
 1

Frontispiece

 2

A Database-backed Personal Information System for Automatic Creation of
Home and Summary Web Pages

A Thesis
In TCC 402

Presented to

The Faculty of the

School of Engineering and Applied Science
University of Virginia

In Partial Fulfillment

of the Requirements for the Degree

Bachelor of Science in Computer Science

by

Felipe Huici
March 30th, 2001

On my honor as a student, on this assignment I have neither given nor received
unauthorized aid as defined by the Honor Guidelines for Papers in TCC Courses.

Approved __ (Technical Advisor)
 David Evans (Signature)

Approved __ (TCC Advisor)
 Peter Norton (Signature)

 3

Table of Contents

Frontispiece 1

Title Page 2

Table of Contents 3

Glossary of Terms 5

Abstract 6

Chapter 1 – Sharing Personal Information Through Home Pages 7

 1.1 Review of Relevant Literature 7

 1.2 Justification and Objectives 9

 1.3 Solution 10

 1.4 Possible Complications 11

1.5 Overview of Technical Report 12

Chapter 2 – System Overview 13

 2.1 Database and Scripting Languages 13

 2.2 Explanation of Overall Design 14

Chapter 3 – Database Design 17

 3.1 Tables, Unique Keys 17

 3.2 Users 19

Chapter 4 – System Input 21

4.1 Recognized Fields 21

4.2 Reading the Information 22

4.3 Adjusting Field Values 24

 4

4.4 Input to Database 26

Chapter 5 – System Output 27

 5.1 Search Engine 27

5.2 Home Page 29

 5.3 Summary Page 31

Chapter 6 – Analysis 34

 6.1 Fulfillment of Objectives 34

 6.2 Correctness of Information Display in Home Pages 35

 6.3 Search Engine Correctness and 37

 6.4 Possible Extensions to the Project 37

Works Cited 39

Bibliography 40

 5

Glossary of Terms

.plan file: Text file containing a student’s personal information.

Cronjob: A particular task within a crontab file.

Crontab File: A task scheduler in the form of a text file that allows programs to be run
automatically at regular intervals.

HTML: Hypertext Markup Language, the authoring language used to create documents
on the World Wide Web.

JavaScript: A scripting language developed by Netscape to enable Web authors to
design interactive sites

MySQL: A relational database management system.

Perl: A general-purpose programming language.

PHP: A language the goal of which is to allow Web developers to write dynamically
generated pages quickly.

Script: An executable file containing a series of commands; a program.

SQL: Structured Query Language, allows users to access data in relational database
management systems.

UNIX shell: A command language interpreter, the primary purpose of which is to
translate command lines typed at a terminal into system actions.

URL: Universal Resource Locator, the global address of documents and other resources
on the World Wide Web.

 6

Abstract

 Like most academic communities, Computer Science graduate students at the

University of Virginia need to share personal information. Unfortunately, until recently

there was no simple or quick way of doing this. A student could provide a text file in his

or her home directory, but only users with accounts to the Computer Science server could

view it; alternatively, a student could create a home page, but this was a very time-

consuming. To solve this, I have implemented a system that reduces effort and time and

offers a simple means of accessing the information. Using shell scripts, Perl, PHP, and

MySQL, the system collects the information from students’ text files and deposits it in a

database. Scripts then allow anyone with access to the Internet to view automatically

generated home pages, and to search and summarize the information in them. I

concluded that a system based on database-backed home pages saves time, allowing a

user to have a home page up in literally minutes, and provides a wide-reaching medium

for information sharing.

 7

Chapter 1: Sharing Personal Information Through Home Pages

Home pages are a wonderful communications tool; they can concisely display a

portrait of their creators, and reach anyone with access to the Internet. Yet home page

creation is cumbersome, and Graduate students in the Computer Science Department at

the University of Virginia currently have to cope with the tedious task of creating their

home pages. Indeed, a visit to the department’s web page reveals that some students do

not even bother to create a home page. To make matters worse, finding information

about an individual without one is cumbersome. A student must own an account on the

Computer Science server, somehow find the target student’s home directory, and view a

file (usually called .plan) containing that information. Further, there is no simple way of

searching or summarizing the information in these files: If I wanted to find the names of

all students who have a certain professor as their advisor, or wanted to count the number

of female students in the department, I would have to manually sift through all home

directories. My thesis provides a solution to these problems through database-backed

home pages.

1.1 Review of Relevant Literature

 The creation of useful and efficient database-backed home pages has required the

merging of several technologies and several years. Fortunately, these years have not

been spent in vain, and today a simple site of this type can be set up with moderate effort,

providing the powerful combination of abundant information and easy access.

 8

The Internet makes this type of site feasible. The architecture for the Internet

developed from the ARPANET, an experimental packet-switched network funded by the

Advanced Research Projects Agency (ARPA). This preliminary network along with its

two main protocols, TCP (Transmission Control Protocol) and IP (Internet Protocol),

have become the Internet. Its extensive reach not only makes database-backed home

pages possible, but also turns them into powerful avenues for gathering information.

Certainly this type of system could not function without an operating system, and

one of the oldest is UNIX. Ken Thompson and Patrick Wood originally developed the

UNIX operating system in the late 1960s. Their primary goals included the construction

of an environment that permitted easy program development, and the creation of a small,

easily maintainable, and memory-efficient operating system. But perhaps their greatest

achievement was the development of a version of UNIX that could be ported

(transferred) to different computer systems. This flexibility ended the previous routine of

having to learn a unique operating system for each computer system, and, consequently,

UNIX grew popular. The Computer Science department at the University of Virginia has

many systems running UNIX, making it the operating system of choice for development.

 The system lacks one last ingredient: the database. This field has seen great

changes with the advent of relatively inexpensive database software. Historically the cost

of databases was often prohibitive, mostly because of the hardware needed to run them

with acceptable performance. Large and expensive software such as Oracle still exist,

but as a result of the Open Source movement a few cheap options have emerged,

including MySQL. Michael Widenius began the creation of MySQL with the

development of the UNIREG database tool for the Swedish company TcX in 1979.

 9

Dissatisfied with the existing technology, TcX and Widenius started working on a new

project, and, as a result, MySQL 3.11.1 was released in 1996 for the Linux and Solaris

platforms.

 Connecting the web browser to the database and vice versa requires programming

and scripting languages. In 1987 Larry Wall created a programming language, Perl, that

adeptly brings databases and web sites together. Pierce explains that “Perl is used in so

many places because Perl is what’s known as a glue language. A glue language is used

to bind things together.” A scripting language with similar capabilities but a shorter

lifetime is PHP (Personal Home Page Tools). Rasmus Lerdorf, its creator, initially

created a number of tools along with a parsing engine. His efforts resulted in the release

of PHP / FI. By 1997, more than 50,000 web sites were using this language for a wide

range of applications, including database interaction and the display of dynamic content.

Thus, PHP and Perl, along with a web server and HTML, are the last elements needed to

implement a system for database-backed home pages.

1.2 Justification and Objectives

Computer Science students at the University of Virginia need to share personal

information with each other, and there is no simple way to achieve this. Thus, there is a

pressing need for quick creation of home pages, a way to search them, and a way to

summarize the information in them. Students should be able to create a home page in the

time it takes to fill out a text file with their personal information. They should have a

home page in minutes.

 10

Students should also be able to search the information on these pages quickly.

For instance, a student should be able to look for peers that who in his or her office area,

or peers from India who are 24 years of age. This interface should be accessible and easy

to use.

Further, students should be able to view summaries of the information contained

in the home pages: How many people are 24 years of age? How many are from India?

How many have a particular professor as their advisor?

1.3 Solution

 A student begins creating his page by filling a text file called .plan with his

personal information. The format rules are, in general, simple: for each line, write the

name of the field, a colon, and the value for that field. For instance, if a student is 22

years old, he would add the following line to his or her .plan file:

Age: 22

Notice that this line contains a space between the colon and the number; in fact, users can

type each line in many different ways. I have designed the system to tolerate these

discrepancies. The system requires, however, that the field name (the text to the left of

the colon) match a predetermined list that will be distributed to all users.

 Once the student types this file and saves it, his or her part is done. The system

then takes care of recognizing that the file has been changed, and calls a script to enter

this information into the database. If the file already existed but the student made

changes to it, the system will update the information. Next, if the student wishes to view

his home page, he can do so by accessing a web site using Internet Explorer or Netscape,

 11

entering his UVA id, and hitting enter. A PHP script will then display his newly created

home page. Thus, a user could have a home page up and running in one or two minutes.

 Searching is also simple. A student would go to the same address and type his

query into the appropriate fields. For example, if I wanted to form a research group in

the field of programming languages, I could type “programming languages” in the

research text field of the web page. A PHP script will output all students with similar

interests, with links to their home pages. Hitting enter without filling any text fields will

cause the script to display all entries in the database.

Finally, to view a summary page, users go to the same address, select the

summary, and another PHP script will display the results.

1.4 Possible Complications

 The biggest barrier consisted of implementing a tolerant system. Since text files

are loosely formatted, I had to create a system capable of distinguishing between data and

extraneous characters like leading spaces and tabs. Further, students might write the

same field name in different ways; e-mail might be written as both “e-mail” and “email.”

The system had to be able to recognize these two forms. Even field values such as dates

can be entered in different formats, so I had to ensure that all forms were recognized.

 It remains to be seen if the benefits of the system are enough to convince students

to take the time to fill out their personal information files. Thankfully, many students

already have done this, which should encourage others to follow suit.

 Some students may feel uncomfortable about having their personal information

publicly available on the Internet and, as a result, may be hesitant to use this system. I

 12

will address this concern by sending a privacy statement to all users assuring them that

their information will only be shown in personal home pages, searches, and summary

pages. Those students who feel that this measure is not enough can refrain from using

the system by removing any personal information from their .plan files. Alternatively, if

a student wishes to keep the information in the file but does not wish that information to

be available on the Internet, I can manually erase their home directory from the system so

that the system will never process the file again.

1.5 Overview of Technical Report

 In the body I begin by providing a comprehensive description of the design, the

rationale for design decisions, and a diagram of the overall design to clarify the

discussion. I cover the design of the database, the design of the shell and Perl scripts in

charge of input, and the design of the PHP scripts in charge of output to web pages.

 The last chapter contains my conclusions, including system correctness, an

analysis of the extent to which the solution solves the stated problem, and a section that

discusses possible extensions to this project.

 13

Chapter 2: System Overview

This chapter lays the basic groundwork so that the reader can easily understand

the chapters that follow it. It is a bird’s eye view of the design, discussing the database

and scripting languages used, the pieces that make up the system, and how these pieces

fit together.

2.1 Database and Scripting Languages

 I chose MySQL for several reasons. First, it is quick. In fact, its developers claim

that it is about the fastest database on the market. The MySQL benchmark page

(http://www.mysql.com/benchmark.html) gives strong evidence supporting this claim:

MySQL beats other databases like PostgreSQL, Informix, Access 2000, and Oracle in

almost every category tested.

In addition, the MySQL server can be used freely for non-Windows platforms, a

clear advantage over products like Oracle. MySQL also has a variety of programming

interfaces for languages such as C, Perl, Java, and PHP, and its distribution is open: the

program and its source code can be downloaded using a web browser. Finally, extensive

technical support exists for MySQL, including a comprehensive reference manual,

technical support contracts from the developers, and an active mailing list.

I selected Perl because of its pattern-matching capabilities. Recognizing patterns

in text is fundamental to processing the students’ personal information files. Further, Perl

interacts easily with MySQL and is open source. I chose PHP because it can access

 14

MySQL to generate dynamic content and create a web interface for searching elements in

the database.

2.2 Explanation of Overall Design

 The following figure gives a graphical description of all the elements of the

system and how they fit together:

MySQL

.plan

Home
Page

Summary
Page

Search
Page

Cron
Job 2

Legend

: script

: database

: html

: text file

Crontab
file

paths.sh
Cron
Job 1

planvalidate.s

processplan.s

homepage.php

summary.php

search.php

paths.txt

 15

I will begin explaining the diagram from the right side, the input, and work towards the

left side, the output. The process begins with the crontab file. A crontab file is a task

scheduler in the form of a text file; it allows programs to be run automatically at regular

intervals. In this case, the file consists of two lines, or cronjobs, each calling separate

shell scripts daily (note that shell scripts have a “sh” extension, Perl scripts a “pl”

extension, and PHP scripts a “php3” extension). The script paths.sh uses the commands

ypcat group and ypcat passwd to obtain the paths to students’ directories. To

clarify, here is sample output from the first command:

csgrad:*:26:virt,cld9h,jdh8d
ugrad:*:35:

This sample says that Computer Science Graduate students have a code number of 26.

The script uses this number to distinguish between paths of these students from paths of

other users with accounts on the Computer Science server. Output from the second

command follows:

71658:26:Yannick Loitiere:/uf6/ycl2r:/usr/cs/bin/bash
68798:26:Vinod Balakrishnan:/af4/vkb3q:/usr/cs/bin/bash
54038:111:Fritz Knabe:/af1/knabe:/usr/cs/bin/bash

Since the first two lines contain the code 26, the script writes the paths /uf6/ycl2r and

/af4/vkb3q to the file paths.txt.

 Next, planvalidate.sh verifies that the path and .plan files exist and are readable

for each path in paths.txt. If that is the case, the script checks that the file has been

modified in the last 24 hours by using the stat command:

 16

: /uf2/fh4u ; stat .plan
File: ".plan"

Access: Wed Mar 21 11:47:44 2001 (00000d 00h 00m 26s)
Modify: Wed Mar 21 11:48:05 2001 (00000d 00h 00m 05s)
Change: Wed Mar 21 11:48:05 2001 (00000d 00h 00m 05s)

In this example, the .plan file has been changed recently, so planvalidate.sh would call

the processplan.pl script with the path /uf2/fh4u as the parameter.

 The Perl script processplan.pl is then responsible for processing the .plan file and

inserting the data into MySQL. I will defer further discussion of this step until chapter 4.

Once the information is in the database, it is PHP’s job to output it. The system contains

three scripts: homepage.php3 displays a student’s homepage, search.php3 displays the

results of a search, and summary.php3 displays a summary page. Users reach these

scripts through the graphical interface provided by the web page index.html. I defer

further discussion of system output until chapter 5.

 17

Chapter 3: Database Design

This chapter discusses the tables in the MySQL database, how they are related,

and what the unique keys are. I created the database using the Perl script createdb.pl.

The last section of the chapter talks about user accounts, and why two types of accounts

are needed.

3.1 Tables, Unique Keys

The system recognizes the following fields as valid:

office date_of_birth
advisor picture
fax extra_html
address major
sex current_classes
age last_name
nationality first_name
quote e-mail
research phone
hobbies

From these fields I decided to create three tables: main, phones, and emails, shown on the

next page. The phones and emails tables exist because their respective fields exhibit a

one-to-many relationship: one student can have many emails or phone numbers. Though

there are other fields, such as current classes, that could have warranted their own tables,

I decided to keep them in table main. This was done to make the database more efficient

and because it is not as important to keep these fields separate when the system displays

summary pages and performs searches.

 18

 The unique key for table main is id, which is auto-increment and cannot,

therefore, be null. I use precisely this field as a reference into the phone and email tables.

For instance, if I wanted to find the phone number of a student, I would search his or her

Table phone

Field Type Null
id int(10) No
first_name varchar(20) No
last_name varchar(20) No
office varchar(30) Yes
advisor varchar(20) Yes
fax varchar(20) Yes
address varchar(200) Yes
sex enum('M','F') Yes
age int(10) Yes
nationality varchar(20) Yes
research varchar(200) Yes
hobbies varchar(200) Yes
date_of_birth date Yes
picture varchar(50) Yes
extra_HTML varchar(50) Yes
major varchar(40) Yes
current_classes varchar(75) Yes
quote varchar(255) Yes
uvaid varchar(15) No

Table phone

Field Type Null
id int(10) No
phone_txt varchar(20) No
description_txt varchar(15) Yes

Table email

Field Type Null
id int(10) No
email_txt varchar(30) No
description_txt varchar(15) Yes

entry in table main, retrieve the id number, and read the phone number of the entry or

entries whose id matched the id of that student. For the email and phone tables, the

unique key cannot be the id, since several entries with the same id can exist in them.

Consequently, the unique keys are the pairs (id, phone_txt) and (id, email_txt), meaning

that a phone number and an email of a particular student are unique.

 19

 Note that the tables contain several fields that cannot be null. First, table main

does not allow a student’s name to be empty; it would not make much sense to accept a

personal information file that lacks the owner’s name. Clearly primary keys have to be

filled, resulting in the fields id, phone_txt, and email_txt being not null. Further, the

uvaid is not null. I obtain this field from the paths.txt file discussed in chapter 2, and use

it to decide whether a student already has an entry in the database (and needs to be

updated), or if a new entry needs to be created. Since this mechanism is crucial for the

system to work properly, the field is required. Chapter 4 discusses this issue in more

detail.

3.2 Users

 The script processplan.pl is the only one in the whole system that uses the main

read-write account. In other words, it is the only one that needs to be able to input data

into the database. Clearly, a malicious user could cause serious damage to the database if

he or she obtained the password to this account. To prevent this, I have changed the

permission on the file processplan.pl so that it is only readable by the owner. An even

better solution would be to encrypt the file, but this approach is too time-consuming

during development.

 PHP scripts, on the other hand, have to be readable by people other than the

owner (since they receive requests from the web). While the person using the browser

will never be able to retrieve the password because the PHP script will never output

HTML code containing it, users with an account on the Computer Science server could

certainly access it. To ensure that no harm comes to the database from this hypothetical

 20

threat, I created a read-only account. In the worst case, the malicious user would be able

to view the contents of the database, but would not be able to modify it.

 21

Chapter 4: System Input

Two similar scripts, silentplan.pl and processplan.pl, process the personal

information files. Silentplan.pl outputs no success or error messages when run: it is

silent. Because of this, it is used by the cronjob discussed in chapter 2. Processplan.pl is

exactly the same as silentplan.pl, except it prints error and success messages to the

screen. It exists for two reasons: first, it allows users to update their .plan files manually,

without having to wait for the cronjob to automatically do it for them; second, the

messages help users determine the cause of errors. For instance, if a student types

“country” as a field name, the script would warn him or her that the field is not

recognized. Further inspection would allow him or her to determine that the correct field

name is “nationality.”

This chapter begins by discussing general formatting rules for .plan files and the

reasoning behind them; it then focuses on how the script reads the information in these

files and stores it in variables. The chapter ends with a description of necessary

adjustments to field values before making insertions into the database.

4.1 Recognized Fields

When a student account is created on the Computer Science server, a .plan file is

placed automatically in his or her home directory. An example of this template file

follows:

 22

--
Name:
Office:
Advisor:
Phone:
Fax: (804) 982-2214
Address: Computer Science Department, Thornton Hall,
Address: University of Virginia, Charlottesville, VA 22903
E-mail:
--

The fields seen here form the basis for the list of fields that the system recognizes (this

list appears in chapter 3). I selected most of the remaining fields by looking at existing

.plan files, students’ homepages, and by discussion with Professor David Evans of the

Computer Science Department of the University of Virginia. For instance, I added the

“quote” field because many students include a quotation in their .plan file. I incorporated

some fields to make the script more tolerant. For instance, three fields, “name,”

“last_name,” and “first_name,” exist. If a student elects to use “name,” processplan.pl

assumes a comma as the divider between the first and last names. Conversely, the

student can choose to fill out the “last_name” and “first_name” fields. Similarly, if a

student enters the email field as “email” instead of “e-mail,” the system will still

recognize it properly.

4.2 Reading the Information

Both processplan.pl and silentplan.pl must be called with the path to the .plan file

as a parameter: perl processplan.pl path=/uf2/fh4u/.plan. This is

because a student’s computing id (in this case fh4u) is a required field in the database. If

the path does not include three forward slashes, the script exits.

 23

The script handles the text file one line at a time. It begins by determining

whether the line is a comment. Following Perl syntax, the script considers any line that

starts with a pound sign a comment, and, consequently, ignores it, moving on to the next

line in the file. Any text outside of the first two dividers is ignored. In accord with the

.plan template, I have defined a divider as any line that begins with dashes.

The script continues by deciding whether the line contains a colon. If it does, the

colon is used as a divider between the field name and the field value. Rather than setting

the field name to anything that comes before the colon, the script first strips any

extraneous tabs, new line characters, and leading and trailing spaces. For example, the

system would assume the field name for the line

Name : Felipe

to be “name.” Further, processplan.pl makes the field name lower case and converts any

spaces in it to underscores, because the field names that the script recognizes as valid

(shown in chapter 3) are all in lower case and contain no spaces. Thus, the script

identifies “Areas of Research” as the valid field name areas_of_research. The

script also prohibits “name,” “last_name,” and “first_name” from having empty values

because a student’s name is a required field in the database (see chapter 3).

 If the line does not contain a colon, the script assumes that the field name is the

same as the field name for the previous line, and that the current line’s text is the field’s

value. I added this mechanism because I encountered some .plan files that did not

include a field name in each line:

office: (804)982-2391
Computer Science Department

 24

Thornton Hall
University of Virginia
Charlottesville, VA 22903-2442

Thus, when it processes the second line of this example, the script would assume that the

field name is still “office,” and that “Computer Science Department” is the value for the

field. If the line contains only spaces, tabs, and new line characters, it is ignored.

Next, the script compares the field name of the line being processed to the list of

valid field names. If the field is recognized, processplan.pl stores the field value in the

array @values and sets a flag in the array @validFieldFlag, indicating that the

field name has a valid value. For example, the third position in the arrays denotes

“advisor”; consequently, if a line contained a value for this field, the script would place it

in the third position of @values, and would set the third position of

@validFieldFlag to 1. If the flag for a particular field was already set (meaning

that the field already contains a value), the script appends the current value. If a field is

not recognized, processplan.pl prints out an error message, while silentplan.pl performs

no action.

Since one student can have several email and phone numbers, the values for these

fields are stored in separate arrays. The system enforces a limit of five emails and five

phone numbers to prevent any student from having an arbitrarily large number of entries

in the database.

4.3 Adjusting Field Values

Before the information can be inserted into the database, several adjustments must

be made to the values of the fields. First, the script replaces any single quotation marks

 25

with two single quotation marks to prevent SQL parsing errors. Next, it ensures that the

.plan file contained either the fields “first_name” and “last_name” or the field “name.” If

the latter is the case, processplan.pl uses a comma as a divider between the last and first

names, in that order. A missing comma causes the script to set the first name to the value

of the field and to leave the last name empty. If a student includes all three of these

fields, “first_name” and “last_name” take priority over “name.” Finally, if none of these

exists, the script prints an error message to the screen and quits.

The database requires the field “sex” to have values “M” or “F.” In order to make

the system more tolerant, the script accepts the values “male,” “female,” “f,” or “m,” and

converts them to “M” or “F” (the accepted values are case insensitive). The database

requires the format of the date of birth to be yyyy-mm-dd. The script accepts the formats

mm/dd/yyyy, mm-dd-yyyy, mm/dd/yy, and mm-dd-yy. In the case of the last two,

processplan.pl sets the first two digits of the year to 19 if the value of “yy” is greater than

15, and to 20 otherwise. Clearly, this arbitrary delimiter could fail in the future, so I

strongly recommend using one of the forms that contain four digits for the year.

Finally, the script performs a check on the picture by using the shell command

identify. To guarantee that all home pages have a uniform look, processplan.pl

requires the size of the picture in pixels to be within the bounds of the following

variables:

$pictureHeightMax=350;
$pictureHeightMin=310;
$pictureWidthMax=250;
$pictureWidthMin=210;

 26

At this point, processplan.pl prints a summary of all recognized fields; sample output

follows:

valid field: office, with value: n/a
valid field: advisor, with value: David Evans
valid field: major, with value: Computer Science
valid field: last_name, with value: Huici
valid field: first_name, with value: Felipe

4.4 Input to Database

The script must determine if a record already exists for the student whose .plan

file it is processing. If it does, the entry has to be updated; if it does not, the entry has to

be created. The system makes this decision by searching the “uvaid” field in the main

table of the database. If an entry matches the uvaid of the path to the .plan file, the script

knows that it needs to make an update.

This decision does not affect the phones and emails tables. Before inserting the

emails and phones in the .plan file, the script deletes all entries matching the current

value of “uvaid” from these tables. This allows for easy editing of those fields: if a

student wished to remove any emails or phones from the database, he or she could simply

delete those entries from the .plan file and run the script again.

 27

Chapter 5: System Output

Any person with Internet access can view, search, and create summaries of the

information on the database through the page index.html, located at

http://www.cs.virginia.edu/~fh4u/index.html.

5.1 Search Engine

 The screen shot shows that the interface of the search engine resides on the page

index.html. Users can search most but not all of the fields in the database. For instance,

it would not make sense to search by phone number or email, so I did not include those

Summary Pages

Perform Search

Display HelpHome Page

 28

fields. Users fill out as many fields as they wish, press the “Clear Query” button to clear

all the fields, and hit the “Submit Query” button to perform the search. Leaving all fields

blank and hitting this button will cause the system to display all entries in the database.

 After the query is submitted, a JavaScript function in index.html carries out a few

checks before performing the search. First, it ensures that the user has supplied a

properly formatted date of birth. The only accepted format is mm-dd-yyyy. The function

then checks that the “sex” field contains “M,” “F,” “FEMALE,” or “MALE.” The last

check is for the “age” field: it should contain only numbers. If any of these checks fails,

the function displays an error message and cancels the query so that the user can fix the

mistakes.

If all checks are satisfied, the function submits the query to search.php3, the PHP

script that performs the search and displays the results. This script begins by building the

SQL string containing the search. Search.php3 performs pattern matching through the

SQL operator LIKE and the % character. The % character matches any sequence of

characters, including an empty sequence. The script surrounds each field value that the

user typed in the query with % signs to match any entry in the database containing the

value. For instance, typing “eli” in the first name field and submitting the query results in

the following hits:

 29

Typing “eli” caused the script to match the names “Felipe” and “Neelima.” Note that for

each match, the script includes a link to that student’s home page. If there are no

matches, the script displays an error message and a link back to index.html.

5.2 Home Page

 To view a home page, a user can either perform a search and click on the link of

one of the matches, or click on the button on index.html labeled “Home Page.” If the

user decides to click on the latter, index.html displays the following sub-menu:

I included this option as a shortcut to students who want to view their own pages. By

using this form, students can bypass the search engine results page and go directly to their

home pages. A simple JavaScript function makes sure that the “UVA id” field contains

some text and submits the request; if no page exists with the specified id, homepage.php3

displays an error message with a link back to index.html.

 Regardless of which option a user chooses, the script homepage.php3 will receive

a request containing the UVA id of the student whose page it has to display. The script

 30

uses this id to search the database for a match and retrieve the rest of the fields for that

student. Naturally, if no match is found the system will display an error message instead

of the home page.

 Next, homepage.php3 begins displaying the information row by row. Each row

contains at most two fields; if a student has supplied neither of the two fields in the row,

the row is not displayed at all. If he or she has only provided one field, this field will get

the whole width of the row to itself. I kept long fields such as hobbies, address, and

current classes in their own row. Here is a screen capture of a home page that has most

of the information filled out (the information is fake):

 31

 On a final note, the script includes the value of the field “extra_HTML” at the end

of the page, but inside the <BODY> tag. This mechanism exists in case a student wants

to expand his or her home page beyond this basic template. The system does not verify

the correctness of the HTML code within this field, so it is the student’s responsibility to

make sure that the page looks as expected.

5.3 Summary Page

 To display summary pages, a user points the browser to index.html and click on

the button labeled “Summary Pages.” The system displays the following sub-menu:

Each one of the radio buttons on the left side represents a different type of summary

page. The first option displays a phone directory of all the students in the database. The

two check boxes on the right side apply only to this type of summary page. The “one

 32

row per person” option causes the system to show only the first phone and email for each

person. The following screenshot has only this second option checked:

The last name field is mostly empty because currently most users do not use a comma as

the delimiter between first and last names (see chapter 4). By default, the results are

sorted by last name. To display the results in a different order, a user can simply click on

the yellow labels for the fields.

 The remaining four types of summaries are very similar. Each one of these

groups the values for the field into separate categories. For example, in the case of the

“advisor” summary page, the script will display all students whose advisor is Andrew

Grisham first, those whose advisor is Bill Wulf second, and so forth. For the “sex”

summary page only two categories exist, so the script will only have two groups. The

Resort

 33

script includes a count for each group. The following screen shot clarifies this

explanation:

 34

Chapter 6: Analysis

This final chapter provides a description of the extent to which the system

satisfies the objectives outlined in chapter 1, as well as an analysis of the correctness of

the home pages and the search engine. The chapter concludes with a discussion of

possible extensions to this project.

6.1 Fulfillment of Objectives

The system I designed achieves the main objective: to reduce effort and save time

for its users and to offer a simple means of accessing the contents of personal information

files. During testing, I was able to create my own home page within a single minute, a

far cry from the time it takes to create one by hand. Users do not even have to wait for

the cronjob to enter the data into the database; they can do so manually by running

processplan.pl. Because of the system’s expeditiousness, I expect that most Computer

Science Graduate students who do not yet have a home page will fill their .plan files.

With this system, every student in the department should soon have a home page.

Searching the information is also much quicker. If a user wanted to find all

students who have a particular professor as their advisor, they could use the search engine

in index.html to obtain the results in seconds. Without this mechanism, he or she would

be forced to sift through every home directory and .plan file for this information. Such a

search could take hours.

While summary pages are not part of the project’s main objective, they also save

time. Creating a phone guide, finding the number of males and females, and viewing the

 35

number of students under each professor takes seconds. However, these summary pages

do have a shortcoming. Because their input comes from loosely formatted text files,

some of the groupings get duplicated. For instance, inspecting a summary of advisors

reveals that James French is listed in two separate groups, one under “Dr. James French,”

and the other under “James French.” Thus this professor should have a student count of

2, but each group reports only 1. To prevent this, processplan.pl could cross check the

advisor in a .plan file against a list of valid professors.

6.2 Correctness of Information Display in Home Pages

 As chapter 5 shows, each row of information in a home page has at most two

fields. If both of these fields contain no values, the system should ignore the row; if only

one of the fields exists, the script should give it the full width of the row. I viewed over

40 different home pages to check that the system meets these criteria.

This student, for instance, has not included any information for the “research” and

“advisor” fields. Since these two reside on the same row, the script ignored the whole

row. Also note from the screenshot that the student filled out a value for the “office”

 36

field but not for the “fax” field. Since these would appear on the same row, the script

gives the former the whole width of the row.

 I also checked the “date of birth” field for correctness. Since the database stores

dates in the format yyyy-mm-dd, I had to make sure that the script properly changed this

format into the mm-dd-yyyy format. The home page screenshot in chapter 5 shows that

this is indeed the case.

The script contains, however, a few problems. Long field values for fields that

share rows can affect the appearance of a page. To illustrate, I created a record in the

database with a relatively long value for the “areas of research” field:

Another shortcoming arises from the “extra_HTML” field. The script currently treats the

value of this field as HTML code, but the database restricts that size of this field to a few

characters. Any HTML code that a user wants to add will almost certainly require more

than a few characters, rendering this field useless. To correct this, the value of the field

 37

should be an absolute URL to an HTML page containing the code. The script would then

be responsible for reading this file and copying its code to the end of the home page.

6.3 Search Engine Correctness

 To guarantee the correctness of the results from the search engine, I began by

performing a search in each of the eleven fields found in index.html. Once I was satisfied

that this worked properly, I submitted queries that used several fields at once, testing

cases with only one match, with more than one case, and with no matches. Lastly, I

performed searches using only part of a field’s value for every field in index.html. For

example, instead of typing “Soccer” as the search criterion for a hobby, I only typed

“occ.” Again, the search engine returned the correct results.

A minor problem with the search engine is that it contains both an “age” field and

a “date of birth” field. These are clearly redundant, since no one would search by both

age and date of birth. The solution is clear and simple: delete the age field, since it

quickly becomes outdated.

6.4 Possible Extensions to the Project

 Though the scope of this system is limited to Computer Science graduate

students, if it were extended to other groups, they could certainly benefit from it. For

instance, an undergraduate student could browse through the profiles of everybody living

in his or her dormitory floor, finding common academic and non-academic interests. A

student might study better by working with a peer he or she found through the system, or

 38

might be more inclined to consistently attend class knowing that some of the people

living on the same floor attend it too. He or she might enjoy a more fulfilling college life

knowing that people with similar non-academic interests (sports, music, entertainment,

etc.) live in the dormitory.

Prospective students could also benefit. Profiles and summary pages of current

students will be of use to applicants as they choose a university. Perhaps the applicant is

interested in attending a school with a large international community, or one enrolling

mostly from the state of Virginia; this system could provide just such information. A

prospective student might even contact an enrolled student through e-mail to ask

questions that a recruiting booklet cannot answer.

 Naturally, this system need not be confined to the University of Virginia. Other

schools could certainly implement a similar system and enjoy the same benefits.

Moreover, a company could provide this system on its intranet: the summary pages could

be used to advertise the demographics of the company, and an employee could search for

peers with similar interests.

Even without these extensions, this system has given a powerful method of

communication for Computer Science graduate students at the University of Virginia.

Students can create a home page, search each other’s personal information, and view

summary pages without expending much time or effort.

 39

Works Cited

Dubois, Paul. MySQL. New York: New Riders Publishing, 1999.

Greenspun, Phil. Phillip and Alex’s Guide to Web Publishing. San Francisco: Morgan

Kaufmann Publishers, 1999.

Kochan, Stephen and Wood, Pattrick. Exploring the UNIX System. New York: Sams

Publishing, 1992.

Meloni, Julie C. PHP Essentials. Rocklin: Prima Publishing, 2000.

Perl Mongers, The Perl Advocacy People. Retrieved September 27th, 2000 from the
World Wide Web: http://ww.perl.org.

Peterson, Larry and Davie, Bruce. Computer Networks. San Francisco: Morgan

Kaufmann Publishers, 1996.

Pierce, Clinton. Sams Teach Yourself Perl in 24 Hours. New York: Sams Publishing,

1999.

Veeraraghavan, Sriranga. Sams Teach Yourself Shell Programming in 24 Hours. New

York: Sams Publishing, 1999.

 40

Bibliography

Ashenfelter, John P. Choosing a Database for Your Web Site. New York: John Wiley &

Sons, 1999.

Goodman, Danniel. JavaScript Bible. Foster City: IDG Books Worldwide, Inc., 1998.

Kitalong, Karla S. I Hate UNIX. Indianapolis: Que Corporation, 1994.

Muller, Robert J. Database Design for Smarties. San Francisco: Morgan Kaufmann
Publishers, 1999.

MySQL AB, MySQL. Retrieved October 14th, 2000 from the World Wide Web:

http://ww.mysql.com.

Wyke, Allen R., Gilliam, Jason D., and Ting, Charlton. Pure JavaScript. New York:

Sams Publishing, 1999.

Zend Technologies, PHP: Hypertext Processor. Retrieved September 30th, 2000 from the

World Wide Web: http://www.php.net.

