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Program Analysis
in Theory and Practice

David Evans
University of Virginia
http://www.cs.virginia.edu/evans/talks/sdwest06

Static Program Analysis
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“Loss of Ambition”:
Instead of verifying programs, look for simple mistakes
Accept unsoundness: false positives and negatives

Menu

¢ Retrospective:
-10 years of program analysis
- Limits of static analysis
- Recent state-of-the-art
e Two current projects:
- Perracotta
- N-Variant Systems

Static Analysis in 1996

e Could check 100,000+ line programs
¢ Unsound and incomplete

e Warnings for “likely” memory leaks,
null dereferences, type errors,
ignoring possible error results, etc.

e Required source code annotations for
inter-procedural checking

David Evans. Static Detection of Dynamic
Memory Errors. PLDI, May 1996.
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Faster machines
Better “marketing”
Target security (buffer overflows, format string, etc.)

2006
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¢ Lots of companies selling security scanning
- Some of them are even profitable!
e Microsoft PREfix/fast, SLAM—SDV

- Windows, Office developers required to annotate
code to pass checking before commit




What Hasn’t Changed

e Programs still ship with buffer
overflows!

-Prediction: this won't be true 5
years from now
¢ Perfect checking is still
impossible
-Prediction: this will still be true 5
years from now

e,
Halting Problem [Turing 1936]

e Can we write a program that takes
any program as input and returns
true iff running that program would
terminate?

// post: returns true iff p will halt

bool doesItFinish (Program p) {
??

 —V——————— ]
Why Perfect Checking is
Impossible: Theory
e It is impossible to precisely decide
any important program property for
all programs
e Is this program vulnerable?
int main (int argc, char *argv) {

PO;
gets();

Informal Proof

e Proof by contradiction:

bool contradict () {
if (doeslItFinish (contradict)) {
while (true) ; // loop forever
}else {
return false; } }

What is doesltFinish (contradiction)?

Can't be true: contradict would loop forever
Can't be false: contradict would finish in else
Therefore, doesltFinish can't exist!

Hopelessness of Analysis

e But this means, we can’t write a
program that decides any other
interesting property either:

bool dereferencesNull (Program p)

// EFFECTS: Returns true if p ever dereferences null,
/! false otherwise.

bool alwaysHalts (Program p) {
return (derefencesNull (new Program ("p (); *NULL;")));
)

Good news for theoreticians,
bad news for tool builders/users




Implication

e Static analysis tools must always
make compromises
- Simplifying assumptions
- Alias analysis: limited depth, precision

- Paths: group infinitely many possible
paths into a finite number

-Values: sets of possible values

Compromises = Imperfection

¢ Unsound: will produce warnings for
correct code (“false positives”)
e Incomplete: will miss warnings for
flawed code (“false negatives”)
e Easy to have one:
—-Sound checker: every line is okay
- Complete checker: every line is flawed
e Impossible to have both

- Most tools sacrifice some of both
Godel’s lifetime employment guarantee for
S D software security experts!

The Future Still Needs Us

e Imperfect tools mean human
expertise is needed to understand
output
- Identify the real bugs and fix them
- Coerce the tool to do the right thing

006, SANTA GLARA, GA

Recent State-of-the-Art:
Model Checking
Security Properties

Hao Chen (UC Davis), David Wagner
(Berkeley)

Hao Chen and David Wagner.
MOPS: an infrastructure for
examining security properties

of software. ACM CCS 2002. Benjamin Schwarz, Hao Chen, David Wagner,
Geoff Morrison, Jacob West, Jeremy Lin, Wei Tu.
Model Checking An Entire Linux Distribution for
Security Violations. ACSAC 2005

Model Checking

e Simulate execution paths

e Check if a path satisfies some model
(finite state machine-like)

¢ Control state explosion:
- Merge alike states

-"Compaction”: only consider things that
matter for checked model

MOPS Example:
Detect chroot() vulnerabilities

chroot(".") chroot(x)

chdir(*)

File system call
chroot(*)
chdir(*)

chdir(x) chdir(*/")

chdir(*)
chroot(*)

chdir(x)

Benjamin Schwarz, Hao Chen, David Wagner, Geoff Morrison, Jacob West, Jeremy Lin,

ei Tu. Model Checking An Entire Linux Distribution for Security Violatic ACSAC 2005




Checking RedHat

¢ 60 Million lines, 839 packages
-Analyzed 87%
e Processing time: ~8 hours per rule

e Human time: up to 100 hours per
rule

e Found 108 exploitable bugs

-41 TOC-TOU, 34 temporary files, 22
standard file descriptors, etc.

Perracotta:
Automatic Inference
and Effective
Application of
Temporal
Specifications

Jinlin Yang
University of Virginia
www.cs.virginia.edu/perracotta

WEST 2008

Generic Defects

Generic defects are

universal: Software

- Null pointer ﬂ

dereference

- Buffer overflow DefeCt_ | Generic |

—-TOCTOU Detection Rules

_etc. Tools L=
e Expert can develop @

rules for everyone ’,
SD

Checkpoint

e Retrospective: 10 years of program
analysis
—-10 years of program analysis
- Limits of static analysis
- Recent state-of-the-art
e Two current projects:
- Perracotta
- N-Variant Systems

17. 2006, SANTA GLARA. GA
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Defect Detection

Rules Software

N\ /

\ Defect Detection Tools\

24

Application-Specific Defects

e Application-specific Application-
specifications depend on Specific <:I Software

the implementations Rules
¢ Powerful tools available
¢ Rules rarely available % J
» Lmitediadoption of such Defect Detection Tools
ools

e Many bugs escape into
products




Deadlock Bug in Windows Vista

void PushNewInfo (structl s1,
struct2 s2) {

o ) ) Rule:
QXWinLockacguire (s1.lock); QXWinLockacquire
if ( s2.flag ) must alternate with

GEtData (s, FALSE); QXWinLockrelease

>
void GetData $struct1 s1,

boolean /ocked') { R | )
egular expression:
if ( llocked ) :
E)XWlnLockach/re (sL.lock); (acquire release)*

} Available tools (e.g., ESP)
(Note: actual names have been changed to can check this property,
keep MSFT's lawyers happy and fit on slide) but only if they know the

rule!

WEST 2006

Getting Specifications
from Developers

Problems

e Difficult to get approval (in most
states)

e Manual specifications are still
incomplete (and often wrong)

e Hard to keep specifications up-to-date
when code changes

¢ Solution: guess specs from
executions

28

Getting Specifications
Automatically

Instrumented Execution _|
Program Traces

Property
Templates

Inferred

—

ORI Properties

ERIEIETN

uoneIUBWINIISU]

Jinlin Yang and David Evans. Dynamically
Inferring Temporal Properties. PASTE 2004.

Inference Example

Alternating Property Template: (PS)*

Collected  Instantiated Alternating Properties Satisfied by Trace

Program (P, S)
Trace acquire, release acquire, release
acquire acqu?re, open X
release acquire, close_ X
open release, acquire X
acquire release, open X
release release, c\ose_ X
acquire open, acquire X
e open, release X
release open, close. open, close
close, acquire X
close, release i

close, open

Inference in Real World

e Must scale to large real systems
—-Traces have millions of events

¢ Infer properties from buggy traces
- Hard to get perfect traces

e Separate wheat from chaff
- Most properties are redundant or useless
—-Impossible to analyze all of them
- Present properties in useful way




Naive Inference Algorithm
e Match execution traces against

regular expression templates

¢ n2 possible substitutions for two-letter
regular expressions

e Matches each substitution against the
trace

e Time: O(’L), doesn’t scale to large
traces!

Perracotta [Jinlin Yang]
http://www.cs.virginia.edu/perracotta/

Dear Professor Evans,
implementation My name is Tim Mclntyre,
« Windows kernel and I work as General
traces, 5.85 million Counsel for Terracotta, Inc.,
events, 500 a Java software start-up
ClSeE SO based in San Francisco. I
* Only 14 minutes 3 me across your and your
(naive algorithm I el h
would take 5 days) C0l€agues we page the
other day
(http://www.cs.virginia.edu/
terracotta), and while I

MARCH 11 MTA GLARA, GA

e Inference engine

Buggy Test Programs

e Causes of imperfect traces:

- Buggy programs

- Trace collected by sampling

- Missing information
e Detect dominant behaviors

- PSPS PSPSPSPSPSPSPSP

- Matching (PS)* precisely misses the property
e Partition the original trace into subtraces
¢ Decide if each subtrace satisfies a template T
e Compute the percentage of satisfaction, P
e Rank pairs of events based on Py

Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, and Manuvir Das.
Perracotta: Mining Temporal API Rules from Imperfect Traces. ICSE 2006.
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Fast (OmL)) Inference

Alternating: (PS)*
e 5 distinct events, L events
e nxn array storing the states Qt‘
For event X, update Xt column "
and row J @ E

ABCD A B CD ABCD A BCD
Al2 Al2 Al2 A2 2|2
B 2 E>B 212 E>B 2|2 -Bl2|2|2]|2
C 2 C|2 2 Cl2]2]|2 Cl2|2(2|2
D 2 D|2 2 D|2]2 2 D|2|2(2|2

Initial A B Final

Fast Inference is the Easy Part...

e Must scale to large real systems
—-Traces have millions of events

e Infer properties from buggy traces
—-Hard to get perfect traces

e Separate wheat from chaff
- Most properties are redundant or useless
—-Impossible to analyze all of them
- Present properties in useful way

Selected Results - Windows

P, | Properties
0.993 | ObpCreateHandle->ObpCloseHandle
0.988 | GreLockDisplay->GreUnlockDisplay
0.985 | RtlActivateActivationContextUnsafeFast->RtlDeactivateActivationContextUnsafeFast
0.982 | KeAcquireInStack( inLock 1StackQueuedSpinLock

0.9

Remaining Properties
o
=

0 01 02 03 04 05 06 07 08 09 1
D Threshold Satisfaction Rate




JBoss - Inferred Properties

Selection Heuristic:
Name Similarity
e The more similar two events are, the more

likely that the properties are interesting
¢ Relative similarity between A and B
- A has w, words, B has w;, w common words:
similarity g = 2w [ (W, + wg)
e For example (similarity = 85.7%):
Ke Acquire In Stack Queued Spin Lock >
Ke Release In Stack Queued Spin Lock

Selection Heuristic:

Call Graph
void A(){ void x(){
cO;
B();
D(O);
} }
Case 1 Case 2

e C>D is often more interesting
e Keep A->B if B is not reachable from A

void KeSetTimer () { void x(){
KeSetTimerEx () ; ExAcquireFastMutexUnsafe (&m) ;

ExReleaseFastMutexUnsafe (&m) ;

SD :

Windows Experiment Results

e 7611 properties (P, threshold = 0.90)
e Manual examination: <1% appear to be
interesting
e Selection heuristics: 142 properties (1/53)
- Use the call-graph of ntoskrnl.exe, edit dist > 0.5
e Small enough for manual inspection
- 56 of 142 are “interesting” (40%)
- Locking discipline
- Resource allocation and deletion

Roadmap
¢ Inference:
- Scales (Millions of events)
- Infer properties from buggy traces
¢ Partition and use satisfaction threshold
- Separate wheat from chaff
e Selection heuristics: ~40% left interesting
¢ Applications of inferred properties
- Program understanding
- Program evolution
— Program verification

Program Understanding

e Help developers understand how to
use a library

¢ 56 interesting rules of Windows
kernel APIs

e Compared with Microsoft Research
researchers’ efforts in this area
(SLAM)
- Inferred four already documented rules
- Inferred two other undocumented rules




Chaining Method

* JBoss application server
- Inferred 490 properties for the transaction manager
- Edit distance not very useful
- Too many properties to inspect
¢ Chaining method
- Explore the relationships among Alternating properties:
A->B, B->C, and A->C gives A->B->C chain
- Potentially reduce n? properties to a chain of length n
e JBoss: 41 properties after chaining and call-graph
reduction

e Longest chain consistent with the J2EE
specification

45

Program Evolution

= o Shared
Program B Inferred g Properties
Version 1 3 Properties 1 )

e Q

=1 ]

: >
Program 3 Inferred 3 :
Version 2 3 Properties 2 5 Different

® 4] Properties

e Use inferred properties it identify differences
e Test beds: course assignments, OpenSSL

Jinlin Yang and David Evans. Automatically Inferring Temporal
Properties for Program Evolution. ISSRE 2004.

OpenSSL Evolution Results

v indicates Perracotta inferred the Alternating property
0.9.6 | 0.9.7 | 0.9.7a | 0.9.7b | 0.9.7c | 0.9.7d

SR_KEY_EXCH—
SR_CERT_VRFY 1T Y

SW_CERT—> Sl 1, \\\ L,

SW_KEY_EXCH | /

Documented
Fixed improvement

JBoss: Chaining Properties
begin
1
XidFactory.getNextld

Xidimpl.getT;

ocal.getTransaction i completeTransaction|

i i cancelTimeout

1 - 1
T esource T doAfterCompletion
1

tionlmpl findResourceManager|

T instanceDone

5

XidFactory.

TxManager.incCommitCount

TxManager releaseTransacti
1

]
]
esource |
]

T i euristi

[ ]
[ J
[ J
[ ]
[ J
[ J

TxManager. Thread

Example: OpenSSL
Client
e Widely used
implementation SR_CLNT_HELLO
of the Secure
Socket Layer
protocol
e 6 versions [0.9.6, SRCERT
0.9.7, 0.9.7a-d] SR.Cen vReY
SR_FINISHED
e Handshake W cHanae
protocol .
SW_FLUSH
OK

Program Verification

o
<
=]
3
Program <l Inferred ifgsgzﬁttgn
o 2 Properties
3 examples
)
3
o
@

|

e ESP: path-sensitive property checker
- Found previously unknown bugs in Windows
- Development team confirmed and fixed bugs




Summary of Applications

e Program understanding

- Discover API usage rules, 56 rules for Windows kernel
APIs

- Revealed the mechanism of legacy system, a 24-state
FSM of JBoss transaction module
e Program verification
- Found many previously unknown bugs in Windows
e Program evolution
- Identified differences among different versions
- Exposed bugs and intended improvements
- Demonstrated important properties have been preserved

WEST 2006

Inevitability of Failure
e Despite all the best efforts to build

secure software, we will still fail (or
have to run programs that failed)

e Run programs in ways that make it
harder to exploit vulnerabilities

Checkpoint

e Retrospective: 10 years of program
analysis
—-10 years of program analysis
- Limits of static analysis
- Recent state-of-the-art
e Two current projects:
- Perracotta
- N-Variant Systems

Security Through Diversity

e Today’s Computing Monoculture
- Exploit can compromise billions of
machines since they are all running the
same software

¢ Biological Diversity

— All successful species use very expensive
mechanism (sex) to maintain diversity

e Computer security research: [Cohen 92],
[Forrestt 97], [Cowan* 2003], [Barrantes* 2003], [Kc*+
2003], [Bhatkar+2003], [Just* 2004], [Bhatkar, Sekar,
DuVarney 2005]

Instruction Set Randomization
[Barrantes+, CCS 03] [Kc+, CCS 03]

e Code injection attacks depend on
knowing the victim machine’s
instruction set

e Defuse them all by making
instruction sets different and secret

- Its expensive to design new ISAs and
build new microprocessors

54

Automating ISR

Randomized
Executable

Original
Code

Derandomizer

Original

Executable Randomizer




b

ISR Defuses Attacks

Randomized
Executable

Original )
et e Randomizer

L r

Malicious
Injected Code

How secure is ISR?

Slows down an attack about 6 minutes!

Can use probe injections to incrementally
guess the key byte-by-byte (under the
right conditions)

Ana Nora Sovarel, David Evans and Nathanael Paul. Where’s
the FEEB? Effectiveness of Instruction Set Randomization.

ISR Designs

Columbia [Kc 03]

Randomization XOR or
Function 32-bit transposition

RISE [Barrantes 03]

XOR

program length (each
location XORed with
different byte)

32 bits (same key

Key Size used for all locations)

Transformation

Time Compile Time Load Time

Derandomization |Hardware Software (Valgrind)

USENIX Security Symposium, August 2005.
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Better Solution

¢ Avoid secrets!
-Keeping them is hard
-They can be broken or stolen

e Prove security properties without
relying on assumptions about
secrets or probabilistic arguments

PO|Y9I’aphing Jefferson’s
Processes: Povaraph
N-Variant
Systems for
Secretless
Security

work with Ben Cox,

Jack Davidson,

Adrian Filipi, Jason Hiser,
Wei Hu, John Knight,
Anh Nguyen-Tuong,
Jonathan Rowanhill

60

Server
Variant

Input
(Possibly
Malicious)

Server
Variant




N-Version

Programming
[Avizienis & Chen, 1977]
e Multiple teams of
programmers
implement same spec
e Voter compares
results and selects
most common

N-Variant
Systems

e Transformer
automatically produces
diverse variants

e Monitor compares
results and detects
attack

e No guarantees: teams e Guarantees: variants
may make same behave differently on
mistake particular input classes

MARCH 13-17. 2006, SANTA GLARA, GA

Variants Requirements

e Detection Property
Any attack that compromises Variant
0 causes Variant 1 to “crash” (behave
in a way that is noticeably different
to the monitor)

e Normal Equivalence Property
Under normal inputs, the variants
stay in equivalent states:

/qo(so) = .ﬂ](sl) Actual states are

different, but abstract
states are equivalent

62

N-Variant System Framework
e Polygrapher

- Replicates input to all
variants

e Variants

- N processes that
implement the same
service

- Vary property you hope
attack depends on:
memory locations,
instruction set, system call
numbers, scheduler, calling
convention, ...

e Monitor
- Observes variants
- Delays external effects
until all variants agree
- Initiates recovery if
variants diverge

CH 13-17. 2006, SANTA GLARA. GA

e —————— |
Memory Partitioning

¢ Variation
-Variant 0: addresses all start with 0
-Variant 1: addresses all start with 1
e Normal Equivalence
—-Map addresses to same address space
e Detection Property

- Any absolute load/store is invalid on one
of the variants

Instruction Set Tagging

e Variation: add an extra bit to all opcodes
- Variation 0: tag bitisa 0
- Variation 1: tag bitisa 1
- At run-time check bit and remove it

* Low-overhead software dynamic translation using Strata
[Scott, et al., CGO 2003]

e Normal Equivalence: Remove the tag bits
e Detection Property
- Any (tagged) opcode is invalid on one variant

- Injected code (identical on both) cannot run on
both

MARGH 13-17. 2006, SANTA GLARA, G

]
Implementing N-Variant Systems

e Competing goals:
- Isolation: of monitor, polygrapher, variants
- Synchronization: variants must maintain normal
equivalence (nondeterminism)
- Performance: latency (wait for all variants to
finish) and throughput (increased load)
e Two implementations:
- Divert Sockets (prioritizes isolation over others)
¢ Maintaining normal equivalence is too difficult
- Kernel modification (sacrifices isolation for
others)




Kernel Implementation
[Ben Cox]

¢ Modify process table to record variants

e Create new fork routine to launch variants
Intercept system calls:

— 289 calls in Linux

- Check parameters are the same for all variants
- Make call once

e Low overhead, lack of isolation

 —V——————— ]
Wrapping System Calls

e I/0 system calls (process interacts with
external state) (e.g., open, read, write)
- Make call once, send same result to all variants
* Process system calls (e.g, fork, execve,
wait)
- Make call once per variant, adjusted accordingly

e Special:

- mmap: each variant maps segment into own
address space, only allow MAP_ANONYMOUS
(shared segment not mapped to a file) and
MAP_PRIVATE (writes do not go back to file)

ssize_t sys_read(int fd, const void *buf, size_t count) {
if (hasSibling (current)) {
record that this variant process entered call
if (linSystemCall (current->sibling)) { // this variant is first
save parameters
sleep // sibling will wake us up
get result and copy *buf data back into address space
return result;
} else if (currentSystemCall (current->sibling) == SYS_READ) {
// I'm second variant, sibling is waiting
if (parameters match) { // match depends on variation
perform system call
save result and data in kernel buffer
wake up sibling
return result;
}else {
DIVERGENCE ERROR! }
} else { // sibling is in a different system call!
DIVERGENCE ERROR! } }

Example

7;) System Call Wrapper

=

Diversity

depends on
your

adversary

Slide from my USENIX Security 2004 Talk, What
Biology Can (and Can't) Teach us about Security

Overhead

Results for Apache running WebBench 5.0 benchmark

Unmodified 2-variant 2-variant
Apache, system, address system,
unmodified space instruction
Description kernel partitioning tagging
Throughput (MB/s) 6.46 ~ 5.57 4.01
Latency (ms) 9.06 10.52 P 14.84

/

68% increase
in latency

14% decrease
in throughput

2

N-Variant Summary

¢ Producing artificial diversity is easy
- Defeats undetermined adversaries

¢ Keeping secrets is hard

e N-variant systems framework offers
provable defense without secrets

- Effectiveness depends on whether
variations vary things that matter to
attack




Questions?

N-Variant Systems:
http://www.cs.virginia.edu/nvariant

Ben Cox, Jack Davidson, Adrian Filipi, Jason Hiser,
Wei Hu, John Knight, Anh Nguyen-Tuong,
Jonathan Rowanbhill

Perracotta:

http://www.cs.virginia.edu/perracotta

Jinlin Yang

Deepali Bhardwaj, Thirumalesh Bhat, and Manuvir Das
(Microsoft Research)

Funding: National Science Foundation
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