Problem 1: Symbolizing

Provide a logic translation for each of the following.

1. Every sorting algorithm that is asymptotically faster than mergesort is limited in what kinds of elements can be in its list.
 - Domain: algorithms
 - \(S(x) \): \(x \) is a sorting algorithm
 - \(M(x) \): \(x \) is faster than mergesort
 - \(U(x) \): works on lists of any kind

 \[\forall x . (S(x) \land M(x)) \rightarrow \neg U(x) \]

2. I love everyone who loves me as long as they also like peanut butter or cheddar cheese on their lemon sorbet.
 - Domain: people
 - \(L(x, y) \): \(x \) loves \(y \)
 - \(P(x) \): \(x \) likes peanut butter on lemon sorbet
 - \(C(x) \): \(x \) likes cheddar cheese on lemon sorbet
 - \(m \): Me

 \[\forall x . (L(x, m) \land (P(x) \lor C(x))) \rightarrow L(m, x) \]

What more practice? See Practice Quiz 03 for a list from our textbooks

Problem 2: Prosify

Convert the following proof outlines into prose proofs.

3. Theorem: \((P \land Q) \rightarrow R \equiv P \rightarrow (R \lor \neg Q) \)
 - Proof outline:
 \[(P \land Q) \rightarrow R \equiv \neg(P \land Q) \lor R \equiv (\neg P \lor \neg Q) \lor R \equiv \neg P \lor (\neg Q \lor R) \equiv \neg P \lor (R \lor \neg Q) \equiv P \rightarrow (R \lor \neg Q) \]
 - Proof:
 \((P \land Q) \rightarrow R \) is equivalent to \(\neg(P \land Q) \lor R \) by the definition of implication; De Morgan’s law changes that to \((\neg P \lor \neg Q) \lor R \), which is the same as \(\neg P \lor (R \lor \neg Q) \) by the associative and commutative properties of disjunction. Using the definition of implication again, we arrive at \(P \rightarrow (R \lor \neg Q) \).
4. Theorem: There is an integer that every other integer divides.
Formalism: \(\exists x . \forall y . D(x,y) \) where \(D(x,y) \) means “\(x \) divides \(y \)”.
Proof outline: \(x = 1; y ÷ 1 = y \) remainder 0; \(: \exists x . \forall y . D(x,y) \)

Proof.
Consider \(x = 1 \). 1 divides \(y \) with no remainder regardless of what \(y \) is. Thus, \(\forall y . D(1,y) \). Since this works for \(x = 1 \), we know that \(\exists x . \forall y . D(x,y) \).

\[\square \]

What more practice? Take any proof from Quiz 02 or our textbook and try converting to prose

Problem 3 Complete

Fill in the blanks to complete the following proofs by cases.

Theorem 1 \((P \land Q) \to M \equiv P \to (Q \to M)\)

Proof. Either \(P \) is true or it is false.

Case 1: \(P \) is true The expression \((P \land Q) \to M\) in this case

6. can be simplified to \(Q \to M \) by the equivalence of \(\top \land Q \) and \(Q \).

The expression \(P \to (Q \to M) \) in this case

7. can be simplified to \(Q \to M \) by the equivalence of \(\top \to Q \) and \(Q \).

Because the two are equivalent to the same thing, they are equivalent to each other.

Case 2: \(P \) is false The expression \((P \land Q) \to M\) in this case

8. can be simplified to \(\bot \to M \) by the equivalence of \(\bot \land Q \) and \(\bot \), which in turn is just \(\top \) regardless of the value of \(M \).

The expression \(P \to (Q \to M) \) in this case

9. is \(\bot \to (Q \to M) \), which is \(\top \) regardless of the values of \(Q \) and \(M \).

Because the two are equivalent to the same thing, they are equivalent to each other.

Since \((P \land Q) \to M \equiv P \to (Q \to M)\) is true in both cases, it is true in general. \(\square \)
Theorem 2 \(P \oplus Q \equiv \overline{P} \oplus \overline{Q} \)

Proof. 10. Either \(P \) is true or it is false.

Case 1: \(P \) is true The expression \(P \oplus Q \) in this case

11. is \(T \oplus Q \), which is defined to mean \((T \lor Q) \land (T \land \overline{Q}) \).
Simplifying, that is equivalent to \(T \land \overline{Q} \), or simply \(\overline{Q} \).

The expression \(\overline{P} \oplus \overline{Q} \) in this case

12. is \(\bot \oplus Q \), which is defined to mean \((\bot \lor Q) \land (\bot \land \overline{Q}) \).
We can simplify that to \((\overline{Q}) \land (\bot) \),
which is equivalent to \(\overline{Q} \land \top \) or simply \(\overline{Q} \).

Because the two are equivalent to the same thing, they are equivalent to each other.

Case 2: \(P \) is false The expression \(P \oplus Q \) in this case

13. is \(\bot \oplus Q \), which is defined to mean \((\bot \lor Q) \land (\bot \land \overline{Q}) \).
Simplifying, that is equivalent to \(Q \land \top \), or simply \(Q \).

The expression \(\overline{P} \oplus \overline{Q} \) in this case

14. is \(T \oplus \overline{Q} \), which is defined to mean \((T \lor \overline{Q}) \land (T \land Q) \).
Simplifying, that is equivalent to \(T \land \overline{Q} \), which is equivalent to \(\overline{Q} \).

Because the two are equivalent to the same thing, they are equivalent to each other.

Because \(P \oplus Q \equiv \overline{P} \oplus \overline{Q} \) is true in both cases, it is true in general. \(\Box \)

What more practice? Try MCS problem 1.7; writing the example proofs in \(\forall x \) 15.6, 16.3, 19.2, and 19.6 in prose; \(\forall x \) practice 15.A and 15.B