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Abstract 
 
 

This project deals with a new area of Computer Science called swarm 

programming.  Swarm programming is the coding of multiple independent units which, 

when working together, can perform complex behaviors.  The unique thing about this 

type of programming is that there is no central unit or smart server or mainframe.  The 

units communicating with each other must gain all knowledge and make all decisions.  

The behaviors of these agents can be broken down into small building units called 

primitives.  This thesis focuses primarily on the dispersion primitive.  The dispersion 

primitive guides swarm agents into a dispersed state from a any starting state.  I 

implemented two versions of the dispersion primitive: a randomized version and an N-

threshold algorithm, which bases its behavior on a user-defined threshold of dispersive 

happiness. 

The primitives were all implemented using a realistic communication strategy, 

where all information was acquired through the agents talking to each other.  The 

primitives were simulated and results analyzed based on the trade-offs of power 

consumption and dispersal efficiency.  The random approach was proved to be a poor 

choice, while the 1-threshold strategy was best overall.  Other algorithms are still useful 

depending on where the users priorities lie.   
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1 Introduction 
 

 
You wake up one fall Saturday morning, glad that it is the weekend, yet 

discouraged at the amount of work you have to do today.  You wonder if the yard or 
garden needs watering, so on your way downstairs, you grab a handful of small mobile 
robots and toss them outside.  You will pick them up again in twenty minutes (perfect for 
a bagel and some coffee).  While you are eating, you see on the news that numerous 
uranium deposits have been discovered on mars due to the new cluster of exploratory 
micro robots.  When finished, you go back outside and hold out your palm to collect your 
yard and garden robots.  You return inside, toss the robots back into the bucket, and read 
the new printout in your printer.  Ahh, relief…it rained Thursday night so the grass 
doesn’t need watering, and only the rhododendrons and cabbage plants need their 
fertilizers; the others are well nutritioned and growing well.  Is this a realistic situation?  
Yes, realistic and feasible within the next few decades.   

 
The technique of controlling small, individual, embedded processing units that 

communicate with each other is called swarm programming.  Swarm programming codes 

for these multiple single units can get them to perform complex behaviors, when working 

together.  These embedded systems make up eighty percent of the 8 billion computing 

units produced each year, yet very little research has been done regarding these 

processors [Tennenhouse 2000].   

In spite of this lack or research, the advantages of programming a network of 

these small processing units can be immense.  The $165 million Mars Polar Lander 

project, for example, crashed in December of 1999 due to the failure of one sensor.  With 

swarm programming and the use of many individual units, they would have had the 

ability to adapt their behavior to cover the destruction of one unit or would have 

beckoned more units to help if their current resources were not enough [Persaud 2001, 

Evans 2000].    The unique thing about this type of programming is that there is no 

central server or mainframe.   
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In order for this new technology to advance to a widely used system, it needs to 

be tested, used, and further developed.  Part of this development includes better, more 

accurate simulation.  This project creates a foundation of swarm environments and 

techniques that will enable researchers in the future to develop the technology more 

efficiently.  It will also take the communication between individual agents into account.  

This communication aspect sets swarm apart from normal mass processor control 

theories.  Accurately simulating this behavior allows us to step forward to the future of 

this technology and puts us closer to applying this technology and help people.  

 Swarm technology focuses on the manipulation of small programmable agents.  

By communicating with each other, these agents will be able to perform certain basic 

behaviors called primitives.  Almost all complex behaviors can be broken down into 

these simple primitives, so the modeling of in-depth actions can be achieved by 

combining known functional primitives.  Almost all current research into swarm 

programming concentrates on the most accurate and best implementations of these 

primitives.  Once these primitives are mastered, there is no limit to what swarm 

programming can do for the modern world.  Being able to program cheap, mobile 

processors to go under water, in wreckages, to space or any other tough location will 

greatly improve the functionality of robots everywhere.  These swarm agents are 

programmed, and then set loose to act on their own, deciding what to do on the fly as 

they talk to each other.  This type of dynamic decision-making does not currently exist 

without the use of a powerful and expensive central server computer, to be able to 

implement such a scheme would be a true technological achievement.   
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Swarm devices are at the point where they can be easily and efficiently 

manufactured, yet swarm software is still in the early stages [Persaud 2001].  Many 

current papers discuss the future trends of swarm computing.  In David Tennenhouse’s 

paper entitled “Embedding the Internet: Proactive Computing,” he discusses how the 

world is already dependent on embedded processors, so the natural trend would be to get 

these processors to work together [Tennenhouse 2000].  David Evans talks of all the 

research that still needs to be done and the applications that can be realized in his 

proposal, “Programming the Swarm” [Evans 2000].   

Biology offers much inspiration for swarm programming.  Many algorithms and 

studies for example, have been based on ants.  Ants will leave the hill in search of 

necessities and will communicate to each other through pheromones that they leave 

behind.  This process is described in Koenig and Liu’s “Terrain Coverage with Ant 

Robots: A Simulation Study” [Koenig 2001:19] as well as Koenig, Liu and Szymanski’s 

“Efficient and Inefficient Ant Coverage Methods” [Koenig 2001:20].  The intriguing 

pheromone strategy will provide some excellent insight into my model of a 

communication protocol.   Werger and Mataric’s paper, “From Insect to Internet: Situated 

Control for Networked Robot Teams,” studies behavior based control of networked 

agents.  This study is based on ant behavior and actually develops a communication 

protocol that will provide assistance into modeling agent communication. 

The key to a functioning swarm application is a strong, well-tested foundation, 

which is analogous to the primitives.  My project specifically deals with the dispersion 

primitive.  It takes a previous dispersion primitive and moves it to a different simulator, 

which enables the simulation to run with true communication and real-world time steps.  
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With the addition of communication cost simulation among the agents, the research field 

will soon get a better view of realistic implementation of this technology. 

Next, I will discuss some more background into the basics of swarm, the 

simulating tools available, the implementation of swarm on the RAPTOR simulator and 

my implementation of the dispersion primitive.  I will then discuss my results and my 

conclusions.   
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2 Swarm Programming 
 
This chapter delves a little more into swarm theory and then discusses swarm 

impacts 
  

Swarm programming is an area of Computer Science that is so new and underdeveloped 

that it gains complexity almost exponentially.  However, as more and more research is underway 

a clear picture can be drawn regarding the current state of swarm technology and techniques.  

This section discusses the basics of swarm theory and the positive and negative impacts of such a 

technology. 

2.1 Swarm Theory 
 
Swarm programming was originally developed to take advantage of the 

numerous, cheap, and low-functioning microprocessors that are so readily available.  Due 

to its lack of a central computing unit, it also provides a superior simulation to real world 

interaction.  As humans, we interact with each other and perform tasks each day based 

solely on our decision-making ability.  This ability may be of our own thought processes, 

or it may be spurred and given to us by other fellow humans.  This kind of intelligent 

interaction is the goal of swarm technology.   

The current swarm technology that is implemented at the University of Virginia 

utilizes sets of primitives.  As previously mentioned, a primitive acts as a simple building 

block into a complex behavior.  Examples of primitives include converge, disperse, area 

coverage, move given direction, and broadcast.  By combining these primitives, 

researchers can create common behaviors for simulation.   

An interesting framework of the swarm behaviors is the environment in which 

they will be implemented.  The environment determines which behaviors and primitives 
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will be necessary for the user’s goal.  Variances among the implementations occur 

because of trade-offs.  The entire swarm system consists of many trade-offs due to 

different environment, different devices and different requirements, valuing resources 

differently.  For example, if you want to have swarm robots scan a warehouse that you 

own, you need to use the area-coverage primitive.  Now, what if every area in the 

warehouse can be viewed every x amount of time with a primitive that uses heavy battery 

power?  You can choose to use this implementation if you do not care about power usage 

and have batteries to spare.  But, what if you value power usage greatly, but do not care 

as much about how frequently the area is viewed?  Then you choose to view the 

warehouse every 2x amounts of time with a lesser power consuming primitive.  These are 

the types of trade-offs that all researchers have to consider and that are prevalent 

throughout any type of swarm application. 

Each swarm primitive must contain the functionality to fit varying environments. 

These adaptable primitives are the key to rapid swarm application development.  If the 

user can specify what trade-off decision he or she wishes to make, the technology will be 

much more productive and marketable.  Current research at the University of Virginia is 

being conducted regarding swarm application generators that take key environment 

variables and automatically combine the necessary primitives and behaviors to create the 

best fitting swarm application [McEachron 2002]. 

2.2 Impacts of Swarm Programming 
 
Swarm simulations are used for numerous different reasons and in a variety of 

different fields.  Researchers at Utah State University have many different projects 

utilizing swarm. One involves the modeling of grazing animals, diet selection, and plant 
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succession in a GIS-based environment.  Others involve traditional fisheries in the 

Aleutian Islands, insect infestations of vineyards, recreational management in the 

Caribbean, and invasive weed spreading [Box 2002].  In Japan, research is being 

conducted regarding agent based modeling of pedestrian movement [Wantanabe 2002].  

Even Al Queda and Bin Laden have been simulated using swarm technologies [Schreiber 

2001].  With all these examples, it is easy to see the widespread use of swarm 

simulations. 

The direct impact of this project is the improvement of the dispersion primitive 

within the RAPTOR swarm simulator.  This improvement not only brings the dispersion 

primitive to a more realistic simulation platform, but also adds power consumption to the 

areas that can be manipulated when determining different run factors.  With this added 

feature, the simulations that researchers run will provide more of a realistic result than 

that of the current simulation.   

Nevertheless, this “improvement” could prove to be a negative impact if at some 

later time it is proven unusable.  Unusability could occur when the simulations arrive at 

the point where they are modeling the world at such a degree that this model becomes too 

simplistic for proper analysis.  It could also become unusable if the method or 

environment in which I developed my primitive and testing measures becomes obsolete 

due to unforeseeable simulation criteria.  However, when looking at the current state of 

swarm simulation, this project looks to provide a solid step towards a more realistic 

model, which will help lead to the widespread implementation of swarm programming 

techniques.  Once swarm technology can be applied everywhere, the world can take full 

advantage of all that it has to offer. 
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 Swarm technology will allow for many amazing things to happen.  As 

demonstrated earlier, a swarm of smart, communicating robots can provide much help in 

normal day-to-day household activities.  Their benefits can range from taking and 

printing results on the state of a lawn to actually becoming that image of the future where 

programmed robots will do all the cooking and cleaning.  They can monitor toxins and 

smoke, becoming an all-purpose smart hazard detector.  They can provide home 

surveillance by monitoring an estate at all times and knowing who and when to alert 

when a problem arises.  Agents can monitor and detect the functional state of a home, 

searching for electrical shorts, leaks of any kind, and overall structural soundness.  In 

some cases, they could even be taught how to repair common problems.  As shown, it is 

fruitless to list the numerous household applications because swarm’s potential benefits 

are limitless.  Of course, swarm programming applications can do much more than 

simple tasks around the home. 

 Possible implementations of swarm can truly benefit all of humanity.  

Exploration, for example, is one area that is discussed among current researchers [Evans 

2000].  NASA could have potentially saved $165M on the Mars Polar Lander project if 

they had implemented a swarm of adaptable robots instead of being dependent on one 

large robot.  Swarm explorers could have made all sorts of important discoveries and 

recorded a great deal of invaluable data.  Additionally, swarm explorers can be used to 

find objects.  They would be able to search nonstop through all types of conditions until 

they either succeed or determine the object is not in the area.  This could be used to find 

the black box after airplane crashes, to search for lost skiers in snow, or to find objects at 



 8

the bottom of the ocean [Evans 2000].  They could also have proved helpful in searching 

the debris for survivors after the recent tragedies in New York.   

 Swarm programming can also be of great help in the nuclear power industry.  

After working in this industry, I have become familiar with it and can see many distinct 

areas that can be improved with swarm technology.  The most obvious usage would be in 

the steam generator scanning and/or repair area.  Currently, large, heavy robots are sent 

into the steam generator to scan the tubing for any faults the equipment may have.  These 

robots are programmed somewhat, but still rely heavily on a human controller to operate 

them.  Robots are necessary due to the high levels of radiation in these areas.  With a set 

of smart swarm agents available, the servicing utilities could send them into the reactor 

head, programmed on where to look, what to do, and how to output data.  These robots 

would be able to adapt to new information by themselves and could provide more 

mobility and efficiency than the current robot technology.  The swarm robots could also 

be left in the reactor and steam generator as a smarter monitor for all types of things that 

could be helpful to the plant.  As battery life improves for these agents, restraints on the 

potential impact loosen more and more. 

 As with any significant advancement of technology, swarm technology brings 

with it some unfortunate negative impacts.  If this technology were to fall into malicious 

hands it could just as easily be used for harmful activities as for helpful ones.  Swarm 

agents could easily be used for unauthorized eavesdropping and surveillance.  They could 

also help enemies locate secure areas of troops or supplies.  Of course, using swarm 

agents as a tool for sabotage on any plane or mode of transportation would also be a huge 

threat.  Though these are significant negative impacts, they are generally true for all new 
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and better technological progressions and act as a constant risk to all society as we 

continue to advance in science and technology.  
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3 Simulator 
 
 This chapter discusses the advantages and disadvantages of both the Santa Fe 
and the RAPTOR simulators. 
 

The key to any developmental research is that it takes the technology a step closer 

to the real thing.  This means better and more complete simulations.  These simulations 

obviously depend on the simulating technology that is used.  In the swarm programming 

field, there are multiple choices including the popular Santa Fe simulator. However, the 

one used for this project is the RAPTOR simulator.  Both of these simulators allow for 

the simulation of many complex systems interacting with each other, and they both have 

their advantages and disadvantages.  

3.1 Santa Fe Simulator  
 
The Santa Fe simulator was originally developed at the Santa Fe Institute by the 

Swarm Development Group (SDG).  The simulator is available for free at 

(www.swarm.org) under the GNU public license.     

Many researchers with many different philosophies use the Santa Fe simulator.  It 

has numerous mailing lists to keep members updated and it is extraordinarily well-

documented.  The atmosphere of the researchers working with this simulator is very 

helpful and conducive to a team effort.  It also has many example swarm programs to 

help you get started and learn the way things work.   

The simulator was originally written in Objective C.  Now simulations can be 

programmed in both Java and Objective C.  However, the Java version is just a wrapper 

around a still Objective C engine.  This makes the task of figuring out the inner workings 

of the system and learning how to manipulate it rather difficult.  The classes and 

http://www.swarm.org/
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processes are also very unintuitive.  This project was initially written using the Java side 

of the Santa Fe simulator.  It has since been moved to the RAPTOR simulator for reasons 

to be discussed. 

3.2 RAPTOR Simulator 
 

The RAPTOR simulator was developed by the Survivability Research Group at 

the University of Virginia.  It is used to evaluate critical infrastructure systems by 

modeling threats, hazards, and vulnerabilities.  Mike Hogye, a fellow undergraduate 

researcher here at the University of Virginia, identified some characteristics of RAPTOR 

that made it more suited to the type of swarm simulation needed.  He then implemented a 

swarm simulator within the RAPTOR environment. 

  This simulator is written in C++ and has a more standard and straightforward feel 

to it.  The key feature of the RAPTOR simulator is its notion of time.  In RAPTOR, time 

is discrete and logical; there is no dealing with concurrent events as there was in the 

Santa Fe simulator.  The properties and methods are also more intuitive and 

straightforward than the Santa Fe simulator.  RAPTOR allows for excellent extensibility, 

as it is inherent where to derive new classes and subclasses.  Because of these 

advantages, the dispersion algorithm for this project moved from the Santa Fe simulator 

to the RAPTOR simulator.  This was a task that will help future researchers, as they will 

now have an already working swarm simulator within the RAPTOR environment.   

 Despite these advantages, RAPTOR does have some drawbacks since it was not 

created for swarm applications.  RAPTOR was not intended to be used within such a high 

number node count.  Swarm simulations can require as much as 10,000 nodes, and at 

such levels, RAPTOR is highly processor intensive.  In addition, many unexpected side 
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effects resulted with this new experiment.  These problems were worked out, but would 

have been more easily solved with a decent set of documentation.  However, there was no 

documentation regarding swarm simulations in RAPTOR. Therefore, it was left up to the 

current researchers to design and work through all solutions to any problems that arose. 

Although, there are still unresolved issues, RAPTOR served as an excellent 

simulator for the necessary experimentation.  RAPTOR allowed the implementations of 

primitives without using a communicating central computer, which was still remnant in 

the Santa Fe simulator.  The following chapter will discuss in detail how swarm was 

implemented on the RAPTOR environment. 
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4 Swarm On Raptor 
 

This chapter describes the class and inheritance structure of the swarm system  
implemented within the RAPTOR simulator. 
 

RAPTOR provides the intuitiveness and time-aware qualities that are needed in a 

research-capable swarm simulator.  The swarm implementation seems to fit in well with 

the existing RAPTOR structure and has created no RAPTOR issues.  When changing 

simulators during a project, a significant drawback is the time it takes to become familiar 

with the new simulator.  This did take some time, but we found that it was not nearly as 

hard to grasp as some of the functions in the Santa Fe simulator.  The following sections 

will show the basic layout and ideas behind the swarm implementation on the RAPTOR 

simulator.  The entire code listing of this swarm application is included in Appendix A.    

4.1 Basic Layout 
   

The RAPTOR simulator consists of a message passing structure upon which 

certain behaviors can be added and altered.  The central ingredient to RAPTOR is the 

Model class.  In order to participate in RAPTOR’s message passing, you have to create a 

model and register nodes within that model.  A user can derive any kind of application 

from RAPTOR by simply registering their specific objects with the model and calling 

Model.start().   

All time-constrained swarm objects are inherited from a VMP (Virtual Message 

Passing) class.  This class organizes the way objects will behave with regard to the time 

environment.  Each item is divided into three time dependent sections (PreAction, 

MessageHandling, and PostAction) and two time independent functions(Start and Stop): 

 
1. Start – Start gets called once for each object.  It is a good place for  
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initialization. 
2. PreAction – The actions within this function are executed in the  

first section of the time step. This is a good place to reset  
counters. 

3. Message Handling – The “body” of the time step. During the time step, 
all messages get handled here. 

4. PostAction – The actions within this function are executed after the  
PreAction and message handling parts of the time step. 
This is where most behavioral decisions are made, after all  
messages have been tallied. 

5. Stop – Stop is called once at the end of the simulation. Good for cleanup. 
  
 

The swarm architecture is divided into three major sections: Observer, World and  

Entity.  Figure 1 shows the inheritance of these classes from the VMP class. 

 
 
 

 

 

 

 

Figure 1: Inheritance scheme of Swarm on RAPTOR 

 

Each of these three areas exhibits the same 5 divisions listed above.  The following figure 

shows the high-level view of the time step architecture pertaining to these separate  

objects, beginning with observer followed world and then agent, looping back to 

observer. 
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Figure 2: High-level view of time step architecture within swarm 

 

These objects all interact with each other by passing messages of certain types.  

There are two overall kinds of messages – swarm and RAPTOR.  RAPTOR messages 

contain a sender address and are manipulated via the RAPTOR message-passing engine.  

Swarm messages are simply types or data and are sent directly to the qualifying nodes.  

During the following descriptions of the objects, I will also discuss the types of messages 

associated with each.  
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4.2 Observer 
 

The observer acts as an agent that is registered with the world but cannot be seen.  

It acts as the interface between the user and the simulation.  The observer queries the 

world and the entities for information.  It then outputs this information to the simulation 

user.  It can be output in any format the user wishes just by modifying the observer code.  

The observer deals with query and status messages.  It has two types of query messages: 

one that is a RAPTOR message that goes to the world, and another swarm message that 

goes to the agents.  When the objects receive these messages they respond with status 

messages of their own back to the observer.  The observer queries the swarm entities 

based on the observable information types listed below.  

 Observable Information Types sent to Entities: 
1. NO_INFO 
2. ENTITY_POSITIONS_INFO  
3. BATTERY_LEVEL_INFO 
4. REACHED_BY_BROADCAST_INFO  
5. HAPPINESS_INFO  

 
The observer can choose between any or all of these types to ask entities for by setting 

certain bits in the message type.  The observer is simply an invisible tool working in the 

background to keep the user updated on the happenings of the simulation. 

4.3 World 
 
The world acts as the moderator to the whole simulation.  It keeps track of what 

entities and observers are registered and also handles the wireless calculations.  For 

example, when an agent wishes to send a broadcast, it first sends a RAPTOR 

TransmitMesssage with a designated signal strength or power to the world.  The world 

receives this message and calculates which agents are within the transmission radius.  It 
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then forwards the TransmitMessage as a swarm ReceivedTransmissionMessage to the 

appropriate entities.  The world does keep track of the location of all entities but this does 

not violate any rules, because it only uses this information for transmission calculations 

and to relay entity data to the observer to display to the user.    

All messages passed to the world are RAPTOR messages.  Some of these 

messages simply provide information, but some, like TransmitMessage and 

FindMessage, get converted into swarm messages to forward to the group.  The world 

acts, in a sense, as the moderator and overseer to make sure everything flows properly. 

4.4 Entity 
 
The entity object is what all types of agents are derived from.  Figure 3 below 

shows the general layout of the swarm agents. 

 

 

 

 

 

 

 

 

 

 

Figure 3: Inheritance scheme of the entity structure 
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BasicAgent is inherited from Entity.  BasicAgent contains the message handling 

algorithms.  It receives messages, determines their types, and then calls the appropriate 

functions in either FunctionalAgent or BehavioralAgent.  Inherited from BasicAgent are 

FunctionalAgent and BehavioralAgent.  These are separated for extensibility and 

interchangeability.  The functional side deals with the amount of power that is required to 

perform certain tasks, such as moving, transmitting, and listening.  The behavioral side 

makes the decisions on when and where to move or transmit, and then calls the functions 

on the functional object.   

This is an ideal scenario for multiple inheritance, as the complete agent comes 

together as a combination of the two sides.  The user is then able to choose different 

behaviors and functionalities.  For example, the user could decide to test a disperse 

behavior with different batteries which contain different powers, or vise versa, the user 

can test different behaviors on the same battery model. 

 The division of swarm into these three areas works well with the extensibility of 

the entire simulator.  New features and models can be added and removed fairly 

painlessly due to the object-oriented nature of the architecture.  The disperse agent was 

slipped right into this structure by simply deriving a disperse behavior and a disperse 

functionality agent classes.  Overall, the RAPTOR environment provides an excellent 

framework to create a more realistic swarm simulator.  
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5 Disperse Primitive 
 
 This chapter goes into more detail describing the disperse primitive in general.  It 
then talks about the disperse on Santa Fe before discussing the newly implemented 
disperse on RAPTOR. 
 

The disperse primitive describes the behavior of agents as they spread apart from 

a clustered position or any position.  This primitive would be useful in almost any swarm 

application.  Because, every time that you release some swarm robots, they will most 

likely need to spread out before beginning their task.  This chapter will discuss the 

disperse primitive, how it was implemented in the Santa Fe simulator, and how it is now 

implemented on the RAPTOR simulator. 

5.1 Disperse Algorithm 
 

Disperse takes a parameter, x, that represents the minimum distance away other 

agents need to be for the given agent so be “dispersed.”  It also needs to consider the cost 

of its actions (transmitting, listening, moving) because in an actual environment, these 

units will be dependent on a battery with limited power. 

Devising a resource efficient disperse algorithm is not as simple as it may seem 

on the surface.  The easiest approach to this problem would rely on each agent querying a 

server for the location of the agents surrounding it, and then deciding where to move 

based on this information.  This would work, but it is inconsistent with the notion of 

swarm operating without a central server of any kind.  So, the algorithm needs to obtain 

any information it needs purely from other agents within its transmission area.  
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5.1.1  Random Dispersion Algorithm 
 

One strategy is to use random motion.  Agent A would move to a random location 

and then transmit a message of a certain strength X.  Agents that heard A’s transmission 

would then respond to A with transmissions declaring that they were within X strength.  

If A received any responses, it would then move to another random location and repeat 

the same process.  This would continue until no agents received any messages.  The 

swarm would then be in a satisfied or dispersed state.   

This random algorithm is neither time efficient nor cost efficient.  With the agents 

moving and transmitting every time step, it, in fact, uses a great deal power.  Another 

problem arises when considering the message passing.  Every agent will send out a 

transmission each time step, so if there are 10 agents within a small area, each agent will 

receive 9 other messages.  What happens now?  Do they all send out 9 responses (90 

more transmissions)? And how do they know which response is for whom?  These are all 

issues that the researcher must resolve in the implementation of any disperse algorithm.  

It would be beneficial to the algorithm if each agent had a specific address and name, but, 

in an ideal swarm the agents would all be anonymous and would gain information only 

by talking to their neighbors. 

The agent could generate a random identification number upon release and then it 

could append that number to the message that it sends out.  This would still allow for 

psuedo anonymity, whereby each node still has no finite name or ID.  Using this method, 

the receiving agent could discount any duplicate responses from the same agent.  The 

random disperse algorithm is neither cost efficient nor time efficient, but it does provide a 

working method for comparisons with other algorithms. 
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5.1.2 Other Examples 

A simple improvement upon the random method is an algorithm which 

remembers the density of surrounding agents in time t-1, and then compares that with the 

current density in time t.  If the new density is greater, it then doubles the distance moved 

and moves in the opposite direction.   

More advanced dispersion algorithms could rely on information passed as data 

within a transmission message.  Agent A could broadcast a message saying “Hello, I’m 

agent A.”  Then agents within earshot could respond with, “Hi, I hear you, and I am agent 

B.”  Or, Agent A could transmit a message saying, “Hello, I am agent A. Who can hear 

this and where are you?”  The other agents could then respond with, “I am agent B and I 

am to your left.”  Agent A could then develop a sense of which agents are where and 

decide the direction to move next based on that knowledge.   

Already the trade-offs are becoming apparent.  The simple hello message uses 

little transmission power but it does not yield as much information and, in turn, will not 

create as quick of an algorithm.  To go even further, Agent A could ask the other agents, 

who they have surrounding them.  This would cost even more power but could lead to a 

more time efficient approach.  Other ideas entail an initial soft broadcast to gain an idea 

of the density of agents nearby, followed by a stronger broadcast to gain an idea of the 

density of agents further away.  

An interesting approach lets each agent record where all the agents surrounding it 

are located and assigns itself a random position.  It then passes this dynamic area grid to 

the other agents, which compile that with their own data and pass it along further.  The 

goal here is for each agent to have a complete area mapping of all the other agents 
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without moving.  Theoretically, they could then all communicate with each other on 

where to move and resolve a movement process that would immediately satisfy all units 

being happily dispersed.  Besides being inherently complex, this method would also 

require significant storage capacity on the physical agents.   

Yet another tactic is to divide the world into distinct areas and then move the 

agents between these areas until each area is happily dispersed.  The next step would then 

require the programmer to create larger areas and repeat the same steps.  The goal being 

to keep dispersing larger and larger regions until the final dispersed state is reached 

[Evans 2000]. 

There are many other methods that can be used to solve the requirements of a 

disperse primitive.  They all have to take into account the same trade-offs between power 

consumed and time to completion.  The next sections will discuss what type of disperse 

method was used in each simulator. 

5.2 Disperse on the Santa Fe Simulator 

The Santa Fe simulator’s disperse primitive starts all agents together in one 

cluster, shown in Figure 4.  It then traverses through the algorithm until all agents are in a 

satisfied state. The happiness of a unit is determined by the density of other units 

surrounding it.  So, if the simulated world is thought of as a grid of squares which are 

either occupied or not, an agent is happy if it has no neighbors in its adjacent eight 

squares.   The simulation ends when all agents are in the happy state shown in Figure 5.   
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Figure 4: Screenshot of initial agent cluster in Santa Fe simulator 

 

 
Figure 5: Screenshot of dispersed agents in the Santa Fe simulator 
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The disperse primitive which used the Santa Fe simulator was an N-Square away 

algorithm.  University of Virginia undergraduate Ryan Persaud originally developed this 

algorithm.  The N-Square away algorithm divides each possible move of an agent into a 

grid of squares.  It then weights each square based on the number of agents that can be 

reached in N moves from the agent’s current position.  The further away the agent is, the 

less it affects the final weighting of the square [Persaud 2001]. 

 
 

2 3 4 
1 Agent 5 
8 7 6 

Figure 6:  N-square away grid [Persaud 2001] 
 
 

 Figure 6 above shows this movement grid.  The agent would then make the 

decision to move based on the lowest valued square.  For example, in Figure 6, the agent 

would choose to move one place to the left and then reassess its status.  An interesting 

side effect of this algorithm occurs when two agents are separated from the rest of the 

group and continue to rotate around each other, thus the process never terminates 

[Persaud 2001]. 

 The algorithms that are implemented on the Santa Fe simulator consist of a 

random movement and a 2-square away behavior.  The user has the ability to determine 

how many random agents and how many 2-square agents they want in the simulation.  

Though there is no actual measurement of power consumption it is assumed that the 

“smart” agents use more power whereas the random agents do not use as much.   
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Percent Simple Agents Percent Smart Agents Time to Completion 
100 0 675 
75 25 550 
25 75 150 
0 100 65 

Figure 7: Table of Sample data from Santa Fe simulator 

 After looking at Figure 7, it is clear to see that the smart agents can achieve a 

dispersed state significantly quicker than the simple agents.  It is a nice feature to be able 

to determine how many of each agent is needed because it allows for some variance in 

the trade-off values of the user.   

This works excellently in practice, however, theoretically, it violates one 

requirement of swarm programming.  To gather the information regarding how many 

agents are in each direction, the program queries the central simulator for location data.   

This required a new algorithm to be developed, either an algorithm to determine 

the area data without querying a central server, or a completely new method.  After 

discussing this task with other swarm researchers, I decided to implement the new swarm 

disperse on the new swarm-capable RAPTOR simulator. 

5.3 Disperse on the RAPTOR Simulator 

Creating a behavior in swarm on RAPTOR was fairly straightforward.  As Figure 

8 shows, I used the existing the system functionality and inherited a new disperse agent 

behavior functionality.  I then inherited a new total disperse agent from both the system 

and behavior sides. 
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BasicAgent

|
+---------+---------+
| |

PowerAgent DisperseAgent
| |
+---------+---------+

|
PowerDisperseAgent 

 
Figure 8: Inheritance sketch [Hogye 2002] 

 
 

In order to obtain the desired effects, I added some functionality and created new 

message types.  First, I needed a way for the simulator to end once all the agents were in 

the dispersed state.  So, I created a new status message that would be queried each time 

step by the observer.  The message, HappinessMessage, is almost identical to 

BatteryLevelMessage.  The HappinessMessage contains one data member called state, 

which is Boolean and simply tells if the specific entity is happy or not.  The observer 

receives this information for each entity in each time step and cycles through the results.  

If it goes three consecutive complete time steps without receiving any unhappy messages 

it exits and the program terminates.  Three was the number assigned here because it 

seemed like a valid number of time steps to wait to ensure a proper dispersion.  This 

number can be easily modified by the user, based on their individual preferences.   

Another problem I encountered was the method taken by the behavior side agent 

to determine happiness.  I programmed the agent to set its happiness to true in the start 

function and then to change the value to false if it received a 

ReceivedTransmissionMessage.  The problem arose once an agent’s happiness would be 

set to false; there was no mechanism to return the value to true.  I decided to implement 

another counter (hcount) that would count the time steps that pass without the agent 
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receiving a message.  If the agent makes it four consecutive time steps, it again becomes 

a happy agent.  The agent will not be moving during these four steps, so it ensures that it 

is in an empty area and not just a random pocket. 

I also needed a way for the agents to send a message asking who could hear them.  

This could be done using a simple TransmitMessage and all recipients of the 

ReceivedTransmissionMessage could just reply with another TransmitMessage.  This 

would cause great confusion, however, as each agent would receive multiple 

ReceivedTransmissionMessages, and would not know which were directed as a reply to 

them or a reply to others, or which were queries that they needed to respond to.  To avoid 

this chaos, I created a new message set, FindMessage and FoundMessage.  These are 

very similar to TransmitMessage and ReceivedTransmissionMessage in that 

FindMessage is sent to the world and the world then determines who can hear the 

message and forwards the FoundMessage to the qualifying agents.  These messages do 

not have a frequency or data components; they are just made up of a power setting.  

Once the new messages and classes were created, the disperse primitives all 

worked under a general framework.  This framework is shown in Figure 9 below.  
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Figure 9: Flow chart of general disperse framework 

 
 
This framework describes the way all of my disperse algorithms work.  In step 1, the 

agent creates and sends a FindMessage to determine who is within the transmit strength 

radius.  It then sends this message to the World. The World converts it into a 

FoundMessage to send to all agents close enough (step 2).  In step 3, an agent receives 

the FoundMessage and creates a TransmitMessage to send to the world as a reply to the 

FoundMessage.  No matter how many FoundMesssages the agent receives it only sends 

one TransmitMessage.  This avoids multiple responses being sent and the agents not 

knowing what was meant for them.  It still works because the agents send the 

TransmitMessage at the same signal strength as the FoundMessage, so everyone who sent 

a FindMessage will hear the same ReceivedTransmissionMessage and can count it as 

their own.  In step 4 the world simply converts the TransmitMessage into a 

ReceivedTransmissionMessage and sends to the agents that are within the radius.  Step 5 
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contains the behavior of each primitive.  In each, the agent counts how many other agents 

have responded and then decides what to do, depending on what type of agent it is, before 

repeating the process.   

 I first implemented a purely random disperse agent.  This agent moves every time 

step regardless of how many messages it received.  If no messages are received it sets its 

happiness state to true.  The simulation ends when all the agents reach a state where they 

are all happy at the same time.  This behavior is shown with the state machine in Figure 

10 below. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 10: Decision chart of a Random Disperse Agent 
 

 After I got the random disperse working as a comparison tool, I implemented an 

N-threshold density algorithm. In this algorithm, the agent decides whether or not it 

moves based on a threshold of messages received.  If it is a 2-threshold implementation, 

the agent will only move if it receives 2 or more messages in that time step.  The 

happiness state is the same in this implementation as in the random version.  The goal is 

to reduce the amount of battery power used in reaching a dispersed state.  Using this 

method, the agents that are in the densest areas use their power to move, while the agents 

 
Msg = FindMessage 

Transmit(msg); 

m_Happiness = false;
Move(); 

m_Happiness = true; 
Move(); If no RecvTranMsgs received 

If RecvTranMsgs received 
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in less dense areas save power and wait for new developments.  The following code is 

what guides the behavior of the N-threshold dispersion algorithm: 

 
void DisperseDAgent::behavior_post_action() 
{ 
    if ((m_msg_count >= m_threshold) && (!m_happiness))  
      m_moving = true;   //If the agent received enough nodes to warrant a  

//move dependant upon the algortithm specified 
  
   if (m_moving) 
  { 
     double x = (((((double) rand()) / RAND_MAX) - 0.5) ); //Generates random direction 
     double y = (((((double) rand()) / RAND_MAX) - 0.5) ); 
 
     move(Position(x,y)); 
  } 
 
  if (hcount >3)  //If agent has gone three time steps without receiving a  
    m_happiness = true; //ReceivedTransmissionMessage set Happiness state to true 
  else 
    hcount++;   //Increment the number of steps gone without recv a msg. 
 
    m_msg_count = 0;    //Reset message counter 
} 

 
 

When picking N, it is dependent on the users views of the trade-offs.  Obviously a 

high N will use the least amount of power, while low values will reach a better dispersed 

state. One problem with this algorithm is that it can sometimes run indefinitely.  For 

example, this happens when a threshold of 2 is chosen and an agent receives one message 

from other agents.  It never moves because one is less than two, yet, it never switches to 

happy because it is continually receiving messages.  Researchers who wish to have the 

swarm relatively spread out without much battery usage and in a short amount of time 

will implement this type of algorithm. 
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It is interesting to note that a modified random algorithm can be produced if you 

set the threshold to 0.  In this algorithm, the agent does not move if it is already happy 

which is the only difference from the purely random method.  This seems like it should 

be one step up from the pure random implementation due to not using as much power.  

The actual results of selected variations of this algorithm will be discussed in depth in the 

results chapter.   

The final step in the creation of a dispersion primitive was to create a readable 

display to keep things interesting.  Mike Hogye wrote a simple program to take a text 

output of a simulation and display it using OpenGL and GLUT.  I used this display 

program to create a simple display of the swarm states of disperse.   

Disperse runs on the RAPTOR simulator without having to use a central server to 

gather area location.  There are numerous other experiments to be tried and developed on 

this simulator now that this bridge has been crossed.  The implementation is 

straightforward enough to easily facilitate new research into this area of Computer 

Science.   
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6 Results 
 
 

Since this is the not only the first time that disperse has been tested in the 

RAPTOR simulator, but also the first time any swarm application has been implemented 

in RAPTOR, these results relied on certain assumptions and research decisions. These 

preliminary results discuss the power and dispersion efficiencies of a variety of different 

dispersion algorithms. 

6.1 Random Algorithm 
 
 The first algorithm that I created and tested was the purely random 

implementation.  This algorithm had its agents move every time step regardless whether 

they were happy or not.  Figure 11 shows how the Random Algorithm responded to the 

strength of the transmission.  Since the state of dispersion depends on how many 

messages the agent can hear, the stronger the transmission the longer it takes the agents to 

become reasonably dispersed. 
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Figure 11: Random Algorithm – Disperse Distance vs Time to Complete 
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Because some algorithms will never reach a completely dispersed state and will continue 

indefinitely, I had to define a reasonable completion time. This was obtained by stopping 

the simulation once the agents were receiving no more than 1 message instead of 0 

messages.  Figure 12 shows the how the same random algorithm responds to an 

increasing number of agents.  As the agents get denser and denser it is inherent that the 

time it takes them to disperse increases significantly. 
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Figure 12: Random Algorithm- Number of agents vs time to completion 

 

6.2 0-Threshold Algorithm 
 

The 0-Threshold algorithm is basically a modification of the random 

implementation. Now, instead of the agents moving every time, if they are happy, they do 

not move. The following figures are the same as above only show how the 0-threshold 

algorithm responded to a higher transmission power and more agents respectively.   
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Figure 13: 0-Threshold Algorithm – Disperse distance vs time to completion 
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Figure 14: 0-Threshold Algorithm- No. of Agents vs Time to Completion 

 

6.3 1-Threshold Algorithm 
 

The 1-threshold algorithm is just one step further into N-threshold family of 

algorithms.  For the purpose of succinctness, this report will only highlight the random, 

0-threshold, and 1-threshold individually.  The other algorithms will be considered in the 
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comparison section.  The following figures show the reaction of the 1-threshold 

algorithm to the transmission strength and the number of agents. 
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Figure 15: 1-Threshold Algorithm – Density distance vs time to completion 
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Figure 16: 1-Threshold Algorithm – No. of agents vs time to completion 
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6.4 Comparison of Algorithms 
 

These algorithms mostly behave similar to the given variable alterations above.  

Figures 17 and 18 show a compilation of the data for all the algorithms.   

 
 

AVERAGE TIME TO COMPLETION 
 

Transmission Strength Random 0-Threshold 1-Threshold 
.01 9 11 11 
.05 9 17 11 
.1 16 22 13 
.2 16 22 13 
.4 25 28 17 
.5 26 32 23 
1 38 48 23 

1.5 38 69 40 
2 39 77 42 
3 92 94 50 
4 193 113 55 
7 286 148 105 

Figure 17: Table of time to completion based on transmission strength 
 

Notice that the higher the threshold gets, the less varying the time becomes.  For 

Example, the 0 and 1-thresholds are not as quick as the random implementation for the 

extremely small strengths and they are not as slow as random for the extremely powerful 

strengths.   
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AVERAGE TIME TO COMPLETION 

Number of Agents Random 0-Threshold 1-Threshold 
100 9 9 10 
200 10 9 10 
300 16 11 10 
400 20 12 11 
500 23 14 11 
600 24 16 13 
750 29 16 15 
1000 43 21 15 

Figure 18: Table of time to completion based on No. of Agents 

 

Figure 18 shows some remarkable results.  The completion time for low number of 

agents is relatively equal because there is not that much time to let the algorithms 

separate themselves.  But, as the numbers get higher, the higher threshold algorithms 

significantly pull away from the lesser ones.  For 750 and 1000 agents, the completion 

time of 0 and 1-threshold algorithms is around 50% faster.  This is probably due to the 

threshold of the behavior, where agents do not move if they are currently in the happy 

state.  This seems to make a significant difference in almost all experimentation.  Aside 

from that, the 1-threshold algorithm when approaching high numbers still performs better 

than the 0-threshold. 

 The next graph (Figure 19) is a complete look at the performance of the 

algorithms.  This data was obtained using a world of size 15 X 15, and a transmission 

strength of 0.1.  I felt these were normal parameters to gain an accurate representation of 

the primitives.  Each primitive was run for 150 time steps using 100 agents, whether it 

finished or not.  The data was taken from the 150th time step.  Each agent reports its 

battery level and these were averaged together and the final value was averaged over 10 

trials per algorithm.  The dispersion state is measured in the average number of messages 
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received in the final time step.  So, if the average is 0, then the swarm had already 

reached complete dispersion. 

Algorithms: Battery Level and Dispersion Level
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Figure 19: Algorithms: Battery Level and Dispersion Level 

 

 There are several interesting results displayed in Figure 19.  The fact that the 0-

threshold algorithm does not have a fully dispersed state is quite interesting.  This was an 

unexpected result and is interesting to look at.  In the code, as soon as an agent receives a 

ReceivedTransmissionMessage the happiness gets set to false.  It then is required to go 

three consecutive time steps without getting another message before the value gets set 

back to true.  The reason for the agents that are not dispersed yet by 150 time steps has to 

be attributed to them being repeatedly stuck in the two time steps where they can receive 

no messages yet still be unhappy. 

 After 150 time steps, the Random primitive and the 0-threshold primitive both 

have run their agents batteries dead.  The interesting thing to note is the trade-off between 
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power and efficiency ceases to be a trade-off at a certain point.  At around the 2-threshold 

algorithm, the battery level starts to level out while the dispersion state gets worse and 

worse.  For example, the only large difference between the 4-threshold disperse and the 

2-threshold disperse is that the final dispersion state is much worse.  That is not a trade-

off at all!   

 These results are just a small chip into the abundance of research that still needs 

to be done in swarm computing.  These do show, however, a good deal of information 

about the general characteristics of the dispersion primitive. 
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7 Conclusion 
 
 

7.1 Summary 
 

This project looked into swarm programming’s building blocks called primitives.  

It specifically performed research on the disperse primitive.  The disperse primitive 

guides a group of individual agents from a clustered state to a dispersed state, where it 

satisfies some constraint d.  In completion, no agents can be within d distance of each 

other.  The key to any swarm primitive is getting it to behave properly without the use of 

a central computer.  Disperse can be implemented in a variety of manners while still 

holding to this constraint.   

The most basic of these approaches is the random disperse.  This method consists 

of agents moving in a random direction every time step until the entire swarm reaches a 

dispersed state.  The only constraint on this algorithm is that there is not another agent in 

the chosen direction.  This project implemented and analyzed a random disperse on the 

RAPTOR simulator. 

Implementing swarm primitives involves many trade-offs.  One important trade-

off in this type of research is the power consumed versus time to completion trade off.  

The random disperse uses a great deal of power, and it is also fairly slow.  This project 

also looked at an N-threshold density primitive, which is based on the notion of 

qualifying trade-offs.  If the user does not mind having a final state with less than a 

perfect dispersal, they can pick how perfect they need it to be, and hopefully gain some 

advantages in battery power.  These algorithms work by specifying a threshold, which is 

the maximum number of messages received by an agent.  Beyond this threshold, the 
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agent will be instructed to move to a new location, but below it, the agent will stay where 

it is.  This, in theory, will allow power to be used by the agents in high-density areas 

while the outlying agents can save some power while they wait to see where the swarm 

moves. 

 The N-threshold algorithms did save significant amounts of battery power when 

compared to the random primitives.  They also reached their individually assigned 

satisfied state slower than the random ones.  The N-threshold algorithms are only useful 

up to a small N.  After a certain N, the battery level will level off while the dispersion 

continually gets worse.   

7.2 Interpretation 

The implementation of the random disperse primitive was crucial in the ability to 

test any of the other primitives.  The N-threshold algorithm performed slightly better than 

expected when compared against the others.  Certainly the 1-threshold version was 

clearly a much better choice than the random implementation in both power consumption 

and efficiency.  Extending the data beyond the 3-threshold algorithms was also effective 

in showing how the battery level exhibits a logarithmic behavior as it approaches an 

horizontal asymptote.  This makes sense when thinking about the number of agents, if the 

experiments were run again with a higher number of agents, it would probably push the N 

of N-threshold to a higher number before leveling off. 

The 0-threshold algorithm is only beneficial to the random implementation when 

there is an extreme value -- either a lot of agents or high broadcasting power.  1-threshold 

seems to be a good, safe choice for a balance of the trade-offs.  These numbers would all 

vary, of course, by altering the environment in which they were tested. 



 42

One of the key results of this project was getting some basic primitives working 

on the RAPTOR simulator.  Now that there is a working framework of swarm 

technologies available on the RAPTOR simulator, it will be easier to do new and better 

research.  Regardless of the actual simulator, it was a significant step in swarm research 

because we entered into a simulation that does not use a central server as a mainstay in 

the primitive.  Having a disperse algorithm that can be manipulated and experimented 

with, while still only utilizing the other agents is a move towards the future, towards 

more realistic simulations and eventually to widespread swarm application usage. 

7.3  Recommendations  

There are many more angles that new research could take on.  Having the ability 

to change variables and to reach different results based on the implementation can lead to 

some great things.  A new research project may be to build a swarm application 

developer, where the user specifies what variables are important to them, and then the 

software automatically generates a swarm primitive, which meets their needs the best.   

Another feature that could go along with the automated personalized primitive 

builder could be the ability to pick and choose how many of what agents would be 

needed.  This would involve some sort of selection algorithm with weights for each 

primitive and a target weight that would try to be met. 

On a more basic note, there is plenty of room for developing more dispersion 

primitives and testing them against the ones developed in this project.  I mentioned a few 

ideas earlier in the paper, and there so many other ways to go about this problem that 

there will always be more research available in finding new algorithms.   
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Optimization is always necessary in any stage of research and development.  

Whether this is to optimize the code or the simulator to handle extraordinarily large node 

counts, each would be helpful to the common goal. 

In particular, it would be interesting to see a new primitive where the agents have 

a limited memory.  They would use this memory to remember the direction they most 

recently moved and the density of agents in that previous location.  Upon arriving in a 

new position, the agent would figure out the density there, and if it was more than where 

the agent came from it would move in the opposite direction it just moved and twice as 

far.  This approach seems that it would be more and more beneficial with the more units 

that it was implemented on. 

Overall, this research suggests numerous more research opportunities.  This 

research has provided a solid foundation for more in-depth and advanced research to be 

done on top of it.  It is an accomplishment to have working swarm primitives using a 

communication algorithm based solely on information from neighboring swarm units.  

This provides another forward step towards more realistic swarm simulations, which will 

lead to a better future of the modern technological world. 

 

 

 

 

 

 



 44

Bibliography 
 
 
 
1. Broch, Josh, David A. Maltz, David B. Johnson, Yih-Chun Hu, and Jorjeta Jetcheva.  

(1998). “A  Performance Comparison of Multi-Hop Wireless Ad Hoc Network 
Routing Protocols.” Proceedings of the Fourth Annual ACM/IEEE International 
Conference on Mobile Computing and Networking (MobiCom 1998), ACM. 
 

2. Hill, J., P. Boundadonna, and D. Culler. (2001) “Active Message Communication for  
Tiny Network Sensors.” Submitted to INFOCOM 2001. 

 
3. Chen, Benjie, Kyle Jamieson, Hari Balakrishnan, and Robert Morris. (2001). “Span:  

An Energy-Efficient Coordination Algorithm for Topology Maintenance in Ad 
Hoc Wireless Networks.” Proceedings of the Seventh Annual ACM/IEEE 
International Conference on Mobile Computing and Networking (MobiCom 
2001). 

 
4. Daniels, Marcus. (1999). “Integrating Simulation Technologies With Swarm.”   

Submitted to the Swarm Programming Group at www.swarm.org.  
 
5. Daniels, Marcus. (2000). “Writing Fast Models in Swarm.” Submitted to the Swarm  

Programming Group at www.swarm.org.  
 
6. Li, Qun, Javed Aslam, and Daniela Rus. (2001). “Online Power-aware Routing in  

Wireless Ad-hoc Networks.” Proceedings of the Seventh Annual ACM/IEEE 
International Conference on Mobile Computing and Networking (MobiCom 
2001). 

 
7. Swarm Development Group. (2000). “Brief Overview of Swarm.” www.swarm.org. 
 
8. Swarm Development Group.  (2001). “Getting Started with Swarm.”  

www.swarm.org. 
 
9. Loizeaux, John David. (2001). “Building the Swarm: A Review of Three Areas  

Necessary for Swarm Computing.”  Senior Thesis, University of Virginia. 
 
10.  Persaud, Ryan K. (2001). “Investigating the Fundementals of Swarm Computing.”  

Senior Thesis, University of Virginia. 
 
11. Tennenhouse, David. (2000). “Embedding the Internet: Proactive Computing”.  

Communications of the ACM, 43, 44-50. 
 
12. Evans, David. (2000). “Programming the Swarm.” 
 
13. Werger, Barry Brian, and Maja Mataric. (2000). “From Insect to Internet: Situated  

http://www.swarm.org/
http://www.swarm.org/
http://www.swarm.org/
http://www.swarm.org/


 45

Control for Networked Robot Teams.” Annals of Mathematics and Artificial 
Intelligence, 31:1-4, pp. 173-198, 2001. 
 

14. Harold Abelson, Don Allen, Daniel Coore, Chris Hanson, George Homsy, Thomas F.  
  Knight, Radhika Nagpal, Erik Rauch, Gerald Jay Sussman and Ron Weiss.  

(2000).  "Amorphous Computing".  Communications of the ACM, Volume 43 , 
Issue 5 2000. 
 

15. Box, Paul.  “Swarm-based assistantships at Utah State.”  paulbox@cc.usu.edu  (22 
Feb. 2002). 
 

16.  Wantanabe, Toshiro. “Hello.” toshiro@urban.tutrp.tut.ac.jp (25 Jan. 2002). 
 

16. Schreiber, Darren. “Swarm in the news -> ‘The sims take on Al Queda’  
dschreib@ucla.edu (3 Nov. 2001). 

 
17. McEachron, Errol. (2002).  “A System for Synthesizing Swarm Applications.”  

Unpublished.  UVA BS Thesis, May 2002. 
 
18. Hogye, Mike. (2002). “Realizing Fine-grained Trade-offs in Swarm Systems.”   

Unpublished.  UVA BS Thesis, May 2002. 
 

19. Koenig, Sven and Yaxin Liu. (2001). “Terrain Coverage with And Robots: A Simulation  
Study” Agents 2001: 600-607. 

 
20. Koenig, Sven, Boleslaw K. Szymanski, Yaxin Liu. (2001). Efficient and inefficient ant  

coverage methods. Annals of Mathematics and Artificial Intelligence 31(1-4): 41-76. 

  

 

 

 

 

 

 

 

 

mailto:paulbox@cc.usu.edu
mailto:toshiro@urban.tutrp.tut.ac.jp
mailto:dschreib@ucla.edu
http://www.informatik.uni-trier.de/~ley/db/conf/agents/agents2001.html#KoenigL01
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Szymanski:Boleslaw_K=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Liu:Yaxin.html
http://www.informatik.uni-trier.de/~ley/db/journals/amai/amai31.html#KoenigSL01


 46

Appendix A  - Disperse On Raptor Code Listings 
 
BasicAgent.h: 
 
#ifndef BASIC_AGENT_H
#define BASIC_AGENT_H

#include "Entity.h"
#include "ReceivedTransmissionMessage.h"
#include "QueryMessage.h"
#include "Position.h"

#include "FoundMessage.h"

class BasicAgent : public Entity
{

public:
BasicAgent(int world_addr, const Gate &world_gate, double sensor_sensitivity);

double get_sensor_sensitivity() const;

protected:
// Behavior.
virtual void behavior_start() = 0;
virtual void behavior_pre_action() = 0;
virtual void behavior_post_action() = 0;
virtual void behavior_stop() = 0;

virtual void behavior_received_transmission(ReceivedTransmissionMessage *msg) = 0;

virtual void behavior_answer_query(int observer_addr, QueryMessage *msg) = 0;

virtual void behavior_found(FoundMessage *msg) = 0;

// Functionality systems.
virtual void systems_start() = 0;
virtual void systems_stop() = 0;

virtual void move(const Position &position) = 0;
virtual void transmit(const char *data, double power, double frequency) = 0;

virtual void find_message(double power)= 0;
virtual void listen() = 0;

virtual bool is_listening() const = 0;
virtual double get_battery_level() const = 0;

virtual double max_move_distance(double cost) const = 0;
virtual double max_transmit_power(double cost, int length, double frequency) const

= 0;
virtual int max_transmit_length(double cost, double power, double frequency) const

= 0;
virtual double max_transmit_frequency(double cost, int length, double power) const

= 0;
virtual int max_listen_time(double cost) const = 0;

virtual double move_cost(double distance) const = 0;
virtual double transmit_cost(int length, double power, double frequency) const =

0;
virtual double listen_cost() const = 0;

virtual void systems_answer_query(int observer_addr, QueryMessage *msg) = 0;

private:
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BasicAgent(const BasicAgent &basic_agent);

void entity_start();
void entity_pre_action();
void entity_post_action();
void entity_stop();

void handle_message(int sender_addr, Message *receive_msg);

double m_sensor_sensitivity;

};

#endif 
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BasicAgent.cpp: 
#include "BasicAgent.h"
#include "BatteryLevelMessage.h"

#include "Debug.h"

BasicAgent::BasicAgent(int world_addr, const Gate &world_gate, double sensor_sensitivity)
: Entity(world_addr, world_gate), m_sensor_sensitivity(sensor_sensitivity)

{ }

double BasicAgent::get_sensor_sensitivity() const
{

return m_sensor_sensitivity;
}

void BasicAgent::entity_start()
{

systems_start();
behavior_start();

}

void BasicAgent::entity_pre_action()
{

behavior_pre_action();
}

void BasicAgent::handle_message(int sender_addr, Message *receive_msg)
{

switch (receive_msg->get_type())
{

case RECEIVED_TRANSMISSION_MSG:

if (is_listening())
{

behavior_received_transmission((ReceivedTransmissionMessage
*) receive_msg);

}
break;

case QUERY_MSG:
systems_answer_query(sender_addr, (QueryMessage *) receive_msg);
behavior_answer_query(sender_addr, (QueryMessage *) receive_msg);
break;

case FOUND_MSG:

behavior_found((FoundMessage *) receive_msg);

break;

default:
fprintf(DEBUG, "BasicAgent::handle_message - WARNING - don't

understand message type %d.\n", receive_msg->get_type());
break;

}
}

void BasicAgent::entity_post_action()
{

behavior_post_action();
}

void BasicAgent::entity_stop()
{

behavior_stop();
systems_stop();

}
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LowPowerAgent.h: 
#ifndef LOW_POWER_AGENT_H
#define LOW_POWER_AGENT_H

#include "BasicAgent.h"

class LowPowerAgent : public virtual BasicAgent
{
public:

LowPowerAgent(int world_addr, const Gate &world_gate, double sensor_sensitivity);

protected:
void systems_start();
void systems_stop();

void move(const Position &position);
void transmit(const char *data, double power, double frequency);

void find_message(double power);
void listen();

bool is_listening() const;
double get_battery_level() const;

double max_move_distance(double cost) const;
double max_transmit_power(double cost, int length, double frequency) const;
int max_transmit_length(double cost, double power, double frequency) const;
double max_transmit_frequency(double cost, int length, double power) const;
int max_listen_time(double cost) const;

double move_cost(double distance) const;
double transmit_cost(int length, double power, double frequency) const;
double listen_cost() const;

void systems_answer_query(int observer_addr, QueryMessage *msg);

private:
LowPowerAgent(const LowPowerAgent &low_power_agent);

double m_battery_level;

int m_listen_time;

const double m_listen_cost; // per unit time
const double m_transmit_cost; // per unit power
const double m_move_cost; // per unit distance

};
#endif
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LowPowerAgent.cpp: 
#include "LowPowerAgent.h"
#include "MoveEntityMessage.h"
#include "TransmitMessage.h"
#include "BatteryLevelMessage.h"
#include "FindMessage.h"
#include <float.h>
#include "debug.h"

LowPowerAgent::LowPowerAgent(int world_addr, const Gate &world_gate, double
sensor_sensitivity)

: BasicAgent(world_addr, world_gate, sensor_sensitivity), m_listen_time(-1),
m_listen_cost(0.005), m_transmit_cost(0.005), m_move_cost(0.005)

{
add_observable_info_type(BATTERY_LEVEL_INFO);

}

void LowPowerAgent::systems_start()
{

m_battery_level = 1.0;
}

void LowPowerAgent::systems_stop()
{

}

void LowPowerAgent::move(const Position &position)
{

double cost = move_cost(position.distance());
if (m_battery_level >= cost)
{

Message *move_msg = new MoveEntityMessage(position);
m_mailbox->send(get_world_handle(), &move_msg, sizeof(move_msg));
m_battery_level -= cost;

}

if (m_battery_level == 0.0)
fprintf(DEBUG, "move bat dead\n");

}

void LowPowerAgent::transmit(const char *data, double power, double frequency)
{

int length = strlen(data);
double cost = transmit_cost(length, power, frequency);

if (m_battery_level < cost)
{

power = max_transmit_power(m_battery_level, length, frequency);
m_battery_level = 0.0;

}
else

{
m_battery_level -= cost;

}

Message *transmit_msg = new TransmitMessage(data, power, frequency);
m_mailbox->send(get_world_handle(), &transmit_msg, sizeof(transmit_msg));

if (m_battery_level == 0.0)
fprintf(DEBUG, "Transmit bat dead\n");

}
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void LowPowerAgent::find_message(double power)
{

Message *find_msg = new FindMessage(power);
m_mailbox->send(get_world_handle(), &find_msg, sizeof(find_msg));

}

void LowPowerAgent::listen()
{

double cost = listen_cost();
if (m_battery_level >= cost)
{

m_listen_time = m_mailbox->getTime();
m_battery_level -= cost;

}

if (m_battery_level == 0.0)
fprintf(DEBUG, "Listen bat dead\n");

}

bool LowPowerAgent::is_listening() const
{

return (m_listen_time == m_mailbox->getTime());
}

double LowPowerAgent::get_battery_level() const
{

return m_battery_level;
}

double LowPowerAgent::max_move_distance(double cost) const
{

return (cost / m_move_cost);
}

double LowPowerAgent::max_transmit_power(double cost, int length, double frequency) const
{

return (cost / (m_transmit_cost * length));
}

int LowPowerAgent::max_transmit_length(double cost, double power, double frequency) const
{

return ((int) (cost / (m_transmit_cost * power)));
}

double LowPowerAgent::max_transmit_frequency(double cost, int length, double power) const
{

return DBL_MAX;
}

int LowPowerAgent::max_listen_time(double cost) const
{

return ((int) (cost / m_listen_cost));
}
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double LowPowerAgent::move_cost(double distance) const
{

return (m_move_cost * distance);
}

double LowPowerAgent::transmit_cost(int length, double power, double frequency) const
{

return (m_transmit_cost * length * power);
}

double LowPowerAgent::listen_cost() const
{

return (m_listen_cost);
}

void LowPowerAgent::systems_answer_query(int observer_addr, QueryMessage *msg)
{

if (msg->get_info_types() & BATTERY_LEVEL_INFO)
{

Message *battery_level_msg = new BatteryLevelMessage(m_battery_level);
m_mailbox->send(m_mailbox->getHandle(observer_addr), &battery_level_msg,

sizeof(battery_level_msg));
}

}
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DisperseDAgent.h: 
#ifndef DISPERSE_D_AGENT_H
#define DISPERSE_D_AGENT_H

#include "BasicAgent.h"
#include "stdio.h"

class DisperseDAgent : public virtual BasicAgent
{

public:
DisperseDAgent(int world_addr, const Gate &world_gate, double sensor_sensitivity);

protected:

void behavior_start();
void behavior_pre_action();
void behavior_post_action();
void behavior_stop();

void behavior_received_transmission(ReceivedTransmissionMessage *msg);
void behavior_found(FoundMessage *msg);
void behavior_answer_query(int observer_addr, QueryMessage *msg);

private:

DisperseDAgent(const DisperseDAgent &disperse_agent);

const unsigned int m_random_seed;
bool m_reached_by_broadcast;
bool m_happiness;
bool found_gotten;
bool moving;
int hcount;
int msg_count;
FILE *m_out;

};
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DisperseDAgent.cpp: 
#include "DisperseDAgent.h"
#include "ReachedByBroadcastMessage.h"
#include "HappinessMessage.h"
#include <string.h>
#include "Debug.h"

DisperseDAgent::DisperseDAgent(int world_addr, const Gate &world_gate, double
sensor_sensitivity)

: BasicAgent(world_addr, world_gate, sensor_sensitivity), m_random_seed(rand()),
m_out(stdout)
{

add_observable_info_type(REACHED_BY_BROADCAST_INFO);
add_observable_info_type(HAPPINESS_INFO);

}

void DisperseDAgent::behavior_start()
{

m_reached_by_broadcast = false;
m_happiness = true;
hcount = 0;
msg_count = 0;
srand(m_random_seed);

}

void DisperseDAgent::behavior_pre_action()
{

found_gotten = false;
moving = false;
listen();
msg_count = 0;
find_message(0.01);

}

void DisperseDAgent::behavior_received_transmission(ReceivedTransmissionMessage *msg)
{

msg_count++;
hcount = 0;

m_happiness = false;

}

void DisperseDAgent::behavior_found(FoundMessage *msg)
{

if (!found_gotten)
{

transmit("", 0.01, 1.0);
found_gotten = true;

}
}

void DisperseDAgent::behavior_answer_query(int observer_addr, QueryMessage *msg)
{

if (msg->get_info_types() & REACHED_BY_BROADCAST_INFO)
{

Message *reached_by_broadcast_msg = new
ReachedByBroadcastMessage(m_reached_by_broadcast);

m_mailbox->send(m_mailbox->getHandle(observer_addr),
&reached_by_broadcast_msg, sizeof(reached_by_broadcast_msg));
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}

if (msg->get_info_types() & HAPPINESS_INFO)
{

Message *happiness_msg = new HappinessMessage(m_happiness);
m_mailbox->send(m_mailbox->getHandle(observer_addr), &happiness_msg,

sizeof(happiness_msg));
}

}

void DisperseDAgent::behavior_post_action()
{

if ((msg_count >= 1))
moving = true;

if (moving)
{

double x = (((((double) rand()) / RAND_MAX) - 0.5) *15);
double y = (((((double) rand()) / RAND_MAX) - 0.5) *15);

move(Position(x,y));
}

if (hcount >3)
m_happiness = true;

else
hcount++;

msg_count = 0;

}
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LowPowerDisperseDAgent.h 
#ifndef LOW_POWER_DISPERSE_AGENT_H
#define LOW_POWER_DISPERSE_AGENT_H

#include "LowPowerAgent.h"
#include "DisperseAgent.h"

class LowPowerDisperseAgent : public LowPowerAgent, public DisperseAgent
{

public:
LowPowerDisperseAgent(int world_addr, const Gate &world_gate, double

sensor_sensitivity);

};

#endif

LowPowerDisperseDAgent.cpp: 
#include "LowPowerDisperseDAgent.h"

LowPowerDisperseDAgent::LowPowerDisperseDAgent(int world_addr, const Gate &world_gate,

double sensor_sensitivity)
: BasicAgent(world_addr, world_gate, sensor_sensitivity),
LowPowerAgent(world_addr, world_gate, sensor_sensitivity),
DisperseDAgent(world_addr, world_gate, sensor_sensitivity)

{ }
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BasicObserver.h: 
#ifndef BASIC_OBSERVER_H
#define BASIC_OBSERVER_H

#include "Observer.h"
#include "BasicEntitySnapshot.h"
#include "EntityPositionMessage.h"
#include "ReachedByBroadcastMessage.h"
#include "BatteryLevelMessage.h"
#include "ObservableDescription.h"
#include "HappinessMessage.h"

#include <stdio.h>

class BasicObserver : public Observer
{

public:
BasicObserver(int num_entities);
virtual ~BasicObserver();

void register_world(int addr, ObservableInfoType info_types);
void register_entity(int addr, ObservableInfoType info_types);

private:
BasicObserver(const BasicObserver &observer);

void observer_start();
void observer_pre_action();
void observer_post_action();
void observer_stop();

void handle_message(int sender_addr, Message *receive_msg);

void observe_entity_position(EntityPositionMessage *msg);
void observe_reached_by_broadcast(int entity_addr, ReachedByBroadcastMessage

*msg);
void observe_battery_level(int entity_addr, BatteryLevelMessage *msg);
void observe_happiness(int entity_addr, HappinessMessage *msg);

void sort_snapshots();
BasicEntitySnapshot *get_snapshot(int addr);

const int m_num_entities;
int m_entities_registered;
bool m_world_registered;
ObservableDescription m_world_description;
ObservableDescription *m_entity_descriptions;
BasicEntitySnapshot *m_entity_snapshots;
FILE *m_out;
int m_kill_count;
int timer;

};

#endif
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BasicObserver.cpp: 
 
#include "BasicObserver.h"
#include "QueryMessage.h"
#include "BasicObserverCodes.h"

#include "Debug.h"

BasicObserver::BasicObserver(int num_entities)
: Observer(), m_num_entities(num_entities), m_entities_registered(0),
m_world_registered(false), m_world_description(), m_entity_descriptions(NULL),
m_entity_snapshots(NULL), m_out(stdout)

{
m_entity_descriptions = new ObservableDescription[m_num_entities];
m_entity_snapshots = new BasicEntitySnapshot[m_num_entities];

}

BasicObserver::~BasicObserver()
{

delete []m_entity_descriptions;
delete []m_entity_snapshots;

}

void BasicObserver::register_world(int addr, ObservableInfoType info_types)
{

if (m_world_registered)
{

fail("BasicObserver::register_world - ERROR - can't register any more
worlds.\n");

return;
}

m_world_description = ObservableDescription(addr, info_types);
m_world_registered = true;

}

void BasicObserver::register_entity(int addr, ObservableInfoType info_types)
{

if (m_entities_registered >= m_num_entities)
{

fail("BasicObserver::register_entity - ERROR - can't register any more
entities.\n");

return;
}

m_entity_descriptions[m_entities_registered] = ObservableDescription(addr,
info_types);

m_entity_snapshots[m_entities_registered] = BasicEntitySnapshot(addr);
m_entities_registered++;

}

void BasicObserver::observer_start()
{

if ((m_entities_registered != m_num_entities) || (!m_world_registered))
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{
fail("BasicObserver::start - ERROR - not all observables registered.\n");
return;

}
m_kill_count = 3;

sort_snapshots();
timer = 0;

}

void BasicObserver::observer_pre_action()
{

ObservableInfoType query_types;

query_types = m_world_description.get_info_types() & ENTITY_POSITIONS_INFO;
if (query_types != 0)
{

Message *query_world_msg = new QueryMessage(query_types);
m_mailbox->send(m_mailbox->getHandle(m_world_description.get_addr()),

&query_world_msg, sizeof(query_world_msg));
}

for (int i = 0; i < m_num_entities; i++)
{

ObservableDescription &entity = m_entity_descriptions[i];
query_types = entity.get_info_types() & (REACHED_BY_BROADCAST_INFO |

BATTERY_LEVEL_INFO | HAPPINESS_INFO);
if (query_types != 0)
{

Message *query_entity_msg = new QueryMessage(query_types);
m_mailbox->send(m_mailbox->getHandle(entity.get_addr()),

&query_entity_msg, sizeof(query_entity_msg));
}

}
}

void BasicObserver::handle_message(int sender_addr, Message *receive_msg)
{

switch (receive_msg->get_type())
{

case ENTITY_POSITION_MSG:
observe_entity_position((EntityPositionMessage *) receive_msg);
break;

case REACHED_BY_BROADCAST_MSG:
observe_reached_by_broadcast(sender_addr,

(ReachedByBroadcastMessage *) receive_msg);
break;

case BATTERY_LEVEL_MSG:
observe_battery_level(sender_addr, (BatteryLevelMessage *)

receive_msg);
break;

case HAPPINESS_MSG:
observe_happiness(sender_addr, (HappinessMessage *) receive_msg);
break;

default:
fprintf(DEBUG, "BasicObserver::handle_message - WARNING - don't

understand message type %d.\n", receive_msg->get_type());
break;

}
}

void BasicObserver::observe_entity_position(EntityPositionMessage *msg)
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{
BasicEntitySnapshot *entity = get_snapshot(msg->get_addr());
entity->set_position(msg->get_position());

}

void BasicObserver::observe_reached_by_broadcast(int entity_addr,
ReachedByBroadcastMessage *msg)
{

BasicEntitySnapshot *entity = get_snapshot(entity_addr);
entity->set_reached(msg->get_reached());

}

void BasicObserver::observe_battery_level(int entity_addr, BatteryLevelMessage *msg)
{

BasicEntitySnapshot *entity = get_snapshot(entity_addr);
entity->set_battery_level(msg->get_level());

}

void BasicObserver::observe_happiness(int entity_addr, HappinessMessage *msg)
{

BasicEntitySnapshot *entity = get_snapshot(entity_addr);
entity->set_state(msg->get_state());
if (!msg->get_state())
{
m_kill_count = 3;

}
}

void BasicObserver::observer_post_action()
{

fprintf(DEBUG, "time %d\n", m_mailbox->getTime());

fprintf(m_out, "%s %d\n", TIME_CODE, m_mailbox->getTime());
for (int j = 0; j < m_num_entities; j++)
{

BasicEntitySnapshot &entity = m_entity_snapshots[j];
fprintf(m_out, "%s\n", ENTITY_CODE);
fprintf(m_out, "%s %s\n", ENTITY_POSITION_CODE,

entity.get_position().to_string());
fprintf(m_out, "%s %c\n", REACHED_BY_BROADCAST_CODE, entity.get_reached()

? 't' : 'f');
fprintf(m_out, "%lf\n", entity.get_battery_level());

}

if (m_kill_count == 0)
{

fprintf(DEBUG, "And we are out\n");
exit(0);

}
m_kill_count--;

/*if (timer > 149)
{

fprintf(DEBUG, "timed out\n");
exit(0);

}
timer++;*/

}

void BasicObserver::observer_stop()
{
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}

///////////////////////////////////////////////////////////////
// Grunt Work /////////////////////////////////////////////////
///////////////////////////////////////////////////////////////

void BasicObserver::sort_snapshots()
{

// This only gets called once, so simple code
// is probably more important than speed.

for (int i = 0; i < (m_num_entities - 1); i++)
{

int small_index = i;
int small_addr = m_entity_snapshots[small_index].get_addr();

for (int j = (i + 1); j < m_num_entities; j++)
{

int j_addr = m_entity_snapshots[j].get_addr();
if (j_addr < small_addr)
{

small_addr = j_addr;
small_index = j;

}
}

BasicEntitySnapshot swap = m_entity_snapshots[small_index];
m_entity_snapshots[small_index] = m_entity_snapshots[i];
m_entity_snapshots[i] = swap;

}

}

BasicEntitySnapshot *BasicObserver::get_snapshot(int addr)
{

int left = 0;
BasicEntitySnapshot *left_snapshot = &(m_entity_snapshots[left]);
int left_addr = left_snapshot->get_addr();

int right = (m_num_entities - 1);
BasicEntitySnapshot *right_snapshot = &(m_entity_snapshots[right]);
int right_addr = right_snapshot->get_addr();

if (left_addr == addr)
return left_snapshot;

if (right_addr == addr)
return right_snapshot;

if ((left_addr > addr) || (right_addr < addr))
{

fail("BasicEntitySnapshot::get_snapshot - ERROR - entity address not
found.\n");

return NULL;
}

int middle = right >> 1;
BasicEntitySnapshot *middle_snapshot = &(m_entity_snapshots[middle]);
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int middle_addr = middle_snapshot->get_addr();

do
{

if (middle_addr == addr)
return middle_snapshot;

if (middle_addr > addr)
{

right = middle - 1;
right_snapshot = &(m_entity_snapshots[right]);
right_addr = right_snapshot->get_addr();
if (right_addr == addr)

return right_snapshot;
}
else
{

left = middle + 1;
left_snapshot = &(m_entity_snapshots[left]);
left_addr = left_snapshot->get_addr();
if (left_addr == addr)

return left_snapshot;
}

middle = (right + left) >> 1;
middle_snapshot = &(m_entity_snapshots[middle]);
middle_addr = middle_snapshot->get_addr();

} while (left < middle);

fail("BasicEntitySnapshot::get_snapshot - ERROR - entity address not found.\n");
return NULL;

}
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Main.cpp: 
#include "Model.h"
#include "BasicObserver.h"
#include "BasicWorld.h"
#include "DisperseAgent.h"
#include "LowPowerDisperseAgent.h"
#include "DisperseDAgent.h"
#include "LowPowerDisperseDAgent.h"
#include "Debug.h"

void vmp_func(int my_addr, Mailbox mailbox, void *data)
{

VMP *vmp = (VMP *) data;
vmp->set_mailbox(&mailbox);
vmp->run();
vmp->set_mailbox(NULL);

}

int main(int argc, char *argv[])
{

unsigned int random_seed = (argc > 2) ? atoi(argv[2]) : 62202;
srand(random_seed);

int num_entities = (argc > 1) ? atoi(argv[1]) : 5;
int num_observers = 1;
int num_worlds = 1;
int num_vmps = num_entities + num_observers + num_worlds;

VMP **vmps = new VMP *[num_vmps];
Model model;

int addr = 0;
int observer_addr = (addr++);
Observer *observer = new BasicObserver(num_entities);
const Gate &observer_gate = observer->get_gate();
model.registerNode(observer_addr, vmp_func, observer);
vmps[observer_addr] = observer;

int world_addr = (addr++);
BasicWorld *world = new BasicWorld(observer_gate, num_entities, 15.0, 15.0);
const Gate &world_gate = world->get_gate();
model.registerNode(world_addr, vmp_func, world);
observer->register_world(world_addr, world->get_observable_info_types());
vmps[world_addr] = world;

fprintf(DEBUG, "creating agents ...\n");

while (addr < num_vmps)
{

int agent_addr = (addr++);
BasicAgent *agent = new LowPowerDisperseDAgent(world_addr, world_gate,

1.0);
model.registerNode(agent_addr, vmp_func, agent);
observer->register_entity(agent_addr, agent->get_observable_info_types());
world->register_entity(agent_addr, agent->get_sensor_sensitivity());
vmps[agent_addr] = agent;

}

fprintf(DEBUG, "starting model ...\n");
model.start();

for (int j = 0; j < num_vmps; j++)
{

delete vmps[j];
}
delete []vmps;
return 0;

}
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