Computer Science Colloquia
Monday, April 15, 2013
Yisong Yue
Host: Gabe Robins
3:30 PM, Rice Hall, Room 130 (auditorium), followed by a reception in Rice Hall Fourth Floor Atrium (west end)
Learning with Humans in the Loop
ABSTRACT
Making sense of digital information is a growing problem in
almost every domain, ranging from scientists needing to stay current
with new research, to companies aiming to provide the best service for
their customers. What is common to such "Big Data" problems is not only
the scale of the data, but also the complexity of the human processes
that continuously interact with digital environments and generate new data.
To address this problem, I will show how we can develop principled
approaches that explicitly model the process of continuously learning
with humans in the loop while improving system utility. As one example,
I will present the linear submodular bandits problem, which jointly
addresses the challenges of selecting optimally diversified
recommendations and balancing the exploration/exploitation tradeoff when
personalizing via user feedback. More generally, I will show how to
integrate the collection of training data with the user's use of the
system in a variety of applications, ranging from long-term optimization
of personalized recommender systems to disambiguation within a single
search session.
Bio: Yisong Yue is a postdoctoral researcher in the Machine Learning
Department and the iLab at Carnegie Mellon University. His research
interests lie primarily in machine learning approaches to structured
prediction and interactive systems, with an application focus in
developing new approaches for information retrieval and access. He
received a Ph.D. from Cornell University and a B.S. from the University
of Illinois at Urbana-Champaign. He is the author of the SVM-map
software package for optimizing mean average precision using support
vector machines. His current research focuses on machine learning
approaches to diversified retrieval and interactive information systems.
*Mr. Yue is a faculty candidate for the Department of Computer Science