
David Larochelle

Statically Detecting Likely Buffer
Overflow Vulnerabilities 1

Statically Detecting Likely
Buffer Overflow Vulnerabilities

David Larochelle
David Evans

University of Virginia
Department of Computer Science

Supported by USENIX Student
Grant and NASA LRC

16 August 2001
David Larochelle 2

• 1988: Morris worm exploits buffer overflows in
fingerd to infect 6,000 servers

• 2001: Code Red exploits buffer overflows in
IIS to infect 250,000 servers
– Single largest cause of vulnerabilities in CERT

advisories

– Buffer overflow threatens Internet- WSJ(1/30/01)

16 August 2001
David Larochelle 3

Why aren’t we better off than
we were 13 years ago?

• Ignorance

• C is difficult to use securely
– Unsafe functions

– Confusing APIs

• Even security aware programmers make mistakes.

• Security Knowledge has not been codified into the
development process

16 August 2001
David Larochelle 4

Automated Tools
• Run-time solutions

– StackGuard[USENIX 7], gcc bounds-checking,
libsafe[USENIX 2000]

– Performance penalty

– Turns buffer overflow into a DoS attack

• Compile-time solutions - static analysis
– No run-time performance penalty

– Checks properties of all possible executions

David Larochelle

Statically Detecting Likely Buffer
Overflow Vulnerabilities 2

16 August 2001
David Larochelle 5

Design Goals

• Tool that can be used by typical programmers as
part of the development process
– Fast, Easy to Use

• Tool that can be used to check legacy code
– Handles typical C programs

• Encourage a proactive security methodology
– Document key assumptions

16 August 2001
David Larochelle 6

Our approach
• Document assumptions about buffer sizes

– Semantic comments
– Provide annotated standard library

– Allow user's to annotate their code

• Find inconsistencies between code and
assumptions

• Make compromises to get useful checking
– Use simplifying assumptions to improve efficiency

– Use heuristics to analyze common loop idioms

– Accept some false positives and false negatives
(unsound and incomplete analysis)

16 August 2001
David Larochelle 7

Implementation

• Extended LCLint
– Open source checking tool [FSE ‘94] [PLDI ‘96]

– Uses annotations

– Detects null dereferences, memory leaks, etc.

• Integrated to take advantage of existing
checking and annotations (e.g., modifies)

• Added new annotations and checking for
buffer sizes

16 August 2001
David Larochelle 8

Annotations

• requires, ensures

• maxSet

– highest index that can be safely written to

• maxRead

– highest index that can be safely read

• char buffer[100];

– ensures maxSet(buffer) == 99

David Larochelle

Statically Detecting Likely Buffer
Overflow Vulnerabilities 3

16 August 2001
David Larochelle 9

SecurityFocus.com Example

void func(char *str){
char buffer[256];
strncat(buffer, str, sizeof(buffer) - 1);
return;

}

char *strncat (char *s1, char *s2, size_t n)
/*@requires maxSet(s1)

>=maxRead(s1) + n@*/

uninitialized array

Source: Secure Programming working document,
SecurityFocus.com

16 August 2001
David Larochelle 10

strncat.c:4:21: Possible out-of-bounds store:
strncat(buffer, str, sizeof((buffer)) - 1);

Unable to resolve constraint:
requires maxRead (buffer @ strncat.c:4:29) <= 0

needed to satisfy precondition:
requires maxSet (buffer @ strncat.c:4:29)

>= maxRead (buffer @ strncat.c:4:29) + 255
derived from strncat precondition:
requires maxSet (<parameter 1>)

>= maxRead (<parameter1>) + <parameter 3>

Warning Reported
char * strncat (char *s1, char *s2, size_t n)
/*@requires maxSet(s1) >= maxRead(s1) + n @*/
char buffer[256];
strncat(buffer, str, sizeof(buffer) - 1);

16 August 2001
David Larochelle 11

Overview of checking
• Intraprocedural

– But use annotations on called procedures and
global variables to check calls, entry, exit points

• Expressions generate constraints
– C semantics, annotations

• Axiomatic semantics propagates constraints

• Simplifying rules
(e.g. maxRead(str+i) ==> maxRead(str) - i)

• Produce warnings for unresolved constraints

16 August 2001
David Larochelle 12

Loop Heuristics

• Recognize common loop idioms

• Use heuristics to guess number of iterations

• Analyze first and last iterations

Example:
for (init; *buf; buf++)

– Assume maxRead(buf) iterations
– Model first and last iterations

David Larochelle

Statically Detecting Likely Buffer
Overflow Vulnerabilities 4

16 August 2001
David Larochelle 13

Case studies

• wu-ftpd 2.5 and BIND 8.2.2p7

– Detected known buffer overflows

– Unknown buffer overflows exploitable with
write access to config files

• Performance

– wu-ftpd: 7 seconds/ 20,000 lines of code

– BIND: 33 seconds / 40,000 lines

– Athlon 1200 MHz
16 August 2001
David Larochelle 14

Results

95 writes

166 reads

132 writes

220 reads

-Other
Warnings

4

40

19

LCLint
warnings
with no
annotations
added

455strncpy

2197strcpy

1227strcat

LCLint
warning
with
annotations

Instances in
wu-ftpd
(grep)

16 August 2001
David Larochelle 15

int acl_getlimit(char *class, char *msgpathbuf)

{
struct aclmember *entry = NULL;
while (getaclentry("limit", &entry)) {

…
strcpy(msgpathbuf, entry->arg[3]);

LCLint reports a possible buffer overflow for
strcpy(msgpathbuf, entry->arg[3]); LCLint reports an error at a call site of acl_getlimit

wu-ftpd vulnerablity

/*@requires maxSet(msgpathbuf) >= 1023 @*//*@requires maxSet(msgpathbuf) >= 1023 @*/

strncpy(msgpathbuf, entry->arg[3], 1023);
msgpathbuf[1023] = ‘\0’;
strncpy(msgpathbuf, entry->arg[3], 199);
msgpathbuf[199] = ‘\0’;

/*@requires maxSet(msgpathbuf) >= 199 @*//*@requires maxSet(msgpathbuf) >= 199 @*/int access_ok(int msgcode) {
char class[1024], msgfile[200];
int limit;

…

limit = acl_getlimit(class, msgfile);

16 August 2001
David Larochelle 16

Related Work

• Lexical analysis

– grep, its4, RATS, FlawFinder

• Wagner, Foster, Brewer [NDSSS ‘00]
– Integer range constraints

– Flow insensitive analysis

• Dor, Rodeh and Sagiv [SAS ‘01]
– Source-to-source transformation with asserts

and additional variables.

David Larochelle

Statically Detecting Likely Buffer
Overflow Vulnerabilities 5

16 August 2001
David Larochelle 17

Impediments to wide spread
adoption

• People are lazy

• Programmers are especially lazy

• Adding annotations is too much work
(except for security weenies)

• Working on techniques for automating the
annotation process

16 August 2001
David Larochelle 18

Conclusion
• 2014:???

– Will buffer overflows still be common?

– Codify security knowledge in tools real
programmers can use

Beta version now available:
http://lclint.cs.virginia.edu

David Larochelle David Evans
larochelle@cs.virginia.edu evans@cs.virginia.edu

