Laboratory 4
Being Classy

Objective

Objects are the basic units of programming in object-oriented languages like Java. We define new
types of objects by designing our own classes. A class is the "blueprint" from which objects can
be created. This lab introduces us to designing and working with our own classes. We will build a
program by creating two custom classes. We will explore information hiding and data abstraction.
We will learn about some of the kinds of methods that classes can have.

Key Concepts

Class design
e Data abstraction
e Information hiding
e Instance variables
e Accessor methods
e Mutator methods
e Constructors
e Facilitator methods

e Graphics.drawArc() and Graphics.fillArc () methods

4.1 GETTING STARTED

e Using the procedures in the introductory laboratory handout, create the working directory
\javalab on the appropriate disk drive and obtain a copy of self-extracting archive
lab04.exe. The copy should be placed in the javalab directory. Execute the copy to
extract the files needed for this laboratory.

4.2 DESIGN

For this lab, we are going to design and create a program that will display a "smiley face"
in a window, as in the figure below.

& il ARl

o/

The size of the smiley face is dynamic and dependent upon the size of the window. That
is, our program will automatically scale the smiley face to fit properly in whatever size
window is created.

e The first step in creating a program to satisfy the specified requirements is the design
phase. We need to develop the overall framework for the program. First, how will the
user see the program? The user should be able to enter the size of a window and have a
window of that size appear with a smiley face in the window. The user is not expected to
provide the features of the face or the positions of these features. These will be calculated
by our program.

e What variables should the user be able to access? What variables should the user be able
to modify?

e In order to preserve encapsulation, a user should be able to specify only the size of the
window. The user does not need to have any understanding of how the smiley face is
drawn or scaled to the window.

e However, what do we as programmers need to know to draw a smiley face? List below
the variables that we will need in order to render a smiley face in accordance with the
specifications of our program.

e How many classes should we create? We could create one class SmileyWindow that
reads input from the user, creates a window, and draws a smiley face in the window. In
object-oriented programming, it is best to break tasks into easily managed pieces. Let's
begin by creating a class SmileyFace that will do the actual rendering of the face. If we
create a separate class, we can reuse that class in another application. For example,
perhaps we will want to draw a button with a smiley face on it in a later program. We can
create a button and then access the SmileyFace class to draw the face, instead of
creating a completely new class from scratch.

4.3 MORE DESIGN AND CODE PRODUCTION

e Now let’s begin building the SmileyFace class. Our program will compute the location
of the eyes and smile on the face automatically. Therefore, we need to know only the
diameter of the face and the location of the face.

e Open the file SmileyFace. java.

import java.awt.¥*;

public class SmileyFace ({
private int diameter;
private int x;
private int y;

// constructors
// accessor methods
// mutator methods

// facilitator methods
public void draw(Graphics g) {

}

Notice that our SmileyFace class contains three instance variables: diameter, x, and
y. Why are the variables declared as private?

It is good programming practice to create accessor and mutator methods for each of our
instance variables. Accessor methods typically begin with get followed by the variable
name. Their return type is the same as the variable type. Add accessor methods to your
program for each instance variable. We create the first one for you:

public int getDiameter() {

return diameter;

}

Compile your program. Although there is nothing to run right now, compiling your
program helps find syntax errors early. After every code revision, it is a good idea to
compile the code to check for and to correct syntax errors, such as a missed semicolon or
a misspelled variable name.

Mutator methods are methods that change the value of the variable. Mutator methods
typically begin with set followed by the variable name. Mutator methods are passed a
parameter of the same type as the variable. Mutator methods do not return a value, so
their return type is void. Add mutator methods to your program for each instance
variable. We create the first one for you:
public void setDiameter (int d) ({

diameter = d;

}

In general, it is best to name the parameters in mutators with a name different from the
instance variable. However, Java will allow you to have parameters that have the same
name as instance variables. How does Java tell which variable is which?

public void setDiameter (int diameter) {

diameter = diameter; // the instance variable diameter is not set!!

}

The parameter name has precedence over the instance variable name. In the code above,
the parameter diameter is set to the value of the parameter diameter; hardly a

useful activity! To set the instance variable diameter, we need to use the following
code:
public void setDiameter (int diameter) {

this.diameter = diameter;

}

We will learn more about this in later chapters. For now, this refers to the class and
this.diameter refers to the instance variable diameter.

Although providing these methods may seem to be unnecessary, the methods are
important for achieving information hiding, an important software engineering principle.
Properly hiding information gives the program, not the user, control over the
circumstances under which variables can be accessed or modified. You can also choose
to modify the internal representation of the smiley face, but the user will not know the
difference because he will still call the same accessors and mutators to set the diameter
and coordinates of the face. Separating the internal representation from the user interface,
including the accessors and mutators, is another important software engineering principle.

Now we will add constructors to the code. Add a constructor that initializes the
diameter, x and y variables with user-supplied values. To preserve information hiding,
make sure that your constructor calls the appropriate mutator methods rather than
accessing the variables directly. We provide the header for the constructor:

public SmileyFace(int d, int xPos, int yPos) {

}
Do we need any other constructors? We may need to create a SmileyFace object before
we know the diameter and position of the object. In this case, we need a default
constructor that has no parameters and simply initializes the object. We can add constants
to our object that provide the default value of each instance variable, or we can simply
allow the compiler to initialize each int variable to 0 automatically. For now, since we
will be setting the diameter and coordinates, we will choose to allow the compiler
perform a default initialization for each variable. Add the following default constructor to
your code

public SmileyFace() {
}

If you do not have any constructors in your class, the compiler automatically adds a
constructor like the one that you just added to your code. However, if you have any
constructors in your class, the complier will not add a default constructor and you will
need to add it yourself if you want one for your class.

Now that we have created our accessor, mutator and constructor methods, we can
concentrate on the facilitator methods. Facilitator methods are methods that help the
object perform its intended task. In this case, we need to provide a SmileyFace object,
including its diameter and x and y positions so that it can calculate the coordinates of
its features and draw itself. Because of time constraints in the lab, we've provided the
calculations for you in the file.

e Let's learn how we draw circles and arcs. Open up the Java API specification and find the
method detail for Graphics.drawArc (), located in the java.awt package. Fill in the

g.drawArc(x, y, width, height, ,),
g.drawArc(x, y, width, height, ,)
/ g.drawArc(x, y, width, height, ,),

blanks below to produce Java code to draw the following arcs:

o The method Graphics.£fillArc () works the same way as Graphics.drawArc,
except that it fills the arc with the current Graphics color setting.

o Review the methods drawFace, drawEyes and drawMouth. Do you understand how
the methods work? It may help to work through the code with pencil and paper.

e You will notice that instead of calculating the facial feature coordinates and drawing
them in a single method, we distributed the tasks across multiple methods. In
programming, it is generally recommended that you break down a task into easily
manageable pieces. We could have placed all the code to draw the face in the dr aw
method. But, it is easier to read and debug code that is broken down into manageable
pieces, each represented by a separate method. Add the following lines to your object's
draw method:

drawFace (g) ;

drawEyes (g) ;
drawSmile(g) ;

e Compile your SmileyFace class. If you get any compiler errors, try to determine where
you made any mistakes. If you cannot figure out what is wrong, ask the lab instructor for
assistance.

44 PUTTING IT ALL TOGETHER

e Open the file SmileyWindow. java.

import java.awt.¥*;
import javax.swing.*;
import java.io.¥*;

public class SmileyWindow {
JFrame window;

public SmileyWindow () {
window = new JFrame ("Smile") ;

window.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
}

public void setSize(int width, int height) ({
window.setSize (width, height);
}

public void paint() {
window.setVisible (true) ;

}

public static void main(String[] args) throws IOException {
SmileyWindow me = new SmileyWindow() ;

System.out.print(
"Enter window size : ");
BufferedReader stdin =
new BufferedReader (new InputStreamReader (System.in)) ;

int size = Integer.parseInt(stdin.readLine())

me.setSize(size, size);
me.paint() ;

}

You may have noticed that the window we created is square. Until we learn to write a
program that can make decisions with the i £ statement, it is easier to determine the
diameter of the face using a square window.

Compile and run the program. It should prompt you for a size and then display an empty
window with width and height equal to the size which you provided as input. Do you
understand how the program works?

Now we will add our SmileyFace to the window. Add an instance variable named face
of type SmileyFace to your program.

Smi | eyFace face;

When we call our SmileyWindow constructor, it initializes the JFrame for our window
and sets its default close operation to EXIT _ON_CLOSE. Add a line of code in the
constructor to initialize the face variable by calling its default constructor.

face = new SmileyFace() ;

When the window size is set in the setSize () method, we need to set the size of our
SmileyFace object. We will set our SmileyFace diameter to %™ of the window width.
The x position of the face will be ' the distance remaining after the diameter is
subtracted from the width of the window. The y position is the same as the x position
except that we allowed 10 pixels to accommodate the window title bar. Add the
following lines of code to setSize () :

// calculate size of smiley face, 3/4 of the window width
int diameter = width / 4 * 3;

(width - diameter) / 2;
x + 10;

int x
int y

Notice the first line of code:

int diameter = width / 4 * 3;

Why wouldn't we use the following?
int diameter = 3 / 4 * width;

If we used the preceding line of code the value for diameter would always be set to 0.
Why? (Hint: This has something to do with int arithmetic.)

e Use our calculated diameter and x and y positions to set these values in face. Add the
following lines in your setSize () method following the code you just added to
calculate these variables.

face.setDiameter (diameter) ;
face.setX(x) ;
face.setY(y) ;

o Now our final step is to call SmileyFace.draw (). In the paint () method, add the
following lines of code:

Graphics g = window.getGraphics () ;
face.draw(qg) ;

e We want face to draw itself in window, so we call window.getGraphics () to get the
graphics context for window. We pass this graphics context to face.

o Compile and run the program. If it does not compile or run correctly, try to determine
what the problem is. If you cannot figure it out, ask your lab instructor for assistance.

e When your program runs successfully, try entering different sizes to see if your face is
drawn correctly. It is possible to enter sizes that are too small or sizes that are too large.
In later chapters we will learn how to address this problem.

e Show your completed program to the lab instructor.

4.5 FINISHING UP

e Copy any files you wish to keep to your own drive.
e Delete the directory \javalab.

e Hand in your check-off sheet.

Congratulations! You have now finished the fourth laboratory.

