Practice 04

problem 1 Symbolizing

Provide a logic translation for each of the following.

1. Every sorting algorithm that is asymptotically faster than mergesort is limited in what kinds of elements can be in its list.
domain: algorithms

$$
\begin{aligned}
& S(x): x \text { is a sorting algorithm } \\
& M(x): x \text { is faster than mergesort } \\
& U(x): \text { works on lists of any kind }
\end{aligned}
$$

$$
\forall x .(S(x) \wedge M(x)) \rightarrow \neg U(x)
$$

2. I love everyone who loves me as long as they also like peanut butter or cheddar cheese on their lemon sorbet.
domain: people

$$
\begin{aligned}
& L(x, y): x \text { loves } y \\
& P(x): x \text { likes peanut butter on lemon sorbet } \\
& C(x): x \text { likes cheddar cheese on lemon sorbet } \\
& m: M e
\end{aligned}
$$

$$
\forall x .(L(x, m) \wedge(P(x) \vee C(x))) \rightarrow L(m, x)
$$

What more practice? See Practice Quiz 03 for a list from our textbooks
problem 2 Prosify
Convert the following proof outlines into prose proofs.
3. Theorem: $(P \wedge Q) \rightarrow R \equiv P \rightarrow(R \vee \neg Q)$

Proof outline:
$(P \wedge Q) \rightarrow R \equiv \neg(P \wedge Q) \vee R \equiv(\neg P \vee \neg Q) \vee R \equiv \neg P \vee(\neg Q \vee R) \equiv \neg P \vee(R \vee \neg Q) \equiv P \rightarrow(R \vee \neg Q)$

Proof.
$(P \wedge Q) \rightarrow R$ is equivalent to $\neg(P \wedge Q) \vee R$ by the definition of implication; De Morgan's law changes that to $(\neg P \vee \neg Q) \vee R$, which is the same as $\neg P \vee(R \vee \neg Q)$ by the associative and commutative properties of disjunction. Using the definition of implication again, we arrive at $P \rightarrow(R \vee \neg Q)$.
4. Theorem: There is an integer that every other integer divides.

Formalism: $\exists x . \forall y . D(x, y)$ where $D(x, y)$ means " x divides y ".
Proof outline: $x=1 ; y \div 1=y$ remainder $0 ; \therefore \exists x . \forall y . D(x, y)$
Proof.
Consider $x=1$. 1 divides y with no remainder regardless of what y is. Thus, $\forall y . D(1, y)$. Since this works for $x=1$, we know that $\exists x . \forall y . D(x, y)$.

What more practice? Take any proof from Quiz 02 or our textbook and try converting to prose
problem 3 Complete
Fill in the blanks to complete the following proofs by cases.

Theorem $1(P \wedge Q) \rightarrow M \equiv P \rightarrow(Q \rightarrow M)$
Proof. 5. Either \underline{P} is true or it is false.
Case 1: P is true The expression $(P \wedge Q) \rightarrow M$ in this case
${ }^{\text {6. }}$ can be simplified to $Q \rightarrow M$ by the equivalence of $T \wedge Q$ and Q.

The expression $P \rightarrow(Q \rightarrow M)$ in this case
7. can be simplified to $Q \rightarrow M$ by the equivalence of $T \rightarrow Q$ and Q.

Because the two are equivalent to the same thing, they are equivalent to each other.
Case 2: $\underline{P} \quad$ is false The expression $(P \wedge Q) \rightarrow M$ in this case
8. can be simplified to $\perp \rightarrow M$ by the equivalence of $\perp \wedge Q$ and \perp, which in turn is just T regardless of the value of M.

The expression $P \rightarrow(Q \rightarrow M)$ in this case
${ }^{\text {9. }}$ is $\perp \rightarrow(Q \rightarrow M)$, which is \top regardless of the values of Q and M.

Because the two are equivalent to the same thing, they are equivalent to each other.
Since $(P \wedge Q) \rightarrow M \equiv P \rightarrow(Q \rightarrow M)$ is true in both cases, it is true in general.

Theorem $2 P \oplus Q \equiv \bar{P} \oplus \bar{Q}$
Proof. 10. Either \underline{P} is true or it is false.
Case 1: \qquad is true The expression $P \oplus Q$ in this case
11.
is $T \oplus Q$, which is defined to mean $(T \vee Q) \wedge \overline{(T \wedge Q)}$.
Simplifying, that is equivalent to $T \wedge \bar{Q}$, or simply \bar{Q}.

The expression $\bar{P} \oplus \bar{Q}$ in this case
12.
is $\perp \oplus \bar{Q}$, which is defined to mean $(\perp \vee \bar{Q}) \wedge(\overline{(\perp \bar{Q})}$.
We can simplify that to $(\bar{Q}) \wedge \overline{(\perp)}$,
which is equivalent to $\bar{Q} \wedge T$ or simply \bar{Q}.

Because the two are equivalent to the same thing, they are equivalent to each other.
Case 2: P is false The expression $P \oplus Q$ in this case
13. is $\perp \oplus Q$, which is defined to mean $(\perp \vee Q) \wedge \overline{(\perp \wedge Q)}$. Simplifying, that is equivalent to $Q \wedge T$, or simply Q.

The expression $\bar{P} \oplus \bar{Q}$ in this case
14.
is $T \oplus \bar{Q}$, which is defined to mean $(T \vee \bar{Q}) \wedge \overline{(T \wedge \bar{Q})}$.
Simplifying, that is equivalent to $T \wedge \overline{\bar{Q}}$, which is equivalent to Q.

Because the two are equivalent to the same thing, they are equivalent to each other.
Because $P \oplus Q \equiv \bar{P} \oplus \bar{Q}$ is true in both cases, it is true in general.
What more practice? Try MCS problem 1.7; writing the example proofs in $\forall x 15.6,16.3,19.2$, and 19.6 in prose; $\forall x$ practice 15. A and 15.B

