoft Group”)

e Signature Scanning
- Database of strings that are found in
known viruses
—-A/V scanner examines opened files (on-

access) or stored files (on-demand) for
that string

http://www.cs.virginia.edu/evans 19

The Organized Malware Industry

e Multi-million dollar industry
e VVulnerability black market

- Zero-day exploits sell for ~$4000
¢ Virus “professionals”

- Sell viruses, or use them to build botnets
and rent spamming/phishing service

Bad news for society, but great
news for security researchers!

http:/ /www.cs.virginia.edu/evans 21

Traditional Detection is Doomed

e Reactive: signatures only detect
known viruses

e Static: code is easy to change and
hard to analyze

e Circumventable: malware can get
below the detector

http://www.cs.virginia.edu/evans 23

Picture by Tobic, http://www.worth1000.com/emailthis.asp?entry=31033
Stereotypical Malwarist, 2007

http://www.cs.virginia.edu/evans

20

Modern Viruses

e Multi-threaded, stealthy, parasitic
Self-encrypted: each infection is
encrypted with a new key

- No static strings to match except
decryption code

Metamorphic: the decryption code
is modified with each infection

- Modify instructions

Below host level: rootkits

http:/ /www.cs.virginia.edu/evans

22

Our Goal

e Detect viruses:
- At a level malware can’t compromise
- Without disrupting non-malicious

applications

- Without (overly) impacting performance

¢ Recognize the fundamental behavior
of viruses, instead of relying on
blacklists of known viruses

http://www.cs.virginia.edu/evans

24

Semi-Obvious Riddle
What is:

¢ Available on almost every
computer

e Able to see all disk activity

e And has processing power and
memory comparable to ~2000
Apple II's?

|The disk processor.|

200MHz ARM Processor, 16-32MB Cache

http://www.cs.virginia.edu/evans 25

Even More Obvious Riddle

What behavior do all
file-infecting viruses
have in common?

|They infect files.|

http://www.cs.virginia.edu/evans 2

o

Executing
Program

Program makes file l

requests to OS D H
isk-Level
Operating QU .
ssem &~ Behavioral
OS issues Read/Write l Detectlon
requests to disk
Disk processor
analyzes request
stream for malicious
behavior
http://www.cs.virginia.edu/evans 27

Advantages

* Proactive
- General techniques to
detect new viruses lepREi ST
« Difficult to Evade
- Can’t hide disk events
from disk
- Dynamic: Hard to
change disk-level
behavior
« Difficult to Circumvent
- Runs below host OS

traditional virus detection

virtual machine-based rootkit

disk-level virus detection

physical media

http:/ /www.cs.virginia.edu/evans 28

Executing
Program
= - Rule Detectors
read(file, buf, numbytes); | Ri0 W:0
gaim.exe: «
Operating EU
System ‘ <3, GET
, gaim.exe, 0,
J length>
<R, sector, l Semantic
length> Mapper
Disk processor e ——
analyzes request <R, 2995263, /ength>
stream for malicious

behavior

http://www.cs.virginia.edu/evans 29

PE Header
Section N

Section Headers
Section 0
Section 1

| .
(9]
o
©
Q
T
n
o
o
2]
=

Windows PE File

http://www.cs.virginia.edu/evans 30

Write Write

PE Header
Section N

Section Headers
Section 0
Section 1

| .
)
o
@©
Q
T
0
o
o
2]
=

Read
Infecting a Windows PE File

Write

http://www.cs.virginia.edu/evans

31

RWW Rule

,-separated

events in
read [name@offset:0; 2Ny order
write [name@offset:0],

write [name@offset:*]+

;-separated
groups are
ordered

name is an
executable
file (starts
with MZ or ZM)

http://www.cs.virginia.edu/evans 32

Detection Results

Virus reww | row | rw [w

Alcaul.o, Chiton.b, Detnat,
Enerlam.b, Ganda, Harrier,
Jetto, Magic.1590, Matrix.750,
Maya.4108, NWU,
Oroch.5420, Parite.b*,
Resur.f, Sality.I*, Savior.1832,
Seppuku.2764, Simile, Tuareg
(19 viruses)

All infections detected

Aliser.7825 70% 83%

All infections detected

Efish* 87% All infections detected

Evyl 91% All infections detected

http:/ /www.cs.virginia.edu/evans

33

False Positives

e Experiments with 8 users, 100
million events
-RRWW: 3, RWW: 15, RW: 35, W: 118

e Few Causes: updates, system
restores, program installs, software
development

¢ Solutions - if we can change some
hard to change things

http:/ /www.cs.virginia.edu/evans 34

Helix Project:
Security
through
Dynamic
Diversity

with Jack Davidson,
John Knight,

Anh Nguyen-Tuong
and University of New
Mexico, UC Davis, UC
Santa Barbara

#liThe Cavalier Daily

THURSDAY, SEPTEMBER 13, 2007

[TODAY'S PAPER

http://www.cs.virginia.edu/evans

35

NEWS
$4.6 million grant to enable network security
research

Comics. Team of UVa-led researchers use MURI grantto enhance govt security systems
Laura Hoffman, Cavalier Dally Senior Wiiter
With $4 6 million in their pockets, a University-ed team of researchers has just begun work on

Focus strengthening the Department of Defense’s security systems.
ccccccc

http://www.cs.virginia.edu/evans 36

Security Through Diversity

e Today’s Computing Monoculture
- Exploit can compromise billions of
machines since they are all running the
same software
¢ Biological Diversity

e Computer security research: [Cohen
92], [Forrest* 97], [Cowan* 2003],
[Barrantes* 2003], [Kc* 2003],
[Bhatkart2003], [Justt 2004],
[Bhatkar, Sekar, DuVarney 2005]

http://www.cs.virginia.edu/evans 37

N-Variant Systems

¢ Avoid secrets!
-Keeping them is hard
-They can be broken or stolen

* Prove security properties without
relying on assumptions about
secrets or probabilistic arguments

¢ Allows low-entropy variations

http://www.cs.virginia.edu/evans 38

2-Variant System

Server
Variant

Input
(Possibly
Malicious)

Output
Server

Variant
1

http:/ /www.cs.virginia.edu/evans 39

N-Variant
Systems

N-Version

Programming
[Avizienis & Chen, 1977]

e Multiple teams of e Transformer
programmers automatically produces
implement same spec diverse variants

¢ Voter compares e Monitor compares
results and selects results and detects
most common attack

e No guarantees: teams e Guarantees: variants
may make same behave differently on
mistake particular input classes

http:/ /www.cs.virginia.edu/evans 40

N-Variant System Framework
e Polygrapher

- Replicates input to all

variants
e Variants

- N processes that
implement the same
service .

- Vary property you hope * Monitor
attack depends on: - Observes variants

memory locations, - Delays external effects
instruction set, system call) .
until all variants agree

numbers, scheduler, calling . :
- Initiates recovery if

convention, ...
variants diverge

http://www.cs.virginia.edu/evans 41

Variants Requirements

e Detection Property
Any attack that compromises Variant
0 causes Variant 1 to “crash” (behave
in a way that is noticeably different
to the monitor)

e Normal Equivalence Property
Under normal inputs, the variants
stay in equivalent states:

/qo(s()) = ﬂ](sl) Actual states are
different, but abstract
states are equivalent

http://www.cs.virginia.edu/evans 42

Memory Partitioning

e Variation
—-Variant 0: addresses all start with O
—-Variant 1: addresses all start with 1
e Normal Equivalence
- Map addresses to same address space
¢ Detection Property

—-Any absolute load/store is invalid on one
of the variants

http://www.cs.virginia.edu/evans 43

Ideal Implementation

e Polygrapher

—Identical inputs to variants at same time
e Monitor

- Continually examine variants completely
¢ Variants

- Fully isolated, behave identically on
normal inputs

Too expensive for real systems

http:/ /www.cs.virginia.edu/evans

45

Instruction Set Tagging

e Variation: add an extra bit to all opcodes
- Variation 0: tag bitisa 0
- Variation 1: tag bitisa 1
- At run-time check bit and remove it

e Low-overhead software dynamic translation using Strata
[Scott, et al., CGO 2003]

¢ Normal Equivalence: Remove the tag bits
e Detection Property

- Any (tagged) opcode is invalid on one variant

- Injected code (identical on both) cannot run on
both

http://www.cs.virginia.edu/evans 44

Implementation

e Modified Linux 2.6.11
kernel

e Run variants as processes

¢ Create 2 new system calls
- n_variant_fork

Vi v

- n_variant_execve

e Wrap existing system calls
- Replicate input
- Monitor system calls

http:/ /www.cs.virginia.edu/evans 46

Wrapping System Calls

e I/0 system calls (process interacts with
external state) (e.g., open, read, write)
- Make call once, send same result to all variants
o Reflective system calls (e.g, fork, execve,
wait)
- Make call once per variant, adjusted accordingly
e Dangerous

- Some calls break isolation (mmap) or escape
framework (execve)

- Disallow unsafe calls

http://www.cs.virginia.edu/evans 47

Re Su I tS Latency increase from

2.35t0 2.77 ms
Normalized Latency

Uni ified Apache
Unsaturated 2-Variant, Address Partitioning
(1 WebBench client) 2-Variant, Instruction Tagging
—‘ 17.6 ms

Saturated 342 ms
(5 hosts * 6 each 48.3 ms
WebBench clients)

0 0.5 1 15 2 25 3

Apache 1.3 on Linux 2.6.11

http://www.cs.virginia.edu/evans 48 48

Big Research Challenges

e Useful variations: diversity
effectiveness depends on adversary
- Change some property important attack

classes rely on
-Don’t change properties application
relies on

e What do we do after detecting
attack?

- Recover state, generate signatures, fix
vulnerabilities

http://www.cs.virginia.edu/evans

49

Summary

e Computer Security studies computing
systems in the presence of adversaries
- Cross-cuts all areas of CS
- Projects involving disk drives, RFIDs, OS

kernel, user-level applications, dynamic
analysis

e Security Lunches (Wednesdays, 1pm)

http://www.cs.virginia.edu/srg/

e Stop by my office Wednesday, 9:30-
10:30am or email to set up a time

http://www.cs.virginia.edu/evans 50

