Panda: A Predictive Spatio-Temporal Query Processor

Abdeltawab M. Hendawi
Mohamed F. Mokbel

Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
{hendawi, mokbel}@cs.umn.edu

1. INTRODUCTION

The emergence of wireless communication networks and cell phone technologies with embedded global positioning systems (GPS) have resulted in a wide deployment of location-based services [9, 16]. Common examples of such services include range queries [7, 26], e.g., “find all gas stations within three miles of my current location” and \(K \)-nearest-neighbor (\(k \)NN) queries, e.g., “find the two nearest restaurants to my current location”. However, such common examples focus on the current locations of moving objects. Another valuable set of location-based services focuses on predictive queries [10, 11], in which the same previous queries are asked, yet, for a future time instance, e.g., “find all gas stations that will be within three miles of my future location after 30 minutes”. Predictive queries are extremely beneficial in a wide variety of applications that include traffic management, e.g., predict congested areas before it takes place, location-based advertising, e.g., predict the customers who are expected to be nearby in the next hour, and ride sharing, e.g., find those riders who are likely to share their route with me.

In this paper, we present the \(\text{Panda} \) system, designed to provide efficient support for predictive spatio-temporal queries. \(\text{Panda} \) provides the necessary infrastructure to support a wide variety of predictive queries that include predictive spatio-temporal range, aggregate, and \(k \)-nearest-neighbor queries as well as continuous queries. \(\text{Panda} \) distinguishes itself from all previous attempts for processing predictive queries [11, 28] in the following: (1) \(\text{Panda} \) targets long-term prediction in the order of tens of minutes, while existing attempts mainly target short-term prediction in terms of only minutes and seconds, (2) \(\text{Panda} \) smartly precomputes parts of the frequent incoming queries, which significantly reduces the query response time, and (3) \(\text{Panda} \) is generic in the sense that it does not only address a certain type of predictive queries, as done by previous work, instead, it provides a generic infrastructure for a wide variety of predictive queries.

The main idea of \(\text{Panda} \) is to monitor those space areas that are highly accessed using predictive queries. For such areas, \(\text{Panda} \) precomputes the prediction of objects being in these areas beforehand. Whenever a predictive query is received by \(\text{Panda} \), it checks if parts of this predictive query are included in those precomputed space areas. If this is the case, \(\text{Panda} \) retrieves parts of its answer from the precomputed areas with a very low response time. For other parts of the incoming predictive query that are not included in the precomputed areas, \(\text{Panda} \) has to dispatch the full prediction module to find out the answer, which will take more time to compute. It is important to note here that \(\text{Panda} \) does not aim to predict the whole query answer, instead, \(\text{Panda} \) predicts the answer for certain areas of the space. Then, the overlap between the incoming query and the precomputed areas controls how efficient the query would be. This isolation between the precomputed area and the query area presents the main reason behind the generic nature of \(\text{Panda} \) as any type of predictive queries (e.g., range and \(k \)NN) can use the same precomputed areas to serve its own purpose. Another main reason for the isolation between the precomputed areas and queries is to provide a form of shared execution environment.
among various queries. If *Panda* would go for precomputing the answer of incoming queries, there would be significant redundant computations among overlapped query areas.

Panda provides a tunable threshold that provides a trade-off between the predictive query response time and the overhead of precomputing the answer of selected areas. At one extreme, we may precompute the query answer for all possible areas, which will provide a minimal response time, yet, a significant system overhead will be consumed for the precomputation and materialization of the answer. On the other extreme, we may not precompute any answer, which will provide a minimum system overhead, yet, an incoming predictive query will suffer the most due to the need of computing the query answer from scratch without any precomputations. The underlying prediction function deployed by *Panda* mainly relies on a long-term prediction function, designed by John Krumm [6, 14] to predict the final destination of a single user based on his/her current trajectory. Unfortunately, a direct deployment of such long-term prediction function does not scale up for large numbers of moving objects nor it serves our purpose for predictive queries that are concerned with the moving object location in a future time rather than its final destination. *Panda* adapts such well-designed prediction function to: (a) scale up with the large number of users through a specially designed data structure shared among all moving objects, and (b) provide the prediction for a future query time (e.g., after 30 minutes) rather than only the prediction for the final destination.

The rest of this paper is organized as follows. Section 2 highlights related work. Section 3 gives an overview of the *Panda* system. The generic framework for *Panda*’s query processor is given in Section 4, while its extensibility to a wide variety of predictive queries is presented in Section 5. Section 6 provides experimental evaluation of *Panda*. Finally, Section 7 concludes the paper.

2. RELATED WORK

In terms of supported predictive queries, existing algorithms for predictive query processing have focused only on one kind of predictive queries, e.g., *range queries* [11, 21, 28], *k-nearest-neighbor queries* [1, 17, 28], *reverse-nearest-neighbor queries* [1], *continuous-nearest-neighbor queries* [5, 24], aggregate queries [20], or *predictive join* with estimating the expected query selectivity [4, 5, 24]. Some of this work attaches the expiry time interval to a kNN query result [22, 23]. Thus, the kNN query answer is presented in the form of \(<result, interval> \), where the interval indicates the future interval during which the answer is valid.

In terms of the underlying prediction function, existing algorithms for predictive query processing can be classified into three categories:

1. **Linearity-based prediction**, where the underlying prediction function is based on a simple assumption that objects move in a linear function in time along the input velocity and direction. So, query processing techniques in this category, e.g., [1, 17, 19, 23, 24], take into consideration the position of a moving point at a certain time reference, its direction, and the velocity to compute and store the future positions of that object in a TPR-tree-based index [18]. When a predictive query is received, the query processor retrieves the anticipated position in the given time [19]. The work in this category is concerned with the applications of the linearity-based prediction models to answer nearest neighbor queries [17] and reverse nearest neighbor queries [1], and to estimate the query selectivity [24]. Some of these applications attach the expiry time interval to the kNN query result [23].

2. **Historical-based prediction**, where the prediction function uses object historical trajectories to predict the object next trajectory. Then, query processing techniques in this category, e.g., [2, 6, 11, 12, 13, 20] are applied to trajectory of location points. Existing work in this category is based on either mobility model [11], or ordered historical routes [2, 6, 13]. The mobility model [11] is used to capture the different possible turning pattern at different roads junctions, and the travel speed for each segment in the road network for each single object in the system. Then, the model is used to predict the future trajectory of each object, and based on that they can answer predictive range queries. The main concern of that model is to put more focus on the prediction of the object behavior in junctions based on historical data of objects trajectories. In the ordered historical routes, the stored past trajectories are ordered according to the similarity with the current time and location of the object and the top route is considered the most possible one [2, 6, 13]. Some of the existing work in this category is employed for predicting the current object trajectory in non-euclidian space [12] such as road-level granularity. For example, a Predictive Location Model (PLM) [12] is proposed to predict locations in location-based services. The model considers the start point as the object current location while the end point could be any of the possible exit points. PLM computes the shortest path trajectory between the current location and each of the exit points, then the trajectory with the highest probability is considered the predicted path.

3. **Other prediction functions**, where more complicated prediction functions are employed to realize better prediction accuracy. Query processing techniques in this category, e.g., [10, 21, 27, 28], are adjusted based on the outcome of the prediction function. Existing work in this category either exploits a single function [21, 28], or mixes between two or more functions to form a hybrid prediction model [10, 27]. As an example for a single function, a Transformed Minkowski Sum [28] is used to answer circular region range and K-NN queries, while Recursive Motion Function (RMF) [21] is used to predict a curve that best fits the recent locations of a moving object and accordingly answer range queries. In the hybrid functions category, two methods [10, 27] are combined to evaluate predictive range and nearest neighbor queries in highly dynamic and uncertain environments. Unfortunately, all the employed prediction functions can support only short-term prediction in terms of seconds or minutes. The reader is referred to [8] for more detailed and comprehensive survey.

Panda distinguishes itself from all the above work in the following: (1) *Panda* is a generic framework that is not only applicable to one kind of predictive queries. Instead, a wide variety of predictive queries, e.g., range and nearest-neighbor queries can be supported within one framework. (2) *Panda* relies on a long-term prediction function applicable to tens of minutes, and (3) *Panda* is a scalable framework that supports large number of predictive snapshot and continuous queries.
3. SYSTEM OVERVIEW

This section gives an overview of the Panda system outlining the system architecture and underlying prediction function.

3.1 System Architecture

Figure 1 gives the system architecture of the Panda system, which includes three main modules, namely, query processing, periodic statistics maintenance, and answer maintenance. Each module is dispatched by an event, namely, query arrival, periodic statistics maintenance trigger, and object movement, respectively. As a shared storage, a list of precomputed answers is maintained, which is frequently updated offline and used to construct the final query answer for received predictive queries. Below is a brief overview of the actions taken by Panda for each event. Details of these actions are discussed in Section 4.

Query arrival. Once a query is received by Panda, the query processor divides the query area into two parts. The first part is already precomputed where this part of the answer is just retrieved from the precomputed storage. The second part is not precomputed and needs to be evaluated from scratch through the computation of the prediction function against a candidate set of moving objects.

Object movement. Whenever Panda receives an object movement, it dispatches the answer maintenance module to check if this movement affects any of the precomputed answers. If this is the case, the affected precomputed answers are updated accordingly.

Periodic statistics maintenance trigger. System statistics that decide on which parts of the space to precompute for potential incoming frequent queries need to be updated periodically using the statistics maintenance module. The module basically reset the statistics to ensure the accuracy and recency of collected statistics.

3.2 Prediction Function

The long-term prediction function deployed in Panda is mainly an adaptation of the one introduced by John Krumm [6, 14] to predict the final destination of a single object. \(F \) is applied to any space that is partitioned into a set of grid cells \(C \). \(F \) takes two inputs, namely, a cell \(C_i \in C \) and a sequence of cells \(S_o = \{ C_1, C_2, \ldots, C_t \} \) that represents the current trip of an object \(O \). Then, \(F \) returns the probability that \(C_t \) will be the final destination of \(O \). As \(F \) only predicts the destination of an object, it does not have the sense of time. In other words, \(F \) cannot predict where an object will be after time period \(t \). Since this is a core requirement in Panda, we adapt \(F \) to be able to compute the probability that object \(O \) will be passing by the given cell \(C_t \) after time \(t \), where \(t \) is specified in the predictive query. The adaptation results in the function \(\tilde{F} \) which is a normalization of the results from the original prediction function \(F \) using the set of cells \(D_t \) that could be a possible destination of an object \(O \) after time \(t \).

\[
\tilde{F} = \frac{P(C_t|S_o)}{\sum_{d \in D_t} P(C_t|S_o)}
\]

Here, the numerator is the output of the original prediction function \(F \), and the denominator is the summations of the probabilities of all grid cells in \(D_t \), also computed from \(F \). \(D_t \) is the set of possible destination cells of object \(O \) after time \(t \), computed based on the travel time distance. It is important to mention here that the recomputation of this prediction function is triggered only when an object \(O \) changes its location from cell to another rather than from point to another point within the same cell.

Panda also has another adaptation of \(F \) to scale it up to support large numbers of moving objects as \(F \) is mainly designed to support single object prediction. The scaling up is mainly supported by the underlying data structure, discussed in the next section, which gives an infrastructure to share by large numbers of moving objects.

4. PANDA: A PREDICTIVE SPATIO-TEMPORAL QUERY PROCESSING

A salient feature of Panda is that it is a generic framework that supports a wide variety of predicative spatio-temporal queries. Panda’s query processor can support range queries, aggregate queries, and \(k \)-nearest-neighbor queries within the same framework. In addition, Panda can support stationary as well as moving objects. Finally, Panda is easily extensible to support continuous queries. This generic feature of Panda makes it more appealing to industry and easier to realize in real commercial systems. This is in contrast to all previous work in predictive spatio-temporal queries that focus on only one kind of spatio-temporal queries. As described in Figure 1, Panda reacts to three main events, namely, query arrival, object movement, and a periodic statistics maintenance trigger. Each event prompts Panda to call one of its three main modules to take the appropriate response. The section first starts by describing the underlying data structure of Panda (Section 4.1). Then, the reaction of Panda to the events query arrival, object movement, periodic statistics maintenance trigger are described in Section 4.2, 4.3, and 4.4, respectively. Following the spirit of Panda, the discussion in this section is made generic without referring to a particular predictive query type, except when giving examples. The extensibility of Panda to support various predictive query types will be described in next section (Section 5).

4.1 Data Structure

Figure 2 depicts the underlying data structure used by Panda. A brief overview of each data structure is outlined below:

Object List \(OL \). This is a list of all moving objects in the system. For each object \(O \in OL \), we keep track of an object identifier and the sequence of cells traversed by \(O \) in its current trip. For example, as illustrated in Figure 2, \(O_2 \) in its current trip, has passed through the sequence of cells \(\{ C_1, C_2, C_2, C_3 \} \). This means that \(O_2 \) has started at \(C_{13} \) and it is currently moving inside \(C_3 \).

Space Grid \(SG \). Panda partitions the whole space into \(N \times N \) equal-size grid cells. For each cell \(C_i \in SG \), we maintain four pieces of information as: (1) \(CId \) as the cell identifier, (2) \(Current\ Objects \) as the list of moving objects currently located inside \(C_i \), presented as pointers to the Object List \(OL \), (3) \(Query\ List \) as the list of predictive queries recently issued on \(C_i \), each query \(Q \) in this list is presented by the triple \((Time, Counter, Answer) \), where \(Time \) is the future time included in \(Q \), \(Counter \) is the number of times that \(Q \) is recently issued, \(Answer \) is the precomputed answer for \(Q \) which may have different format based on the type of \(Q \), and (4) \(Frequent\ Cells \) as the list of cells that one of their precomputed answers should be updated with the movement of an object in \(C_i \).

Travel Time Grid \(T T G \). This is a two-dimensional array of \(N^2 \times N^2 \) cells where each cell \(T T G[i,j] \) has the average travel time between space cells \(C_i \) and \(C_j \), where \(C_i \) and \(C_j \) \(\in SG \). \(TTG \) is fully pre-loaded into Panda and is a read-only data structure.

4.2 Query Processing in Panda

Panda receives a predictive spatio-temporal query, e.g., range or nearest-neighbor query, that asks about the query answer after a future time \(t \). The main idea behind efficiency and scalability in Panda is that Panda precomputes partial results of the frequent incoming queries beforehand. In general, Panda does not aim to precompute the whole query answer, instead, it precomputes the answer for certain areas of the space. Then, the overlap between the
incoming query and the precomputed areas controls how efficient the query would be. If all the query is precomputed, the query will have best performance in terms of lower latency, however, Panda will encounter high overhead of maintaining the precomputed answer. This isolation between the precomputed area and the query area presents the main reason behind the generic nature of Panda as any type of predictive queries (e.g., range and k-nearest-neighbor) can use the same precomputed areas to serve its own purpose. Another main reason for the isolation between the precomputed areas and queries is to provide a form of shared execution environment among various queries. If Panda would go for precomputing the answer of incoming queries, there would be significant redundant computations among overlapped query areas.

Upon the arrival of a new predictive spatio-temporal query \(Q \), with an area of interest \(R \), requesting a prediction about future time \(t \), Panda first divides \(R \) into a set of grid cells \(C_i \) that overlap with the query region of interest \(R \). For each cell \(c \in C_f \), Panda goes through two main phases, namely, result computation and statistic maintenance. The result computation phase (Section 4.2.1) is responsible on getting the query result from cell \(c \) either as a precomputed result or by computing the result from scratch. The statistic maintenance phase (Section 4.2.2) is responsible on maintaining a set of statistics that help in deciding whether the answer of cell \(c \), for a future time \(t \), should be precomputed or not. The precomputation at cell \(c \) will significantly help for the next query that asks for prediction on \(c \) with the same future time \(t \), yet, precomputation will cause a system overhead in continuously maintaining the answer at \(c \). Throughout this section, Algorithm 1 gives the pseudo code of the Panda query processor where the first three lines in the algorithm find out the set of cells \(C_f \) that overlaps with the query region \(R \), and start the iterations over these cells.

4.2.1 Phase I: Result Computation.

Phase I receives: (a) a predictive query \(Q \), either as range, aggregate, or \(k \)-nearest-neighbor, asking about future time \(t \), and (b) a cell \(c_i \) that overlaps with the query area of interest \(R \). The output of Phase I is the partial answer of \(Q \) computed from \(c_i \).

Main idea. The main idea of Phase I is to start by checking if the query answer at the input cell \(c_i \) is already computed. If this is the case, then Phase I is immediately concluded by updating the query result \(Q \) by the precomputed answer of \(c_i \). If the answer at \(c_i \) is not precomputed, then, Phase I will proceed by computing the answer of \(c_i \) from scratch. Phase I avoids the trivial way of computing the prediction function of all objects in the system to find which objects can make it to the query answer at future time \(t \). Instead, Phase I applies a smart time filter to limit its search to only those objects that can possibly reach to cell \(c_i \) within the future time \(t \). Basically, Phase I utilizes the Travel Time Grid (TTG) data structure to find the set of cells \(C_R \) that may include objects reachable to \(c_i \) within time \(t \). Then, we calculate the prediction function for only those objects that lie within any of the cells in \(C_R \). The result of these prediction functions pile up to build the answer result produced from \(c_i \).

Algorithm. The pseudo code of Phase I is depicted in Lines 4 to 16 in Algorithm 1. Phase I starts by checking if the answer of \(c_i \) at time \(t \) is already precomputed in its own \(Query \) List entry in the grid data structure \(SG \). If this is the case, we just retrieve the precomputed answer as the complete cell answer (Line 6 in Algorithm 1), and conclude the phase by using the cell result to update the final query result (Line 16 in Algorithm 1). Updating the result is done through the generic function \(UpdateResults \) that takes two parameters, the first is the result to be updated, and the second is the value to be used to update the result. As will be detailed in Section 5, the operations inside these functions depend on the underlying query type, e.g., aggregate, range, or \(k \)-nearest-neighbor queries. In case that the answer of cell \(c_i \) is not precomputed, we start by computing this answer from scratch (Lines 8 to 14 in algorithm 1). To do so, we apply a time filter by retrieving only the set of cells \(C_R \).
that are reachable to \(c_i \) within the future time \(t \) by checking the Travel Time Grid (TTG). Only those objects that lie within any of the cells in \(C_{Ri} \) may contribute to the final cell answer, and hence the query answer. For each object \(O \) in any of the cells of \(C_{Ri} \), we utilize our underlying prediction function (Section 3.2) to calculate the predicted value of having \(O \) in \(c_i \) within time \(t \) (Line 11 in Algorithm 1). We then use this predicted value to update the result of cell \(c_i \) using the generic UpdateResults function. Once we are done with computing all the predicted values of all objects in any of the cells of \(C_{Ri} \), we again utilize the generic function UpdateResults to update the final query result by the result coming from cell \(c_i \) (Line 16 in Algorithm 1).

Example. Figure 3 gives a running example of Phase I where 19 objects, \(O_1 \) to \(O_{19} \) are laid on a 6 × 6 grid structure. Figure 3(a) indicates the arrival of a new predictive range query \(Q_{30} \), a shaded rectangle in cell \(C_{19} \), that asks about the set of objects that will be in the area of \(Q_{30} \) after 30 minutes. Though we are using a range query as a running example, all idea here are applied to aggregate and \(k \)-nearest-neighbor queries. First, we find out all the cells that overlap the area of query \(Q_{30} \). For ease of illustration, we intentionally have \(Q_{30} \) covering only one cell, \(C_{19} \), in which we are going to carry on for the next steps. If \(Q_{30} \) covers more than one cell, then, the next steps will be repeated for each single cell covered by \(Q_{30} \). Figure 3(b) gives the Query List structure of \(C_{19} \), where two previous predictive queries came at this cell before; a query that asks about 30 minutes in future, and it came only one time before (counter = 1) and another query that asks about 20 minutes in the future and were issued 10 times before. By looking at this data structure, we find that the answer of the future time \(t \) is set to null, i.e., it is not precomputed. In this case, we need to compute the answer for this cell from scratch. Note that if this query was asking about the set of objects after 20 minutes, we would just report the answer as \(\{ O_1, O_9 \} \) as it is already precomputed. Unfortunately, for the case of \(t = 30 \), we need to proceed for more computations.

Figure 3(c) starts the process of computing the answer of cell \(C_{19} \). As a first step, we utilize the Travel Time Grid (TTG) data structure to find out the set of cells that are reachable to \(C_{19} \) within 30 minutes. We find that there are only three cells that can contribute to the answer of \(C_{19} \), namely, \(C_9, C_{15}, C_{33} \). This means that objects that are not located in any of these cells are not going to make any contribution to \(C_{19} \) within 30 minutes, which filters out large number of moving objects that. Then, we can only focus on the objects located in \(C_9, C_{15}, C_{33}, \) where there are only four objects \(O_5, O_9, O_{18}, \) and \(O_{30} \). For each of these four objects, we calculate the prediction function \(\hat{F} \) to find out the probability that these objects can be in \(C_{19} \) in 30 minutes. With probability calculation, we find out that \(O_{18} \) has a zero probability of being in \(C_{19} \) in 30 minutes, while the other three objects have a non-zero probability. We finally report the answer in Figure 3(d) as \(\{ O_5, O_9, O_{18} \} \) along with their probabilities of being in \(C_{19} \) in 30 minutes (Probabilities are not shown in the figure as it is an illustrative example).

4.2.2 Phase II: Statistics Maintenance

Phase II does not add anything to the query answer. Instead, it updates a set of statistics that help in deciding what parts of the space and queries need to be precomputed. The input to this phase is a cell \(c_i \) and its answer list, computed in Phase I. Then, Phase II uses this information to update the statistics maintained by \textit{Panda}.

Main idea. The main idea of Phase II is to employ a tunable threshold, \(0 \leq T \leq \infty \), that provides a trade-off between the predictive query response time and the overhead for precomputing the answer of selected areas. At one extreme, \(T \) is set to 0, which means that all queries will be precomputed beforehand. Though this will provide a minimal response time for any incoming query, a significant system overhead will be consumed for the precomputation and materialization of the answer. On the other extreme, \(T \) is set to \(\infty \), which means that nothing will be precomputed, and all incoming queries need to be computed from scratch. This will provide a minimum system overhead, yet, an incoming predictive query will suffer from high latency. To efficiently utilize the tunable threshold \(T \), Phase II utilizes the \textit{counter} information in the Query List data structure of cell \(c_i \) (described in Section 4.1). If this \textit{counter} exceeds the threshold value \(T \), then, this query is considered frequent, and the answer of this query in cell \(c_i \) is precomputed, i.e., stored in the Query List data structure. In addition, we add cell \(c_i \) to the list of frequent cells in all cells that are reachable to \(c_i \) within time \(t \). This is mainly to say that any object movement in any of these reachable cells will affect the result computed (and maintained) at cell \(c_i \). Such list of reachable cells can be directly obtained from the Travel Time Grid (TTG) data structure.

Algorithm. The pseudo code of Phase II is depicted in Lines 18 to 27 in Algorithm 1. Phase II starts by retrieving the entry \(e \) from the Query List of \(c_i \) that corresponds to the querying time \(t \). If there is no such prior entry, i.e., \(e \) is NULL, we just add a new blank entry in the Query List of \(c_i \), for time \(t \), with \textit{counter} set to zero and \textit{answer} set to null (Lines 18 to 21 in algorithm 1). Then, we just increase the \textit{counter} of \(e \) by one to update the number of times that this query is issued at cell \(c_i \) with time \(t \). Then, we check the \textit{counter} against the system threshold \(T \) and the value of the current cell \textit{Answer}. This check may result in three different
cases as follows: (1) \(e.\text{counter} < T \), i.e., the \(e.\text{counter} \) is less than the system threshold \(T \). In this case, Phase II decides that it is not important to precompute the result of this query, as it is not considered as a frequent query yet. So, Phase II is just concluded.

(2) \(e.\text{Answer} \neq \text{NULL} \). In this case, the query time \(t \) is already considered frequent and the answer is already precomputed. In this case, Phase II will also just conclude as there is no change in status here. (3) \(e.\text{counter} \geq T \) AND \(e.\text{Answer} \) is NULL. This case means that the query time \(t \) has just become a frequent one, and we need to start precomputing the result for \(t \) at cell \(c_i \). In this case, we first add the computed result from Phase I to the answer of \(e \). Then, we find out the set of cells \(C_R \) that are reachable to cell \(c_i \) within time \(t \). For these cells, we add cell \(c_i \) to their list of frequent cells. This is mainly to say that any object movement of any cell \(c_j \in C_R \) will affect the result computed at cell \(c_i \) (Lines 18 to 23 in algorithm 1).

Example. Figure 4 gives a running example of Phase II continuing the computations of Phase I in Figure 3. Figure 4(a) shows that the \(e.\text{counter} \) of the time entry 30 is updated to be 2. Assuming the time threshold \(T \) is set to 2. Then, the time \(t \) is now considered frequent. Figure 4(b) depicts the actions taken by Phase II upon the consideration that \(Q_{30} \) becomes frequent. First, the Query List of \(C_{19} \) is updated to hold the computed answer from Phase I. Second, the cell \(C_{19} \) is added to the set of frequent cells for \(C_9, C_{16}, \) and \(C_{15} \) to indicate that any movement in these three cells may trigger a change of answer for cell \(C_{19} \).

4.3 Object Movement in Panda

As has been discussed in the previous section, the efficiency of the Panda generic query processor relies mainly on how much of the query answer is precomputed. Though we have discussed how *Panda* takes advantage of the precomputed answers, we did not discuss how *Panda* maintains those precomputed answers, given the underlying dynamic environment of moving objects. This section discusses the *answer maintenance* module in *Panda*, depicted in Figure 1, which is basically triggered with every single object movement in any cell \(c_i \) in the space grid \(SG \).

Main idea. The main idea behind the *answer maintenance* module is to check if this object movement has any effect on any of the precomputed answers. If this is the case, then *Panda* computes this effect and propagates it to all affected precomputed answers. If *Panda* figures out that this object movement has no effect on any of the precomputed answers, then, it does nothing for this object movement. As the underlying prediction function \(\hat{F} \) mainly relies on the sequence of prior visited cells for a moving object, an object movement within the cell does not change the object prediction function, and hence will not have any effect on any of the precomputed answers. It is important to note that the *answer maintenance* module does not decide upon which parts of the queries/space to be precomputed, as this decision is already taken by the statistics collected in the generic query processor module. Instead, the *answer maintenance* module just ensures efficient and accurate maintenance of existing precomputed answers.

Algorithm. Algorithm 2 gives the pseudo code of the *Panda answer maintenance* module. The algorithm takes three input parameters, the moved object \(O \), its old cell \(C_{old} \) before movement, and its new cell after movement \(C_{new} \). The first thing we do is to check if the new cell is the same as the old cell. If this is the case, the algorithm immediately terminates as this object movement will not have any effect on any of the precomputed cells. On the other side, if the new cell is different from the old one, the algorithm proceeds in two parts. In the first part (Lines 4 to 10 in Algorithm 2), we first add \(O \) to the set of current objects of \(C_{new} \). Then, we retrieve the set of frequent cells of \(C_{new} \), i.e., those cells that have precomputed answers and may be affected by any change of objects in \(C_{new} \). For each cell \(C_i \) in the set of frequent cells, we do: (a) retrieve the travel time \(t \) from the new cell to \(C_i \) from the *Travel Time Grid* data structure, (b) compute the predicted value of \(O \) being in \(C_i \) after \(t \) time units, and (c) update the precomputed result at cell \(C_i \) by the predicted value, using the generic function *Update Results*. The second part of the algorithm (Lines 11 to 15 in Algorithm 2) is very similar to the first part, except that we are working with \(C_{old} \) instead of \(C_{new} \), where we remove \(O \) from the set of objects of \(C_{old} \), and update all the precomputed frequent cells of \(C_{old} \) accordingly. It is important to notice here that we do not need to compute the object prediction in the second part as it is already calculated before and stored in the precomputed answer at \(C_i \).

Example. Back to our running example in Figure 4(b) that illustrates the precomputed answer for the query \(Q_{30} \) in cell \(C_{19} \). Assume that object \(O_0 \) moves out from its cell \(C_{16} \) to \(C_{17} \). In this case, we add \(O_0 \) to the list of current objects in \(C_{17} \), and get its list of frequent cells, which only includes \(C_1 \). Then, we obtain the time \(t \) between \(C_1 \) and \(C_{17} \) as 40. We then compute \(\hat{F} = P(C_1|O_0) \),

```plaintext
Algorithm 2 Answer Maintenance

Input: Object \( O \), Cell \( C_{old}, \) Cell \( C_{new} \)
1: if \( C_{old} \neq C_{new} \) then
2: Return
3: end if
4: Add \( O \) to the set of current objects of \( C_{new} \)
5: \( C \leftarrow \) The set of frequent cells of \( C_{new} \)
6: for each cell \( C_i \in C \) do
7: \( t \leftarrow \) travel time from \( C_{new} \) to \( C_i \) from \( TTG[n_{new}, i] \)
8: \( \text{ObjectPrediction} \leftarrow \) Compute \( \hat{F} = P(C_{new}|O, t) \)
9: \( \text{UpdateResults} \) (CellResult, ObjectPrediction)
10: end for
11: Remove \( O \) from the set of current objects of \( C_{old} \)
12: \( C \leftarrow \) The set of frequent cells of \( C_{old} \)
13: for each cell \( C_i \in C \) do
14: \( \text{UpdateResults} \) (CellResult, \( O \))
15: end for
16: Return
```
Algorithm 3 Periodic Statistics Maintenance

Input: System Threshold T

1: for each cell $C_i \in$ the Space Grid SG do
2: for each entry $e \in C_i$.QueryList do
3: if e.Counter $\geq T$ then
4: e.Counter $\leftarrow 0$
5: else
6: Remove C_i from the list of frequent cells in each of its reachable cells within e.Time
7: Delete e from C_i.QueryList
8: end if
9: end for
10: end for
11: Return;

40), which gives the probability that O_9 will be in C_1 after 40 time units. We then incrementally update the answer at C_1 by the value of F. We do the same for C_{16}, the cell that O_9 has just departed.

5.4 Periodic Statistics Maintenance

As has been seen earlier, the query processing module (Section 4.2) mainly relies on simple maintained statistics, namely, the counter in the Query List data structure, to decide on which parts of the space to precompute for which future query time. However, the counter information just keeps increasing while frequent queries may no longer be frequent any more, yet, as they still keep their counter value intact, their answers may still be unnecessarily precomputed, causing extra system overhead. It is the job of the periodic statistics maintenance module, discussed in this section, to ensure that current statistics information is accurate and updated.

Main Idea. The main idea behind this module is to run periodically each t units to sweep over current statistics and update it. For a query Q to be considered frequent, it has to appear at least T times in the last time period t, where T is the system threshold, described in Section 4.2. In the mean time, a frequent query Q, which failed to appear at least T times in the last time period t is denoted to be infrequent.

Algorithm. Algorithm 3 gives the pseudo code for the periodic statistics maintenance module. The algorithm sweeps over all grid cells in the grid data structure SG. For each cell C_i, the algorithm goes through each single entry e in C_i.QueryList. For each entry e, we compare its counter against the system threshold T, which will result in one of these two cases: (1) e.Counter $\geq T$. In this case, e represents a frequent query, and thus we just reset its counter to 0 to restart its statistics with the next time period t. (2) e.Counter $< T$, in which e represents a query that failed to appear more than T times in the last time period t. In this case, we remove e from the list C_i.QueryList while doing a clean up by removing the entry for C_i from the list of frequent cells in each of its reachable cells within e.Time.

5. EXTENSIBILITY OF PANDA

This section discusses the extensibility of Panda framework to support various kinds of predictive spatio-temporal queries along with continuous queries.

5.1 Extensibility in Predictive Queries

Algorithms 1 and 2, that give the Panda framework for query processing and the maintenance of precomputed answers, respectively, were described in terms of a generic function, termed UpdateResults($Result, List$), called twice in each algorithm. The UpdateResults function takes two inputs, a (partial) query result and a list of objects along with their prediction functions, and its objective is to update the given query result by the given list of objects. The specific implementation of the UpdateResults generic function depends on the underlying type predictive query. Below is a brief description of the functionality of the UpdateResults function for predictive spatio-temporal range, aggregate, and k-nearest-neighbor queries.

Range Queries. A predictive range query has a query region R and a future time t, and asks about the objects expected to be inside R after time t. In this case, the UpdateResults($Result, List$) implementation is very simple as it just adds the set of objects in $List$, along with the values of their prediction functions to the current result. The running example of Figure 3 was described in terms of range queries.

Aggregate Queries. A predictive aggregate query has a query region R and a future time t, and asks about the number of objects N predicted to be inside R after time t. In this case, the UpdateResults($Result, List$) implementation just adds the number of objects in $List$ to the current value of $Result$. In Figure 3, if Q_{30} is an aggregate query, its answer will be stored as 3.

K-Nearest-Neighbor Queries. A predictive k-nearest-neighbor query has point location P, a future time t, and asks about the k objects expected to be closest to P after time t. To fit the Panda framework, the point P is translated to an area R, which basically includes the grid cell that contains P. Then, the UpdateResults($Result, List$) implementation basically add the objects in $List$ to the current result. If $Result$ ends up to have more than k objects, then, only the closest k objects to P are kept at $Result$, while all other objects are removed from $Result$. If the final query result ends up to have less than k objects, the query is issued again with larger R that includes the cell that contains P and all its neighboring cells. Similarly, if the final query result has K objects, yet, a circle centered at P with radius d (the distance from P to its furthest Kth object) overlaps with any grid cell that is not covered by R, we will issue the query again with larger R that includes all the cells covered by circle C. In Figure 3, consider that Q_{30} is a K-nearest-neighbor query with location point P, located in C_{19} and depicted by a star in Figure 3(a), with $K = 5$ and $t = 30$. In this case, $Panda$ will form a range query that includes cell C_{19}. This gives an answer with only three objects, which is less than K. Then, the query is issued again with an area R that covers the cells $C_{13}, C_{14}, C_{19}, C_{20}, C_{25}$, and C_{26}, which will return more than five objects as an answer. Only the closest five will be selected.

5.2 Extensibility to Continuous Queries

Unlike snapshot predictive spatio-temporal queries that are issued once, and are terminated immediately once a query answer is returned to the user, continuous predictive spatio-temporal queries stay active in the server for long intervals, e.g., hours or days, where updates in the query answer are continuously sent to the user. Examples of continuous predictive spatio-temporal queries include: “Continuously monitor all moving objects within five miles of my location”, “Alert me if any moving object is expected to be within one mile of my area in the next 30 minutes”, or “Send E-coupons to my closest three customers, 10 minutes before they become my closest ones”.

Unlike previous techniques for predictive spatio-temporal queries, it is a silent feature in Panda that it lends itself to continuous query execution. Once a continuous query is issued to
Panda, it is immediately registered as a frequent one, regardless of the number of times it is issued. To this end, the answer of the continuous query is always precomputed and stored in the Query List data structure of the cells overlapping the query region. The only additional component here is to push the precomputed answer to the user upon any change. As continuous queries could be range, aggregate, or k-nearest-neighbor queries, they follow the same requirements of each query type as described in the previous section. Once a continuous query is terminated, we return to the normal processing mode where we take care of the counter of each query to determine the query parts to precompute.

6. EXPERIMENTS

In this section, we evaluate the efficiency and the scalability of our proposed system Panda for processing predictive queries. We start by explaining the environment of the conducted experiments in Section 6.1. Then, we study the impact of threshold tuning on the performance of the main modules of Panda in Section 6.2. Section 6.3 provides the effect of different timeouts on Panda efficiency. The behavior of Panda with different query workloads is given in Section 6.4. Finally, we examine the scalability of Panda with respect to out-sized queries and large number of objects in Sections 6.5 and 6.6, respectively.

6.1 Experiment Setup

In our performance evaluation experiments, we use the Network-based Generator of Moving Objects [3] to generate large sets of synthetic data of moving objects. The input to the generator includes a real road network map for Hennepin County, Minnesota, USA. The output of the generator includes different sets of moving objects that move on the given road network map. The used data sets require some data preprocessing to partition the space in which objects move into $N \times N$ squared grid cells of width relative to the minimum and the maximum step taken by any of the underlying moving objects. Our space grid data structure mirrors the space partitions by storing an identifier for each cell C_i and updatable list of objects moving within that cell C_i. To have the travel time grid TTG filled before starting the experiment, the travel time between any pair of cells, C_i and C_j, is obtained by taking the average time it takes from the underlying set of objects to move from C_i to C_j.

To have the algorithms tested against different workload rather than single queries, a query workload generator is built to obtain workloads of predictive queries that vary in the number of queries, the query region size, and the query future time. The number of queries in the generated workloads starts at 10k queries per batch, and increases by 10k until reaches 100K queries in a query workload. The generated query regions are squares and their locations are uniformly distributed over the space. The size of the generated queries vary from 0.01 to 0.16 of the total space size. The future times for the generated queries vary from 10 to 80 time units. A 3k query workload is used for warming up the system before we start to measure the experimental results.

All experiments are based on an actual implementation of Panda. All the behaviors of the generated objects, query workload generator, and query processing algorithms are implemented on a Core(TM) i3 4GB RAM PC running Windows 7 with C++. In all experiments, the evaluation and comparison are in terms of CPU time cost.

6.2 Impact of Threshold Tuning

In the first set of experiments, we study the impact of different threshold T values on the efficiency of Panda. The minimum value that the T can take in this experiment is zero, which means that the results for any possible query will be precomputed in advance. Accordingly, once a predictive query is received, the answer is read and returned to the user without any further computation. It is obvious here that at this threshold value, we will have the fastest response time, since no computation happens after receiving a query. Just the precomputed result is accessed and returned directly as a final query answer. However, it is expected to have the most significant overhead for updating those precomputed answers. The maximum threshold value is ten which decided based on the number of queries in a timeout divided by the number of cells in our space grid.

Figure 5 illustrates the effect of choosing different threshold values on the performance of Panda. In this experiment we run 5k queries on 10K moving objects at $T = 0, 2, 4, 5, 6, 8, 10$ shown in the x-axis and y-axis represents the average CPU cost per query in milliseconds. In Figure 5(a), we study the influence of threshold tuning on the two phases of the query processing module. As the value of T increases, the cost of Phase I increases. The justification is that when T has large value, this means that most of the answers in the cells intersecting with the query region need to be computed from scratch. With large threshold value, only queries with frequency rate above that value are precomputed. Phase II is not sensitive to threshold tuning. The reason is that Phase II concerns mainly with updating the statistics inside the cells affected by received queries, and those cells are only sensitive to the size of the query region rather than the threshold value.

Figure 5(b) depicts the sensitivity of the main modules in Panda to different threshold values. The cost of query processing module increases when T increases. We justified that in the previous sub-figure. The periodic statistics maintenance module, statistics maintenance for short, is not sensitive to T at all. The third module, object movement is significantly affected by threshold value, as with small values, more answers are precomputed, hence more updates are triggered with each single object movement, and vice versa. In a nutshell, between the minimum T and the maximum T, the threshold value can be tuned to provide the required balance.

6.3 Impact of Query Workload

In this section, we evaluate the efficiency and the scalability of the proposed system Panda for processing predictive queries. We start by explaining the environment of the conducted experiments in Section 6.1. Then, we study the impact of threshold tuning on the performance of the main modules of Panda in Section 6.2. Section 6.3 provides the effect of different timeouts on Panda efficiency. The behavior of Panda with different query workloads is given in Section 6.4. Finally, we examine the scalability of Panda with respect to outsized queries and large number of objects in Sections 6.5 and 6.6, respectively.

6.1 Experiment Setup

In our performance evaluation experiments, we use the Network-based Generator of Moving Objects [3] to generate large sets of synthetic data of moving objects. The input to the generator includes a real road network map for Hennepin County, Minnesota, USA. The output of the generator includes different sets of moving objects that move on the given road network map. The used data sets require some data preprocessing to partition the space in which objects move into a space grid of width relative to the minimum and the maximum step taken by any of the underlying moving objects. Our space grid data structure mirrors the space grid of objects moving within that cell C_i. To have the travel time grid TTG filled before starting the experiment, the travel time between any pair of cells, C_i and C_j, is obtained by taking the average time it takes from the underlying set of objects to move from C_i to C_j.

To have the algorithms tested against different workload rather than single queries, a query workload generator is built to obtain workloads of predictive queries that vary in the number of queries, the query region size, and the query future time. The number of queries in the generated workloads starts at 10K queries per batch, and increases by 10K until reaches 100K queries in a query workload. The generated query regions are squares and their locations are uniformly distributed over the space. The size of the generated queries vary from 0.01 to 0.16 of the total space size. The future times for the generated queries vary from 10 to 80 time units. A 3k query workload is used for warming up the system before we start to measure the experimental results.

All experiments are based on an actual implementation of Panda. All the behaviors of the generated objects, query workload generator, and query processing algorithms are implemented on a Core(TM) i3 4GB RAM PC running Windows 7 with C++. In all experiments, the evaluation and comparison are in terms of CPU time cost.

6.2 Impact of Threshold Tuning

In the first set of experiments, we study the impact of different threshold T values on the efficiency of Panda. The minimum value that the T can take in this experiment is zero, which means that the results for any possible query will be precomputed in advance. Accordingly, once a predictive query is received, the answer is read and returned to the user without any further computation. It is obvious here that at this threshold value, we will have the fastest response time, since no computation happens after receiving a query. Just the precomputed result is accessed and returned directly as a final query answer. However, it is expected to have the most significant overhead for updating those precomputed answers. The maximum threshold value is ten which decided based on the number of queries in a timeout divided by the number of cells in our space grid.

Figure 5 illustrates the effect of choosing different threshold values on the performance of Panda. In this experiment we run 5k queries on 10K moving objects at $T = 0, 2, 4, 5, 6, 8, 10$ shown in the x-axis and y-axis represents the average CPU cost per query in milliseconds. In Figure 5(a), we study the influence of threshold tuning on the two phases of the query processing module. As the value of T increases, the cost of Phase I increases. The justification is that when T has large value, this means that most of the answers in the cells intersecting with the query region need to be computed from scratch. With large threshold value, only queries with frequency rate above that value are precomputed. Phase II is not sensitive to threshold tuning. The reason is that Phase II concerns mainly with updating the statistics inside the cells affected by received queries, and those cells are only sensitive to the size of the query region rather than the threshold value.

Figure 5(b) depicts the sensitivity of the main modules in Panda to different threshold values. The cost of query processing module increases when T increases. We justified that in the previous sub-figure. The periodic statistics maintenance module, statistics maintenance for short, is not sensitive to T at all. The third module, object movement is significantly affected by threshold value, as with small values, more answers are precomputed, hence more updates are triggered with each single object movement, and vice versa. In a nutshell, between the minimum T and the maximum T, the threshold value can be tuned to provide the required balance.

6.3 Impact of Query Workload

In this section, we evaluate the efficiency and the scalability of the proposed system Panda for processing predictive queries. We start by explaining the environment of the conducted experiments in Section 6.1. Then, we study the impact of threshold tuning on the performance of the main modules of Panda in Section 6.2. Section 6.3 provides the effect of different timeouts on Panda efficiency. The behavior of Panda with different query workloads is given in Section 6.4. Finally, we examine the scalability of Panda with respect to outsized queries and large number of objects in Sections 6.5 and 6.6, respectively.
module sharply increases with higher timeouts as a result of more queries parts are being precomputed which means predictive queries while varying the number of received queries.

6.4 Efficiency Evaluation

Each single object movement triggers a possible update. With an opposite impact, the cost of the processing overhead cost used to prepare this answer in advance.

6.3 Impact of Timeout

In this set of experiments, we study the effect of timeout values on the efficiency of Panda. We run a workload of 30K queries on 20K objects with threshold $T = 8$, while varying the timeout values from 3k queries every timeout to 15K queries per timeout. In Figure 6, the x-axis represents the number of queries per timeout and the y-axis represents the average CPU cost per query in milliseconds for processing the given workload at that timeout value. Figure 6(a) shows that there is a slim effect of selecting different timeouts on the two phases of the query processing module. At larger timeouts, 12K and 15K, there is a higher opportunity for queries counters to exceed the given threshold. However, it takes most of the experiment time before the counter passing that threshold. So the effect of timeout is not significant on the two phases of this module. In all cases, more portions of the queries answers are expected to be precomputed, which in turn starts to decrease the cost of computing answers from scratch at timeout 12K in phase1. Figure 6(b) assures that timeout values have different impact on the three main modules of the Panda system. With smaller timeouts, the periodic statistics maintenance module is dispatched more times which gives it higher cost than with bigger timeouts. The curve of the statistics maintenance cost has a decreasing trend from 0.65 milliseconds/query at timeout = 3k to 0.12 milliseconds/query at timeout = 15k. As depicted in the previous figure, there is a slight effect of timeout tuning on the average query cost of the query processing module. With an opposite impact, the cost of the object movement module sharply increases with higher timeouts as a result of more queries parts are being precomputed which means each single object movement triggers a possible update.

6.4 Efficiency Evaluation

To evaluate the efficiency of Panda, we processed workloads of predictive queries while varying the number of received queries from 10K to 100K. We compare the response time and update cost with different queries workloads at the two selected threshold values. The average CPU cost per query in milliseconds. Figure 7(a) studies the update cost at different workloads. As expected, the update costs at $T = 2$ are much bigger than the ones at $T = 8$ in all workloads, while the behavior of the response time, Figure 7(b), is the opposite. It is also remarkable from the decreasing trend of the average update cost per query that Panda acts efficiently even with heavy workloads. The reason for that is the same object update serves many queries with the same update cost. On the other hand, there is a very slight increase in the response time then it almost remains steady from 60K to 100K.

6.5 Scalability with Outsized Queries

We proceed to study the scalability of Panda with large query sizes. In this set of experiments, Figure 8, we show that Panda can scale up with outsized queries, where we run a workload of 20K queries on 20K moving object at $T = 5$ and timeout $= 5K$. The region size of the given queries vary from 0.01 to 0.16 of the total space. From this figure, we notice that when the size increases, Panda still behaves efficiently without significant increase in the total processing cost, for example when the query size increased by 16 times, from 0.01 to 0.16 of the total space, the average processing time per query increases only by three times, from 0.11 to 0.34 milliseconds/query. We also notice that the most affected parts are the query processing and object movement modules because when query size increases, the number of cells intersecting with query region increases. Accordingly, more cells need to compute their results from scratch and more are already precomputed and need to be updated with objects movements. We can conclude that increasing query size affects the response time without significant overhead on update cost.

6.6 Scalability with Number of Objects

In our second set of scalability experiments, Figure 9 depicts the behavior of the main components of Panda when the number of moving objects increases from 5K to 80K. We run these experiments with $T = 5$, timeout $= 3K$, and 20K queries. As seen in this figure, the object movement is the most affected module as there is a positive relationship between the number of objects and update overhead cost results from their movements. It is also observed that there is almost no impact of increasing the underlying number of objects on both the statistics maintenance and the query processing modules. As noticed from the average CPU cost per query when the number of objects increases by 16 times, from 5K to 80K, the average cost per query increases only by less than four times, i.e., from 0.7 to 2.7 milliseconds/query. Also, the average cost per object decreases from 2.95 milliseconds/object at 5K objects to 0.67 mil-
liseconds/object at 80K objects. This shows that Pandas can scale up with large number of moving objects without sacrificing neither the response time nor the overall performance.

7. CONCLUSION

We have presented Panda as a scalable, efficient, and generic framework for supporting a wide variety of predictive spatio-temporal queries. Unlike previous attempts in supporting predictive queries, Panda targets long-term query prediction as it relies on adapting a well-designed long-term prediction function to: (a) scale up to large number of moving objects, and (b) support large number of predictive queries. The main idea of Panda is to precompute the answer for certain areas of space that are likely to be hit by predictive queries. Panda employs a tunable threshold \(T \) that achieves a trade-off between the computational overhead required for precomputation and the query response latency. Panda is extensible to support various kinds of predictive spatio-temporal queries including range, aggregate, and \(k \)-nearest-neighbor queries. Finally, Panda lends itself to support continuous queries, which is very common in spatio-temporal databases. Experimental results, based on large data sets, show that Panda is scalable, efficient, and as accurate as its underlying prediction function.

8. REFERENCES

