
1

David Evans
University of Virginia
http://www.cs.virginia.edu/evans/

Computer

Security
Research

CS696 Fall 2007
17 September 2007

2http://www.cs.virginia.edu/evans

Computer Security

Study of computing
systems in the presence

of adversaries

about what happens
when people don’t

follow the rules

3http://www.cs.virginia.edu/evans

Security in Context

Security
Uses tools and
methods from:

Theory

Programming
Languages

Software
Engineering

Operating
SystemsArchitecture

Cryptography

4http://www.cs.virginia.edu/evans

Security in Context

Security
Uses tools and
methods from:

Theory

Programming
Languages

Software
Engineering

Operating
Systems

Architecture

Cryptography

Addresses problems in:

Applications

Systems
Embedded
Computing

Graphics

Networks

5http://www.cs.virginia.edu/evans

Menu

(2) Malware
Detection

(with Sudhanva
Gurumurthi, Nate Paul,

Adrienne Felt)

(0) RFID Privacy
(Karsten Nohl)

(1) User Intent Based
Policies

(Jeff Shirley)

(3) Security through
Diversity

(w/John Knight, Jack
Davidson, ..., UC Davis,

UNM, UCSB)

6http://www.cs.virginia.edu/evans

RFID Privacy - Karsten Nohl

10k
gatesCryptographic

Hash Function

2k
gates

RFID
tag

5¢

Can we provide adequate privacy and
authenticity with simple, cheap primitives?

2

7http://www.cs.virginia.edu/evans

User-Intent Based
Access Control

Jeff Shirley

8http://www.cs.virginia.edu/evans

Michael Sinz’s Comic

9http://www.cs.virginia.edu/evans

Jennifer Kahng’s undergraduate thesis experiment

37% clicked Continue 31% clicked Continue

2% typed in “yes”

10http://www.cs.virginia.edu/evans

Radical Assumption

Most users are
not COMPLETE
MORONS!

11http://www.cs.virginia.edu/evans 12http://www.cs.virginia.edu/evans

User-Intent Based
Access Control

• For desktop systems: the user is not
the enemy, the programs are

• How users interact with programs
indicates what they trust them to do

• Polices that incorporate user intent:

–More precise

– (Mostly) Universal

–Dynamic

–Understandable

3

13http://www.cs.virginia.edu/evans

Example:
Universal File Policy

FileOpen(file $f)

⇒ read($f)

FileSave(file $f)

⇒ write($f)

InstallCreate(file $f)

⇒ read($f), write($f)

14http://www.cs.virginia.edu/evans

Network Policy

EnterInSmallBox(host $h)
⇒ connect($h)

15http://www.cs.virginia.edu/evans

Challenges

• Securely recording user actions

• Inferring intentions from actions

• Finding and evaluating interesting
policies

• Automatically deriving policies

Disk-Level Behavioral
Virus Detection

work with
Nathanael Paul,
Adrienne Felt,

and Sudhanva Gurumurthi
http://www.cs.virginia.edu/malware

17http://www.cs.virginia.edu/evans

Stereotypical Malwarist, circa 2000

David Smith
“Melissa” 1999

Onel de GuzmanMichael Buen

“ILoveYou” Worm, 2000

18http://www.cs.virginia.edu/evans

rem barok -loveletter(vbe) <i hate go to school>
rem by: spyder / ispyder@mail.com /

@GRAMMERSoft Group / Manila,Philippines
…
x=1
for ctrentries=1 to a.AddressEntries.Count

set male=out.CreateItem(0)
male.Recipients.Add(a.AddressEntries(x))
male.Body = “kindly check the attached LOVELETTER …”
male.Attachments.Add(dirsystem

&“\LOVE-LETTER-FOR-YOU.TXT.vbs”)
male.Send
x=x+1
next

“ILoveYou” Worm Code
Thoughtful
message

Hid
location

Creative speller

Good understanding
of for loops

4

19http://www.cs.virginia.edu/evans

Detecting “ILoveYou”

file.contains(“@GRAMMERSoft Group”)

• Signature Scanning

–Database of strings that are found in
known viruses

–A/V scanner examines opened files (on-
access) or stored files (on-demand) for
that string

20http://www.cs.virginia.edu/evans

Stereotypical Malwarist, 2007

Picture by Tobic, http://www.worth1000.com/emailthis.asp?entry=31033

21http://www.cs.virginia.edu/evans

The Organized Malware Industry

• Multi-million dollar industry

• Vulnerability black market

–Zero-day exploits sell for ~$4000

• Virus “professionals”

–Sell viruses, or use them to build botnets
and rent spamming/phishing service

Bad news for society, but great
news for security researchers!

22http://www.cs.virginia.edu/evans

Modern Viruses

• Multi-threaded, stealthy, parasitic

• Self-encrypted: each infection is
encrypted with a new key

– No static strings to match except
decryption code

• Metamorphic: the decryption code
is modified with each infection

– Modify instructions

• Below host level: rootkits

23http://www.cs.virginia.edu/evans

Traditional Detection is Doomed

• Reactive: signatures only detect
known viruses

• Static: code is easy to change and
hard to analyze

• Circumventable: malware can get
below the detector

24http://www.cs.virginia.edu/evans

Our Goal

• Detect viruses:
–At a level malware can’t compromise

–Without disrupting non-malicious
applications

–Without (overly) impacting performance

• Recognize the fundamental behavior
of viruses, instead of relying on
blacklists of known viruses

5

25http://www.cs.virginia.edu/evans

Semi-Obvious Riddle
What is:

• Available on almost every
computer

• Able to see all disk activity

• And has processing power and
memory comparable to ~2000
Apple II’s?

The disk processor.

200MHz ARM Processor, 16-32MB Cache

26http://www.cs.virginia.edu/evans

Even More Obvious Riddle

What behavior do all
file-infecting viruses
have in common?

They infect files.

27http://www.cs.virginia.edu/evans

Disk-Level
Behavioral
Detection

Executing
Program

Program makes file
requests to OS

OS issues Read/Write
requests to disk

Disk processor
analyzes request

stream for malicious
behavior

Operating
System

28http://www.cs.virginia.edu/evans

Advantages

• Proactive

– General techniques to
detect new viruses

• Difficult to Evade

– Can’t hide disk events
from disk

– Dynamic: Hard to
change disk-level
behavior

• Difficult to Circumvent

– Runs below host OS

29http://www.cs.virginia.edu/evans

Executing
Program

Disk processor
analyzes request

stream for malicious
behavior

Operating
System

read(file, buf, numbytes);

<R, sector,
length>

<R, 2995263, length>

Semantic
Mapper

<R, gaim.exe, 0,
length>

Rule Detectors

gaim.exe:
...

... R:0 W:0

*

30http://www.cs.virginia.edu/evans

Windows PE File

M
S
-D
O
S
 H
e
a
d
e
r

P
E
 H
e
a
d
e
r

S
e
c
ti
o
n
 H
e
a
d
e
rs

S
e
c
ti
o
n
 0

S
e
c
ti
o
n
 1

…

S
e
c
ti
o
n
 N

6

31http://www.cs.virginia.edu/evans

Infecting a Windows PE File

M
S
-D
O
S
 H
e
a
d
e
r

P
E
 H
e
a
d
e
r

S
e
c
ti
o
n
 H
e
a
d
e
rs

S
e
c
ti
o
n
 0

S
e
c
ti
o
n
 1

…

S
e
c
ti
o
n
 N

Read

Write WriteWrite

32http://www.cs.virginia.edu/evans

RWW Rule

read [name@offset:0;

write [name@offset:0],

write [name@offset:∗]+

,-separated
events in
any order

;-separated
groups are
ordered

name is an
executable
file (starts
with MZ or ZM)

33http://www.cs.virginia.edu/evans

Detection Results

All infections detected91%Evyl

All infections detected87%Efish*

All infections detected83%70%Aliser.7825

All infections detected

Alcaul.o, Chiton.b, Detnat,
Enerlam.b, Ganda, Harrier,

Jetto, Magic.1590, Matrix.750,
Maya.4108, NWU,

Oroch.5420, Parite.b*,

Resur.f, Sality.l*, Savior.1832,
Seppuku.2764, Simile, Tuareg

(19 viruses)

WRWRWWRRWWVirus

34http://www.cs.virginia.edu/evans

False Positives

• Experiments with 8 users, 100
million events

–RRWW: 3, RWW: 15, RW: 35, W: 118

• Few Causes: updates, system
restores, program installs, software
development

• Solutions – if we can change some
hard to change things

35http://www.cs.virginia.edu/evans

Helix Project:
Security
through
Dynamic
Diversity
with Jack Davidson,
John Knight,
Anh Nguyen-Tuong
and University of New
Mexico, UC Davis, UC
Santa Barbara

36http://www.cs.virginia.edu/evans

7

37http://www.cs.virginia.edu/evans

Security Through Diversity

• Today’s Computing Monoculture
–Exploit can compromise billions of
machines since they are all running the
same software

• Biological Diversity

• Computer security research: [Cohen
92], [Forrest+ 97], [Cowan+ 2003],
[Barrantes+ 2003], [Kc+ 2003],
[Bhatkar+2003], [Just+ 2004],
[Bhatkar, Sekar, DuVarney 2005]

38http://www.cs.virginia.edu/evans

N-Variant Systems

• Avoid secrets!

–Keeping them is hard

–They can be broken or stolen

• Prove security properties without
relying on assumptions about
secrets or probabilistic arguments

• Allows low-entropy variations

39http://www.cs.virginia.edu/evans

2-Variant System

Input
(Possibly

Malicious)

Server
Variant
0

Server
Variant
1

Monitor
Output

P
o
ly
g
ra

p
h
e
r

40http://www.cs.virginia.edu/evans

N-Version N-Variant
Programming Systems

• Multiple teams of
programmers
implement same spec

• Voter compares
results and selects
most common

• No guarantees: teams
may make same
mistake

• Transformer
automatically produces
diverse variants

• Monitor compares
results and detects
attack

• Guarantees: variants
behave differently on
particular input classes

[Avizienis & Chen, 1977]

41http://www.cs.virginia.edu/evans

N-Variant System Framework

• Polygrapher
– Replicates input to all
variants

• Variants
– N processes that
implement the same
service

– Vary property you hope
attack depends on:
memory locations,
instruction set, system call
numbers, scheduler, calling
convention, …

Variant

0

Variant

1

Monitor
Poly-

grapher

• Monitor
– Observes variants

– Delays external effects
until all variants agree

– Initiates recovery if
variants diverge

42http://www.cs.virginia.edu/evans

Variants Requirements

• Detection Property
Any attack that compromises Variant
0 causes Variant 1 to “crash” (behave
in a way that is noticeably different
to the monitor)

• Normal Equivalence Property
Under normal inputs, the variants
stay in equivalent states:

A
0
(S0) ≡ A

1
(S1) Actual states are

different, but abstract
states are equivalent

8

43http://www.cs.virginia.edu/evans

Memory Partitioning

• Variation

–Variant 0: addresses all start with 0

–Variant 1: addresses all start with 1

• Normal Equivalence

–Map addresses to same address space

• Detection Property

–Any absolute load/store is invalid on one
of the variants

44http://www.cs.virginia.edu/evans

Instruction Set Tagging
• Variation: add an extra bit to all opcodes

– Variation 0: tag bit is a 0

– Variation 1: tag bit is a 1

– At run-time check bit and remove it

• Low-overhead software dynamic translation using Strata
[Scott, et al., CGO 2003]

• Normal Equivalence: Remove the tag bits

• Detection Property

– Any (tagged) opcode is invalid on one variant

– Injected code (identical on both) cannot run on
both

45http://www.cs.virginia.edu/evans

Ideal Implementation

• Polygrapher
–Identical inputs to variants at same time

• Monitor
–Continually examine variants completely

• Variants
–Fully isolated, behave identically on
normal inputs

Too expensive for real systems

46http://www.cs.virginia.edu/evans

Implementation

• Modified Linux 2.6.11
kernel

• Run variants as processes

• Create 2 new system calls
– n_variant_fork

– n_variant_execve

• Wrap existing system calls

– Replicate input

– Monitor system calls

V
0

V
1 V

2

Kernel

Hardware

47http://www.cs.virginia.edu/evans

Wrapping System Calls

• I/O system calls (process interacts with
external state) (e.g., open, read, write)

– Make call once, send same result to all variants

• Reflective system calls (e.g, fork, execve,
wait)

– Make call once per variant, adjusted accordingly

• Dangerous

– Some calls break isolation (mmap) or escape
framework (execve)

– Disallow unsafe calls

48http://www.cs.virginia.edu/evans 48

Results
Normalized Latency

0 0.5 1 1.5 2 2.5 3

Saturated

Unsaturated

Unmodified Apache

2-Variant, Address Partitioning

2-Variant, Instruction Tagging(1 WebBench client)

(5 hosts * 6 each

WebBench clients)

Apache 1.3 on Linux 2.6.11

Latency increase from

2.35 to 2.77 ms

34.2 ms

48.3 ms

17.6 ms

9

49http://www.cs.virginia.edu/evans

Big Research Challenges
• Useful variations: diversity
effectiveness depends on adversary

–Change some property important attack
classes rely on

–Don’t change properties application
relies on

• What do we do after detecting
attack?

–Recover state, generate signatures, fix
vulnerabilities

50http://www.cs.virginia.edu/evans

Summary
• Computer Security studies computing
systems in the presence of adversaries

–Cross-cuts all areas of CS

–Projects involving disk drives, RFIDs, OS
kernel, user-level applications, dynamic
analysis

• Security Lunches (Wednesdays, 1pm)

http://www.cs.virginia.edu/srg/

• Stop by my office Wednesday, 9:30-
10:30am or email to set up a time

