\qquad

CS3330 Exam 1 - Spring 2014

Name:

Directions: Put the letter of your selection or the number requested in the box. Write clearly: if we are unsure what you wrote you will get a zero on that problem.

If you do not sign the pledge on the last page you will get a zero on the entire quiz.
There are several variants of this exam being given at the same time. Copying from your neighbor is not only cheating, it is also foolish.

Question 1 [1 points]: What is decimal 17 in hexidecimal? (answer with just the hex digits, no leading 0x)

Answer:

Question 2 [1 points]: Suppose the 32-bit value 0×12345678 is stored at address 0×24 of a littleendian computer. What byte is stored at address 0×23 ?

A 0x34
B A known value not listed here
C 0x65
D An unknown value because the number does not overlap address
0×23

E 0x56
F 0x43
Question 3 [1 points]: Which of the following x86 operations modifies two program registers?
A popl \%eax
B pushl \%eax
C movl \%eax, 10 (\%ebx, \%ecx, 4)
D movl \%eax, \%ebx
E addl \%eax, \%ebx
F call Funname
G ret
\qquad

Question 4 [1 points]: $\quad a$ is the 8 -bit value 00110010 and b is the 8 -bit value 10101110 . What is a \& b?

A 10011100
B 11011100
C 10111110
D 11100000
E 00100010
F 10101110
G 00110010
H none of the above
Question 5 [1 points]: What is a "callee-save" register?
A A program register that the called procedure may modify
B A program register that the called procedure may not modify
C A special register that saves which procedure was called
D None of the above

Answer:

Question 6 [1 points]: Suppose that the value stored in byte b of memory is $b+16$. What is the value in \%eax after running the following Y86 instructions

```
mrmovl 0x20, %eax
mrmovl 0x34, %ebx
xorl %ebx, %eax
```

Answer:

(your answer should be eight hex characters, like 000000C3).
Question 7 [1 points]: In what phase of the sequential Y86 implementation does the address of the next instruction get computed, assuming there is not a jump or procedure call?
A Decode
B Execute
C Fetch
D None of the above

Question 8 [1 points]: pushl, popl, call, and ret all modify \%esp, either increasing or decreasing it by 4 . pushl makes the same change to \%esp as:
A ret
B popl
C call
D None of the above

Answer:

Answer:

D 0x63
E 0x33
F 0xd3
G 0xb3
\qquad

Question 10 [1 points]: What bytes of memory are accessed by the x86 operation movl 100, \%ecx?
A 100, 101, 102, and 103
B 100 and 99
C 100 and 101
D 100
E 100, 99, 98, and 97
Answer:

Question 11 [1 points]: In what phase of the sequential Y86 implementation does the address of the next instruction get computed, assuming there is a jump or procedure call?
A Fetch
B Decode
C Execute
D None of the above

Answer:

Question 12 [1 points]: How many bits are in a byte?
A 1
B 32
C 64
D 4
E 2
F 16
G 8
H Which one of the above depends on the computer
Answer:

Question 13 [1 points]: a is the 8 -bit value 00110010 and b is the 8 -bit value 10101110 . What is a | b?
A 10111110
B 10101110
C 11100000
D 00100010
E 00110010
F 11011100
G 10011100
H none of the above
Question 14 [1 points]: The PC of the next instruction in Y86 (when there is not a jump) is either $P C+1, P C+2, P C+5$, or $P C+6$. Since this is addition, why is it not performed in the ALU?
A The ALU might be busy doing something else
B We need the ALU's output to decide what we are adding to the $P C$
C Trick question - computing the PC is performed in the ALU
D The ALU doesn't do addition

Answer:

E We need it's output as an input to the ALU
\qquad

Question 15 [$\mathbf{1}$ points]: How many bits are in a word?
A 16
B 8
C 64
D 32
E Which one of the above depends on the computer

Question 16 [1 points]: What is hexidecimal 0x30 in decimal?
Answer:
\square
Answer:

Question 17 [1 points]: The code ($\mathrm{s} \& \& \mathrm{a}$) || (! s \&\& b) implements
A Set membership
B Adder
C Decoder
D MUX
E Equality
F None of the above

Question 18 [1 points]: A C switch statement can be compiled into x86 as an array of code locations and a jump to an element of that array. Which of the following best describes how that would be implemented in Y86?

A You can't do it: Y86 doesn't support arrays
B The same as in x86: a jump with an element of the array as the target
C You'd load the array element into a register, then jump to that register's value

Answer:

D You can't do it: Y86 only lets you jump to immediate values

Question 19 [1 points]: The bias of any IEEE-style floating point number is $2^{e-1}-1$, where e is the number of exponent bits. Suppose 111010 is a six-bit IEEE-style floating point number, but you don't know how many exponent bits there are. Which of the following is not a possible value for this number? Answers are written in binary.
A NaN
B -1100
Answer:
C -100000000000
D $-\infty$
E -1000000

$$
\text { E }-1000000
$$

\qquad

Question 20 [1 points]: The bias of any IEEE-style floating point number is $2^{e-1}-1$, where e is the number of exponent bits. If largest normalized binary number a particular IEEE format can hold is 1111.11 , how many fraction bits does this format have?
A 1
B 9
C 8
D 3
E 2
F 5
G 4
Question 21 [1 points]: Suppose the 32 -bit value 0×12345678 is stored at address 0×24 of a bigendian computer. What byte is stored at address 0×25 ?
A 0×43
B 0×56
C A known value not listed here
Answer:
D 0x34
E An unknown value because the number does not overlap address
 0x25
F 0x65
Question 22 [1 points]: In what phase of the sequential Y86 implementation does the value of registers get read from the register file?
A Fetch
B Decode
C Memory
D None of the above

Question 23 [1 points]: What is hexidecimal 0x1a in binary? (answer with just the bits, no leading 0s)

Answer:

Question 24 [1 points]: Suppose the 32 -bit value 0×12345678 is stored at address 0×24 of a littleendian computer. What byte is stored at address 0×25 ?

A A known value not listed here
B 0×43
C An unknown value because the number does not overlap address 0x25
D 0×56
Answer:

E 0×34
F 0x65
\qquad

Question 25 [$\mathbf{1}$ points]: $\quad a$ is the 8 -bit value 00110010 and b is the 8 -bit value 10101110 . What is $\mathrm{a}^{\wedge} \mathrm{b}$?
A 10111110
B 11011100
C 00100010
D 10011100
E 11100000
F 00110010
G 10101110
H none of the above

Question 26 [1 points]: The code ($\mathrm{a}=\mathrm{=} \mathrm{~b}$) || ($\mathrm{a}=\mathrm{c}$) || ($\mathrm{a}=\mathrm{d}$) implements
A MUX
B Equality
C Decoder
D Set membership
E Adder
F None of the above

Question 27 [1 points]: Suppose the 32 -bit value 0×12345678 is stored at address 0×24 of a bigendian computer. What byte is stored at address 0×23 ?

A 0x65
B 0×34
C 0x43
Answer:

D A known value not listed here
E An unknown value because the number does not overlap address
Answer:

0x25
F 0x56
Question 28 [1 points]: Write 0x19 in binary. Do not include any leading 0s.

Question 29 [1 points]: Assume \%eax contains the number 30 and \%ecx contains the number 50 (both presented in decimal). What address is read by the $x 86$ (or y86) operation movl 4 (\%eax), \%ecx?
A 54
B 50
C 34
D 120
E 200
F 26
G 46
H 30

\qquad

Question 30 [1 points]: Suppose that the value stored in byte b of memory is $b+16$. What is the value in \%eax after running the Y86 command mrmovl 0x24, \%eax?
A 0×24
B 0x40
C 0x34
D None of the above

```
Answer:
```

Question 31 [1 points]: What is a "caller-save" register?
A A special register that saves who called the procedure
B A program register that the called procedure may not modify
C A program register that the called procedure may modify
D None of the above

Answer:

Question 32 [1 points]: Suppose we are executing addl \%eax, \%ebx. Which two named values in the sequential Y86 architecture are fed into the ALU as its operands?
A \%eax and \%ebx
B valA and valB
Answer:
C 0 (\%eax is register number 0) and 3 (\%ebx is register number 3)
D regA and regB
E None of the above

Question 33 [1 points]: A value is read from memory into a register in mrmovl and in which other operation in the list below?

```
A subl
B nop
C irmovl
D jne
E ret
F halt
G call
H rrmovl
| popl
J rmmovl
K pushl
```

Question 34 [$\mathbf{1}$ points]: What is two's-compliment $11 . . .1100$ in decimal?
Answer:
\qquad

Question 35 [1 points]: We write labels in our assembly, but they are not part of the ISA (either x86 or Y86). Why not?
A They're turned into addresses when we assemble the files
B They're like comments: they only have meaning to us, not to the computer
C They just change how other instructions are encoded
D The assembler turns them into other instructions as a
Answer:
pre-processing stage
Question 36 [1 points]: $\quad a$ is the 8 -bit value 00110010 and b is the 8 -bit value 10101110 . What is $\mathrm{a}-\mathrm{b}$?
A 10101110
B 10011100
C 11100000
D 10111110
E 11011100
F 00100010
Answer:

G 00110010
H none of the above
Question 37 [1 points]: We can encode the C command a ? b : c, where all three variables are of type int, as
A (a \& b) | ($!$ a) \& c)
B ($(-!!a) \& b) \mid((-!a) \& c)$
C ((!!a) \& b) | ($(!a) \& c)$
D Any of the above
E None of the above
Question 38 [1 points]: The code ($\mathrm{a} \& \& \mathrm{~b}$) I| (!a \&\& !b) implements
A MUX
B Adder
C Set membership
D Equality
E Decoder
F None of the above
Question 39 [1 points]: What is binary 110010 in decimal?
Answer:
\qquad

Question 40 [1 points]: How many of the following x86 operations reads values from exactly two registers? Your answer should be a number between 0 and 4 .
A addl \%eax, \%ebx
B movl \%eax, (\%ebx)
C movl \%eax, \%ebx
D movl \%eax, (\%ebx,\%ecx)

Question 41 [1 points]: Assume x is the most positive signed integer. What is $\mathrm{x}+1$?
A $+\infty$
B 0
C -1
D -x
E none of the above
Answer:

Question 42 [1 points]: $\quad a$ is the 8 -bit value 00110010 and b is the 8 -bit value 10101110 . What is $\mathrm{a}+\mathrm{b}$?
A 10101110
B 11011100
C 10011100
D 10111110
E 11100000
F 00100010
G 00110010
H none of the above
Question 43 [1 points]: In general, which of the following is slowest?
A moving from one register to another
B comparing two numbers to decide where to jump
C doing division
D doing addition
E accessing memory

Question 44 [1 points]: Which of the following features of Y86 makes it like a RISC architecture?
A Math ops only function on registers
B Parameters are passed on the stack
C Instructions have variable lengths
D All of the above are RISC-like
Answer:
Answer:

E None of the above are RISC-like
Answer:
\qquad

Question 45 [1 points]: The bias of any IEEE-style floating point number is $2^{e-1}-1$, where e is the number of exponent bits. If largest normalized binary number a particular IEEE format can hold is 1111.11 , how many exponent bits does this format have?
A 3
B 5
C 1
D 2
E 4
F 9
G 8
Question 46 [1 points]: What is binary for the most negative five-bit two's-compliment number? Answer in binary (i.e., with 5 bits, each either a 1 or a 0)

Answer:

Pledge:

On my honor as a student, I have neither given nor received aid on this exam.

Your signature here

