David Larochelle

Statically Detecting Likely
Buffer Overflow Vulnerabilities

David Larochelle
David Evans

EE Supported by USENIX Student
& Grant and NASA LRC

.-_::{.I.. University of Virginia
HEZH Department of Computer Science

» 1988: Morris worm exploits buffer overflows in
fingerd to infect 6,000 servers

e 2001: Code Red exploits buffer overflows in
I1S to infect 250,000 servers

— Single largest cause of vulnerabilities in CERT

advisories
- Buffer oyerflow threatens lnternet-Ws)(1/30/01)
a8 B v o s ;

16 August 2001
David Larochelle

Why aren’t we better off than
we were 13 years ago?

* Ignorance

« Cis difficult to use securely
— Unsafe functions
— Confusing APIs

« Even security aware programmers make mistakes.

« Security Knowledge has not been codified into the
development process

16 August 2001
David Larochelle

Automated Tools

¢ Run-time solutions

— StackGuard[USENIX 7], gcc bounds-checking,
libsafe[USENIX 2000]

— Performance penalty

— Turns buffer overflow into a DoS attack

» Compile-time solutions - static analysis
— No run-time performance penalty

— Checks properties of all possible executions

16 August 2001
David Larochelle

Statically Detecting Likely Buffer
Overflow Vulnerabilities

David Larochelle

Our approach

DeSIQn Goals e Document assumptions about buffer sizes
. — Semantic comments
e Tool t?a; ce(ljn beI used by typical programmers as — Provide annotated standard library
art of the development process
P P P — Allow user's to annotate their code
— Fast, Easy to Use .]) .
» Find inconsistencies between code and
= Tool that can be used to check legacy code assumptions
~ Handles typical C programs « Make compromises to get useful checking

— Use simplifying assumptions to improve efficiency
— Use heuristics to analyze common loop idioms

— Accept some false positives and false negatives
(unsound and incomplete analysis)

16 August 2001 16 August 2001
David Larochelle

« Encourage a proactive security methodology

— Document key assumptions

David Larochelle

Implementation Annotations

e Extended LCLint e requires, ensures

— Open source checking tool [FSE ‘94] [PLDI ‘96] e maxSet
— Uses annotations)))
— highest index that can be safely written to
— Detects null dereferences, memory leaks, etc.
< Integrated to take advantage of existing * maxRead
checking and annotations (e.g., modifies) — highest index that can be safely read

« Added new annotations and checking for « char buffer[100];
buffer sizes — ensures maxSet(buffer) == 99

16 August 2001 16 August 2001
David Larochelle

David Larochelle

Statically Detecting Likely Buffer
Overflow Vulnerabilities

David Larochelle

SecurityFocus.com Example
char *strncat (char *s1, char *s2, size_t n)
/*@requires maxSet(sl)
>=maxRead(sl) + n@*/
void func(char *str){
char buffer[256];

strncat(buffer, str, sizeof(buffer) - 1);
return;

} uninitialized array

Source: Secure Programming working document,
SecurityFocus.com

16 August 2001
David Larochelle

Warning Reported
char * strncat (char *s1, char *s2, size_t n)
/*@requires maxSet(sl) >= maxRead(sl) + n @*/
char buffer[256];
strncat(buffer, str, sizeof(buffer) - 1);

strncat.c:4:21: Possible out-of-bounds store:
strncat(buffer, str, sizeof((buffer)) - 1);

Unable to resolve constraint:

requires maxRead (buffer @ strncat.c:4:29) <=0
needed to satisfy precondition:

requires maxSet (buffer @ strncat.c:4:29)

>= maxRead (buffer @ strncat.c:4:29) + 255

derived from strncat precondition:

requires maxSet (<parameter 1>)

>= maxRead (<parameterl>) + <parameter 3>
16 August 2001

David Larochelle 10

Overview of checking
e Intraprocedural

— But use annotations on called procedures and
global variables to check calls, entry, exit points

* Expressions generate constraints
— C semantics, annotations

* Axiomatic semantics propagates constraints

« Simplifying rules
(e.g. maxRead(str+i) ==> maxRead(str) - i)

* Produce warnings for unresolved constraints

16 August 2001

David Larochelle 11

Loop Heuristics

* Recognize common loop idioms
* Use heuristics to guess number of iterations
* Analyze first and last iterations
Example:
for (init; *buf; buf++)

— Assume maxRead(buf) iterations
— Model first and last iterations

16 August 2001
David Larochelle

Statically Detecting Likely Buffer
Overflow Vulnerabilities

David Larochelle

_ Results
Case studies —T ,
nstances in I[CLint LCLint
vu-ftpd arnings Warning
i WU-ftpd 2.5 and BIND 822p7 grep) ith no with
— Detected known buffer overflows g zgogatlons gnnotations
d e
— Unknown buffer overflows exploitable with
write access to config files gtreat 7 19 12
gtrc D7 40 21
- Performance iid 1
— wu-ftpd: 7 seconds/ 20,000 lines of code jtrncpy S 1 ‘
. i pther L 132 writes 95 writes
— BIND: 33 seconds / 40,000 lines Warnings
— Athlon 1200 MHz 220 reads 166 reads
16 August 2001 16 August 2001
David Larochelle 13 David Larochelle 14

wu-ftpd vulnerablity
Related Work
int access_ok(int msgcode) {

char class[1024], msgfile[200]; » Lexical analysis

int limit; — grep, its4, RATS, FlawFinder

* Wagner, Foster, Brewer [NDSSS ‘00]
— Integer range constraints

limit = acl_getlimii(class, msdfile); — Flow insensitive analysis

= LY
ol W] ™ e Dor, Rodeh and Sagiv [SAS ‘01]
L "-.______,.-" || — Source-to-source transformation with asserts
"'-.,_ _,-"' and additional variables.
16 August 2001 - 16 August 2001
David Larochelle 15 David Larochelle 16

Statically Detecting Likely Buffer
Overflow Vulnerabilities

David Larochelle

adoption
e People are lazy
e Programmers are especially lazy

e Adding annotations is too much work
(except for security weenies)

annotation process

16 August 2001
David Larochelle

Impediments to wide spread

» Working on techniques for automating the

Conclusion

e 2014:?77?
— Will buffer overflows still be common?

— Codify security knowledge in tools real
programmers can use

Beta version now available:
http://Iclint.cs.virginia.edu

David Larochelle David Evans
larochelle@cs.virginia.edu evans@cs.virginia.edu

16 August 2001
David Larochelle 18

Statically Detecting Likely Buffer
Overflow Vulnerabilities

