Preserving Privacy and Social Influence

Isabelle Stanton

Influence

- Modeled as a weighted graph $G=(V, E)$, where $p_{u, v}$ is the probability that u influences v.
- $p_{u, v} \geq 0$
- For each v, sum of incoming probabilities at most 1 ,

$$
\text { For each v, } \Sigma_{u} p_{u, v} \leq 1
$$

- Influence of a node: Expected number of active
nodes

Goal of the Project

- Develop a perturbation scheme that preserves privacy of individuals while also approximately preserving their influence

Social Network Privacy

- Bakstrom, Dwork and Kleinberg show removing names isn't enough
- Present passive, semi-active and active attacks against social networking graphs

Obtaining the (Indirect) Influence Graph

- Ask each user to rate how their friends influence them.
- Put into a matrix A
- A^{2} is how a node indirectly influences its' friends' friends.
- Corresponds to a Markov Process
- I= ΣA^{k}

Perturbation Ideas

- Randomly select a value within [0,1] for each edge weight, then normalize
- Preserves privacy but is obviously useless for preserving influence
- Randomly select a value in $[1-\varepsilon, 1+\varepsilon]$ for each edge and multiply.
Influence for each node is within $(1+\varepsilon)^{n}$ but privacy is not preserved by any definition

Original Graph Perturbation

- Nodes in clusters have approximately equal influence
- Cluster the graph
- For each inter-cluster edge, select new nodes in the cluster to assign the edge to
- Add and remove some small fraction of inter-cluster edges

Privacy Definitions

- Def 1: If an attacker knows all the values in the original / except u then:

$$
1-\varepsilon<\frac{\operatorname{Pr}(w(u) \in[x, y] \mid I)}{\operatorname{Pr}(w(u) \in[x, y])}<1+\varepsilon
$$

- Def 2: Given a perturbed version of I, I', and an edge u, the weight of u shouldn't affect I much $1-\varepsilon<\frac{\operatorname{Pr}(I \mid w(u) \in[x, y])}{\operatorname{Pr}(I \mid w(u) \in[s, t \mid)}<1+\varepsilon$

My Idea

- The Influence graph is calculated as a Markov process
- A small change initially will result in a large change in the end
- Perturb the original graph instead of the end product

