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Security Through Diversity
• Today’s Computing Monoculture

– Exploit can compromise billions of machines 
since they are all running the same software

• Biological Diversity

– All successful species use very expensive 
mechanism (i.e., sex) to maintain diversity

• Computer security research: [Cohen 92], 
[Forrest+ 97], [Cowan+ 2003], [Barrantes+

2003], [Kc+ 2003], [Bhatkar+2003], [Just+ 2004]
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Instruction Set Randomization
[Barrantes+, CCS 03] [Kc+, CCS 03]

• Code injection attacks depend on knowing 
the victim machine’s instruction set

• Defuse them all by making instruction sets 
different and secret

– Its expensive to design new ISAs and build 
new microprocessors
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ISR Designs

Software (Valgrind)HardwareDerandomization

Load TimeCompile Time
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program length (each 
location XORed with 
different byte)

32 bits (same key 
used for all 
locations)

Key Size

XOR
XOR or

32-bit transposition

Randomization 
Function

RISE [Barrantes 03]Columbia [Kc 03]
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How secure is ISR?

Slows down an attack about 6 minutes!

Under the right circumstances…
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Memory Randomization Attack

• Brute force attack on memory address 
space randomization (Shacham et. al. 
[CCS 2004]): 24-bit effective key space

• Can a similar attack work against ISR?

– Larger key space: must attack in fragments

– Need to tell if partial guess is correct
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Server Requirements

• Vulnerable: buffer overflow is fine

• Able to make repeated guesses

– No rerandomization after crash

– Likely if server forks requests (Apache)

• Observable: notice server crashes

• Cryptanalyzable

– Learn key from one ciphertext-plaintext pair

– Easy with XOR
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Two Attack Ideas

• RET (0xC3): return from procedure

– 1-byte instruction: up to 256 guesses

– Returns, leaves stack inconsistent

• Only works if server does something observable  
before crashing

• JMP -2 (0xEBFE): jump offset -2

– 2-byte instruction: up to 216 guesses

– Produces infinite loop

• Incorrect guess usually crashes server
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Incremental Jump Attack

Guessing next byte: < 256 attempts
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Guess Outcomes

ProgressFalse PositiveIncorrect Guess

False NegativeSuccessCorrect Guess

Observe 
“Incorrect”
Behavior

Observe 
“Correct”
Behavior
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False Positives

• Injected bytes produce an infinite loop:

– JMP -4 

– JNZ -2

• Injected bytes are “harmless”, later 
executed instruction causes infinite loop

• Injected guess causes crash, but timeout 
expires before remote attacker observes
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False Positives – Good News
• Can distinguish correct 
mask using other 
instructions

• Try injecting a “harmless”
one-byte instruction

– Correct: get loop

– Incorrect: usually crashes

• Difficulty: dense opcodes

– No pair that differs in only 
last bit are reliably different 
in harmfullness
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False Positives – Better News

• False positives are not random
–Conditional jump instructions

–Opcodes 01110000-0111111

• All are complementary pairs:

0111xyza not taken ⇔ 0111xyzā is!

• 32 guesses always find an infinite loop

• About 8 additional guesses to 
determine correct mask
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Extended Attack
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• Near jump to return 
location

– Execution continues 
normally

– No infinite loops

• 0xCD 0xCD is 
interrupt instruction 
guaranteed to crash



4

19www.cs.virginia.edu/evans/purdue05

Expected Attempts

~ 15½ to find first
jumping
instruction

+ ~ 8    to determine
correct mask

23½ expected
attempts 
per byte
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Experiments

• Implemented attack against constructed 
vulnerable server protected with RISE 
[Barrantes et. al, 2003]
– Memory space randomization works!

• Turned of Fedora’s address space randomization

– Needed to modify RISE
• Ensure forked processes use same randomization key 
(other proposed ISR implementations wouldn’t need 
this)

• Obtain correct key over 95% of the time
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Attempts Required

4339 

attempts
to get first 

2 bytes

101,651 
attempts

to get 

4096 
bytes
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Attempts per Byte

Drops to 

below
24 average 

attempts
per byte

~212 attempts 

for first 2 bytes
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Total Time

4-byte key (Columbia 

implementation) in < 3½
minutes

4096-byte key

in 48 minutes

Attacker: “Is this good enough?” Defender: “Is this bad enough?”
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How many key bytes needed?

• Inject malcode in one ISR-protected 
host

–Sapphire worm = 376 bytes

• Create a worm that spreads on a 
network of ISR-protected servers

–Space for FEEB attack code: 34,723 bytes

–Need to crash server ~800K times



5

25www.cs.virginia.edu/evans/purdue05

Maybe less…?

• VMWare: 3,530,821 bytes 

• Java VM: 135,328 bytes 

• Minsky’s UTM:    7 states, 4 colors

• MicroVM: 100 bytes
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e push dword ebp mov ebp, WORM_ADDRESS + WORM_REG_OFFSET

pop dword [ebp + WORM_DATA_OFFSET] 

xor eax, eax ; WormIP = 0 (load from ebp + eax)
read_more_worm: ; read NUM_BYTES at a time until worm is done

cld xor ecx, ecx mov byte cl, NUM_BYTES

mov dword esi, WORM_ADDRESS ; get saved WormIP
add dword esi, eax mov edi, begin_worm_exec

rep movsb ; copies next Worm block into execution buffer
add eax, NUM_BYTES ; change WormIP

pushad ; save register vals
mov edi, dword [ebp]  ; restore worm registers
mov esi, dword [ebp + ESI_OFFSET] mov ebx, dword [ebp + EBX_OFFSET]

mov edx, dword [ebp + EDX_OFFSET]    mov ecx, dword [ebp + ECX_OFFSET]
mov eax, dword [ebp + EAX_OFFSET]

begin_worm_exec: ; this is the worm execution buffer
nop nop nop nop nop nop nop nop nop nop nop nop

nop nop nop nop nop nop nop nop nop nop nop nop

mov [ebp], edi ; save worm registers
mov [ebp + ESI_OFFSET], esi mov [ebp + EBX_OFFSET], ebx

mov [ebp + EDX_OFFSET], edx mov [ebp + ECX_OFFSET], ecx
mov [ebp + EAX_OFFSET], eax

popad ; restore microVM register vals
jmp read_more_worm

27www.cs.virginia.edu/evans/purdue05

other worm data

guessed (target) masks

host key masks

worm code

saved registers

jmp to read next block

load MicroVM registers

save worm registers

22-byte worm 

execution buffer

load worm registers

save MicroVM registers

update WormIP

copy worm code into buffer

WormIP ← 0

move stack frame pointer

save worm address in ebp

Learned 
Key Bytes

76 bytes of code
+  22 bytes for execution
+ 2 bytes to avoid NULL
= 100 bytes is enough 

> 99% of the time

MicroVM

Worm code must be coded 
in blocks that fit into 

execution buffer (pad with 
noops so instructions do not 

cross block boundaries)
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Making Jumps

• Within a block - short relative jump is fine

• Between worm blocks

– From end of block, to beginning of block 

– Update the WormIP stored on the stack

– Code conditional jump, JZ target in worm as:

JNZ +5 ; if opposite condition, skip
MOV [ebp + WORMIP_OFFSET] target
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Deploying a Worm

• Learn 100 key bytes to inject MicroVM

– Median time: 311 seconds, 8422 attempts

– Fast enough for a worm to spread effectively

• Inject pre-encrypted worm code

– XORed with the known key at location

– Insert NOOPs when necessary to avoid NULLs

• Inject key bytes

– Needed to propagate worm
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Preventing Attack: Break Requirement

• Vulnerable: eliminate vulnerabilities

– Rewrite all your code in a type safe language

• Able to make repeated guesses

– Rerandomize after crash

• Observable: notice server crashes

– Maintain client socket after crash?

• Cryptanalyzable

– Use a strong cipher like AES instead of XOR
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Better Solution

• Avoid secrets!

–Keeping them is hard

–They can be broken or stolen

• Prove security properties without 
relying on assumptions about secrets 
or probabilistic arguments
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Secretless Security Structure
work with Jack Davidson, Jonathan Hill, John Knight & Anh Nguyen-Tuong

Input
(Possibly 
Malicious)

Server 
Variant 

A

Server
Variant

B

Monitor
Output

Input
Replicator
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Disjoint Variants

• Any attack that succeeds against Variant A 
must cause Variant B to crash

• Monitor observes crash and recovers

Input

Server 
Variant 

A

Server
Variant

B

Monitor
Output

Input
Replicator

Examples:
Instruction Sets
Memory Addresses
Schedule Interleaving
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JO

JNO

JB

JNB

JZ

JNZ

JMP

CALL

…
Variant A Variant B

JNO

JNB

JNZ

CALL

JO

JB

JZ

JMP

Making Disjoint Variants
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Challenges

• Engineering

– Input replicator and monitor

– Shared state (databases, files)

– Nondeterminism (session state)

• Security

– Proving variants are disjoint

– Multi-stage attacks

– Achieving high-level disjoint properties
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Jaws

Diversity

depends on 
your

perspective
Slide from my USENIX Security 2004 Talk, What 
Biology Can (and Can’t) Teach us about Security
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Summary

• Diversity defenses defeat undetermined 
adversaries

• Determined adversaries may be able to 
determine secrets
– Break ISR-protected server in < 6 minutes

• Secretless diversity designs promise 
provable security against classes of 
attack
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Questions?


