
1

Dec 5, 2007 University of Virginia 1

Efficient Dynamic Tainting 

using Multiple Cores

Yan Huang

University of Virginia

Dec. 5 2007

Dec 5, 2007 University of Virginia 2

…

Memory Allocator

Integer Overflow SQL Injection

Cross-site Scripting

Format String

Stack Smashing

Common trait: 
Incorrect use of 

untrusted resources

Dec 5, 2007 University of Virginia 3

Dynamic Tainting (DT)

• Keep track of the source for each byte 

used in the program

• Shadow Memory

• Taint Seed

• Taint Propagation

• Taint Assert

Dec 5, 2007 University of Virginia 4

Is the content in this location 

derived from untrusted source?

Yes!

Then I won’t jump there. I am 

suspicious I’ve got attacked.

Illustration – Buffer Overflow

Dec 5, 2007 University of Virginia 5

So what’s the problem?

• Dynamic Tainting is also applied to:

– Malware detection

– Ensuring privacy policies

– Software testing

Dec 5, 2007 University of Virginia 6

Way too slow!

Better be kept from 

online usage.

• Traditional dynamic tainting systems 
incurs about 20x ~ 50+x overhead than 

direct execution.

Why is it the case?



2

Dec 5, 2007 University of Virginia 7

add %eax, 4(%ebp)

Imagine how we need to instrument this single instruction

Dec 5, 2007 University of Virginia 8

12~19Tatal

1add %eax, 4(%ebp)

2~4Restore the spilled registers (may include status registers)

1~3Compute and store the new taint status in the shadow memory

2Load the taint status of the two operands

1~2Map FLAG registers to its shadow memory (optional)

2Map memory (%ebp) to its shadow memory location

1Map %eax to its shadow memory location

2~4Spill a few registers (may include FLAG registers) for taint computation

CostsTasks

Dec 5, 2007 University of Virginia 9

• Some essential facts

– the tainting computation and the original 
computation are highly parallelizable.

– taint shepparding itself can also be simpler if it 

is kept separate from the original computation.

• Some essential facts

– the tainting computation and the original 
computation are highly parallelizable.

– taint shepparding itself can also be simpler if it 

is kept separate from the original computation.

• Some essential facts

– the tainting computation and the original 
computation are highly parallelizable.

– taint shepparding itself can also be simpler if it 

is kept separate from the original computation.

Our Treatment – Multiple Cores

Dec 5, 2007 University of Virginia 10

The Basic Model

Main Proc
Environment Variables

Various global tables

Runtime stack

.data section

.bss section

.text section

Heap area

Shadow Proc
Environment Variables

Various global tables

Runtime stack

.data section

.bss section

.text section

Heap area

Dec 5, 2007 University of Virginia 11

The Basic Model

Main Proc Shadow Proc

add %eax, 4(%ebp)add %eax, 4(%ebp) or %eax, 4(%ebp)

add %eax, %ebxadd %eax, %ebx or %eax, %ebx

push %eaxpush %eax push %eax

Queue_m2s

add %eax, 4(%ebx)add %eax, 4(%ebx) push %eax

call Dequeue

mov %eax, %ebx

pop %eax

or %eax, 4(%ebx)

%ebx

Queue_s2mQueue_s2m (optional)

push %eax

mov %ebx, %eax

call Enqueue

pop %eax

add %eax, 4(%ebx)

Dec 5, 2007 University of Virginia 12

Main Proc
Environment Variables

Various global tables

Runtime stack

.data section

.bss section

.text section

Heap area

Shadow Proc
Environment Variables

Various global tables

Runtime stack

.data section

.bss section

.text section

Heap area

Queue_m2s

Queue_s2m (optional)

The Basic Model – Quick Recap

• We have 2 separate 
processes/threads 
(main and shadow)

• Main only takes 
care of original 
computation

• Shadow only deals 
with tainting

• They keep similar 
memory layout

• They communicate 
via one (or two) 
dedicated queues



3

Dec 5, 2007 University of Virginia 13

Implementation

Dec 5, 2007 University of Virginia 14

Program Compiling and Execution Diagram

source code

compiler front end

binary code

loader

process in execution

assembly code

compiler back end

static 

dynamic

Dec 5, 2007 University of Virginia 15

Source to Source Static Rewriter 
(SSSR)

Advantages
High level program objects information available; 

Less dependent on ISA; 

No penalty for run-time code generation;

Easier to debug;

original source code

SSSR

main proc src code shadow proc src code

processes in execution

… …

Disadvantages
Requiring the application’s source code;

Hard to deal with low level (hardware related) control

performance dependent on the underlying compiler

Dec 5, 2007 University of Virginia 16

Source to Binary Compiler (SBC)

original source code

SBC

main proc bin code shadow proc bin code

processes in execution

loader

Advantages
High level program information available; 

Full control over the binary generation

Easy to do low level optimizations;

Able to follow into statically linked libraries. 

Disadvantages
Requiring the application’s source code;

ISA dependent implementation;

Unable to follow through dynamically linked libraries;

Special care needed to protect the shadow memory;

Dec 5, 2007 University of Virginia 17

Binary to Binary Static Rewriter 
(BBSR)

original binary code

BBSR

main proc bin code shadow proc bin code

processes in execution

loader

Advantages
The rewriting doesn’t incur run-time overhead;
Doesn’t require the application’s source code;
Easy to do low level optimizations;

Able to follow into statically linked libraries;

Disadvantages
Lacking high level program information for 
optimization;

Binary static analysis is hard and even infeasible;

ISA dependent implementation;

Unable to follow through dynamically linked libraries;

Special care needed to protect the shadow memory; 

Dec 5, 2007 University of Virginia 18

process address space

Binary to Binary Dynamic Rewriter

original binary code

loader

main proc
bin code

shadow proc 
bin code

BBDR

Advantages
Doesn’t require the source code;
Easy shadow memory protection;
Able to follow through dynamically linked libraries;
Dynamic information available for optimization;
System-wide if BBDR is running underlying the OS;

Disadvantages
• Run-time overhead introduced by the dynamic 

transformer;

• Lacking high level program information to do 
optimization;



4

Dec 5, 2007 University of Virginia 19

Quick recap

intuitive×√√×
runtime binary

transformer

hard××√×
static binary

rewriter

hard××√√
source-to-

binary

hard√××√
source-to-

source

Shadow

memory

protection

ISA

Independent

Dynamic

library

tracing

Static library

tracing

Optimization

Opportunity

hard××√√
source-to-

binary

intuitive×√√×
runtime binary

transformer

Dec 5, 2007 University of Virginia 20

Implementation

• Source to binary compiler

– phoenix

– gcc

• Dynamic binary rewriter

– Strata

– Pin

• An assembly to assembly translator could 

be reused in both approaches

Dec 5, 2007 University of Virginia 21

Optimizations

• Reducing the number of synchronization points

– ignore ‘never-tainted’ memory locations

– ignore checking ‘never-tainted’ return addresses

• Reducing the chance of spinning wait

– large queue buffers

– do taint checking only in the shadow process

– allow the main process to go over less critical points

• Efficient data communication

– put the queue in L2 cache

Dec 5, 2007 University of Virginia 22

Evaluation

• Functional evaluation

– Does it really work correctly?

• Performance evaluation

– Is it efficient enough for online deployment?

– Benchmarks

– Real programs

Dec 5, 2007 University of Virginia 23

Questions


