problem group 1 English and Math

1. Rewrite "life is unexpected, but death is not unless it is sudden" as an expression over atomic propositions. Include both a mapping from symbols to propositions and the final expression.
2. Write simple, succinct English that means $P \wedge(\neg Q \rightarrow R)$, where P means "I like potatoes", Q means "I'm on a quest", and R means "I like radishes"
problem group 2 Direct Proof
For each of the following claims, write out a series of steps, one per line, where the first and last lines are given in the problem and each line other than the first is an application of one equivalence rule to the line above it (a list of equivalence rules is on the last page). Write the name of each rule next to the line it creates.
3. Prove that $(P \wedge \neg Q) \equiv \neg(P \rightarrow Q)$
4. Prove that $P \rightarrow(A \vee Q) \equiv(P \wedge \neg A) \rightarrow Q$
5. Prove that $(A \oplus B) \equiv \neg(A \leftrightarrow B) \quad$ note: this is longer than we'd consider in-scope for an in-class quiz

Want more practice? Try $A \oplus B \oplus C \equiv(A \wedge \bar{B} \wedge \bar{C}) \vee(\bar{A} \wedge B \wedge \bar{C}) \vee(\bar{A} \wedge \bar{B} \wedge C) \vee(A \wedge B \wedge C)$, any axiom using only the other axioms, or $\forall x$ chapter 15's exercise C; chapter 17 exercise B; and chapter 19 all exercises

Symbols

Concept	Java/C	Python	This class	Bitwise	Other
true	true	True	\top or 1	-1	T, tautology
false	false	False	\perp or 0	0	F, contradiction
not P	$!\mathrm{p}$	not p	$\neg P$ or \bar{P}	$\sim \mathrm{p}$	
P and Q	$\mathrm{p} \& \& \mathrm{q}$	p and q	$P \wedge Q$	$\mathrm{p} \& \mathrm{q}$	$P Q, P \cdot Q$
P or Q	$\mathrm{p}\|\mid \mathrm{q}$	p or q	$P \vee Q$	$\mathrm{p} \mid \mathrm{q}$	$P+Q$
P xor Q	$\mathrm{p} \quad!=\mathrm{q}$	$\mathrm{p}!=\mathrm{q}$	$P \oplus Q$	$\mathrm{p} \sim \mathrm{q}$	$P \vee Q$
P implies Q			$P \rightarrow Q$		$P \supset Q, P \Rightarrow Q$
P iff Q	$\mathrm{p}==\mathrm{q}$	$\mathrm{p}==\mathrm{q}$	$P \leftrightarrow Q$		$P \Leftrightarrow Q, P$ xnor Q

Axioms: Equivalence rules

- associativity and commutativity of \wedge, \vee, and \oplus; commutativity of \leftrightarrow
- double negation: $\neg \neg P \equiv P$
- simplification: $P \wedge \perp \equiv \perp, P \wedge \top \equiv P, P \vee \perp \equiv P, P \vee \top \equiv \top$, and $P \wedge P \equiv P \vee P \equiv P$
- distribution: $A \wedge(B \vee C) \equiv(A \wedge B) \vee(A \wedge C)$ and $A \vee(B \wedge C) \equiv(A \vee B) \wedge(A \vee C)$
- De Morgan: $\neg(A \wedge B) \equiv(\neg A) \vee(\neg B)$ and $\neg(A \vee B) \equiv(\neg A) \wedge(\neg B)$
- definitions: $A \rightarrow B \equiv(\neg A) \vee B,(A \leftrightarrow B) \equiv(A \rightarrow B) \wedge(B \rightarrow A)$ and $(A \oplus B) \equiv(A \vee B) \wedge \neg(A \wedge B)$

You may use the space below for scratchwork. It will not be graded.

