
1

University of Virginia
Computer Science

Extensible Lightweight
Static Checking

David Evans
evans@cs.virginia.edu
http://lclint.cs.virginia.edu

On the I/O Streams Challenge
Problem

LCLint

14 August 2001 Spec-n-Check 2

Everyone Likes Types
• Easy to Understand
• Easy to Use
• Quickly Detect Many Programming Errors
• Useful Documentation
• …even though they are lots of work!

– 1/4 of text of typical C program is for types

14 August 2001 Spec-n-Check 3

Limitations of
Standard Types

One type per
reference

Language defines
checking rules

Type of reference
never changes

14 August 2001 Spec-n-Check 4

Many attributes per
reference

One type per
reference

Programmer defines
checking rules

Language defines
checking rules

State changes along
program paths

Type of reference
never changes

Attributes

Similar to Vault, linear types,
typestates , etc.

Limitations of
Standard Types

2

14 August 2001 Spec-n-Check 5

LCLint
• Lightweight static analysis tool [FSE’94,

PLDI’96] – “quick and dirty”
• Simple dataflow analyses
• Unsound and Incomplete
• Several thousand users…perhaps ¼ adding

annotations to code: gradual learning curve
• Detects inconsistencies between code and

specifications
• Examples: memory management (leaks, dead

references), null dereferences , information
hiding, undocumented modifications, etc.

annotations documented assumptions

14 August 2001 Spec-n-Check 6

I/O Streams Challenge

• Many properties can be described in
terms of state attributes
– A file is open or closed

• fopen: returns an open file
• fclose: open → closed
• fgets, etc. require open files

– Reading/writing – must reset between
certain operations

14 August 2001 Spec-n-Check 7

Defining Openness
attribute openness

context reference FILE *
oneof closed, open
annotations

open ==> open closed ==> closed
transfers

open as closed ==> error
closed as open ==> error

merge open + closed ==> error
losereference

open ==> error "file not closed"
defaults

reference ==> open
end

Cannot abandon FILE
in open state

Object cannot be open
on one path, closed on
another

14 August 2001 Spec-n-Check 8

Specifying I/O Functions
/*@open@*/ FILE *fopen

(const char *filename,
const char *mode);

int fclose (/*@open@*/ FILE *stream)
/*@ensures closed stream@*/ ;

char *fgets (char *s, int n,
/*@open@*/ FILE *stream);

3

14 August 2001 Spec-n-Check 9

Reading, ‘Riting, ‘Rithmetic
attribute rwness

context reference FILE *
oneof rwnone, rwread, rwwrite, rweither
annotations

read ==> rwread write ==> rwwrite
rweither ==> rweither rwnone ==> rwnone

merge
rwread + rwwrite ==> rwnone rwnone + * ==> rwnone
rweither + rwread ==> rwread rweither + rwwrite ==> rwwrite

transfers
rwread as rwwrite ==> error "Must reset file between read and write."
rwwrite as rwread ==> error "Must reset file between write and read."
rwnone as rwread ==> error "File in unreadable state."
rwnone as rwwrite ==> error "File in unwritable state."
rweither as rwwrite ==> rwwrite rweither as rwread ==> rwread

defaults
reference ==> rweither

end
14 August 2001 Spec-n-Check 10

Reading, ‘Righting
/*@rweither@*/ FILE *fopen

(const char *filename, const char *mode) ;

int fgetc (/*@read@*/ FILE *f) ;
int fputc (int, /*@write@*/ FILE *f) ;

/* fseek resets the rw state of a stream */
int fseek (/*@rweither@*/ FILE *stream,

long int offset, int whence)
/*@ensures rweither stream@*/ ;

14 August 2001 Spec-n-Check 11

Checking

• Simple dataflow analysis
• Intraprocedural – except uses

annotations to alter state around
procedure calls

• Integrates with other LCLint analyses
(e.g., nullness, aliases, ownership, etc.)

14 August 2001 Spec-n-Check 12

Example

FILE *f = fopen (fname, “rw”);
int i = fgetc (f);
if (i != EOF) {

fputc (i, f);
fclose (f);

}

f:openness = open, f:rwness = rwread

Attribute mismatch – passed read
where write FILE * expected.

Possibly null reference f passed
where non-null expected

f:openness = open
f:rwness = rweither

Branches join in incompatible states: f is closed
on true branch,open on false branch

f:openness = closed, f:rwness = rwnone

4

14 August 2001 Spec-n-Check 13

Results
• On my code…works great

– Checked LCLint sources (178K lines, takes
240 seconds on Athlon 1.2GHz)

– No annotations: 2 errors
– Added 1 ensures clause

static void loadrc (FILE *p_rcfile, cstringSList *)
/*@ensures closed p_rcfile@*/ ;

– No more warnings

14 August 2001 Spec-n-Check 14

Results – “Real” Code

• wu-ftpd 2.6.1 (20K lines, ~4 seconds)
• No annotations: 7 warnings
• After adding ensures clause for ftpd_pclose

– 4 spurious warnings
• 1 used function pointer to close FILE
• 1 reference table
• 2 convoluted logic involving function static variables

– 2 real bugs (failure to close ftpservers file on two
paths)

14 August 2001 Spec-n-Check 15

Taintedness
attribute taintedness

context reference char *
oneof untainted, tainted
annotations

tainted reference ==> tainted
untainted reference ==> untainted
anytainted parameter ==> tainted

transfers
tainted as untainted ==> error

merge
tainted + untainted ==> tainted

defaults
reference ==> tainted
literal ==> untainted
null ==> untainted

end
14 August 2001 Spec-n-Check 16

tainted.xh
int fprintf (FILE *stream, /*@ untainted@*/ char

*format, ...) ;

/*@tainted@*/ char *fgets (char *s, int n, FILE *)
/*@ensures tainted s@*/ ;

char *strcpy (/*@returned@*/ /*@anytainted@*/ char *s1,
/*@anytainted@*/ char *s2)

/*@ensures s1:taintedness = s2:taintedness@*/ ;

char *strcat (/*@returned@*/ /*@anytainted@*/ char *s1,
/*@anytainted@*/ char *s2)

/*@ensures s1:taintedness
= s1:taintedness | s2:taintedness@*/ ;

5

14 August 2001 Spec-n-Check 17

Buffer Overflows
• Most commonly exploited security

vulnerability
– 1988 Internet Worm
– Still the most common attack

• Code Red exploited buffer overflow in IIS
• >50% of CERT advisories, 23% of CVE entries in 2001

• Finite-state attributes not good enough
– Need to know about lengths of allocated buffers

14 August 2001 Spec-n-Check 18

Detecting Buffer Overflows
• More expressive annotations

– e.g., maxSet is the highest index that can safely
be written to

• Checking uses axiomatic semantics with
simplification rules

• Heuristics for analyzing common loop idioms
• Detected known and unknown vulnerabilities

in wu-ftpd and BIND
• Paper (with David Larochelle) in USENIX

Security 2001

14 August 2001 Spec-n-Check 19

Will Programmers Add Annotations?
• C in 1974: char *strcpy ();
• C in 1978: char *strcpy (char *s1, char *s2);
• C in 1989: char *strcpy (char *s1, const char *s2);
• C in 1999: char *strcpy (char * restrict s1,

const char * restrict s2);
• C in 20??:

nullterminated char *strcpy
(returned char *restrict s1,
nullterminated const char *restrict s2)
requires maxSet(s1) >= maxRead (s2)
ensures s1:taintedness = s2:taintedness
ensures maxRead(s1) = maxRead (s2);

