CS 2102 - DMT1 - Spring 2020 — Luther Tychonievich Practice exercise in class friday february 14, 2020

Practice 04

PROBLEM 1 Symbolizing

Provide a logic translation for each of the following.

1. Every sorting algorithm that is asymptotically faster than mergesort is limited in what kinds of elements can be in its list.

domain: algorithms

2. I love everyone who loves me as long as they also like peanut butter or cheddar cheese on their lemon sorbet.

domain: people

What more practice? See Practice Quiz 03 for a list from our textbooks

PROBLEM 2 Prosify

Convert the following proof outlines into prose proofs.

3. Theorem: $(P \land Q) \rightarrow R \equiv P \rightarrow (R \lor \neg Q)$ Proof outline: $(P \land Q) \rightarrow R \equiv \neg (P \land Q) \lor R \equiv (\neg P \lor \neg Q) \lor R \equiv \neg P \lor (\neg Q \lor R) \equiv \neg P \lor (R \lor \neg Q) \equiv P \rightarrow (R \lor \neg Q)$

Proof. \Box

4. Theorem: There is an integer that every other integer divides. Formalism: $\exists x . \forall y . D(x, y)$ where D(x, y) means "*x* divides *y*". Proof outline: $x = 1; y \div 1 = y$ remainder $0; \therefore \exists x . \forall y . D(x, y)$

Proof. \Box

What more practice? Take any proof from Quiz 02 or our textbook and try converting to prose

PROBLEM 3 Complete

Fill in the blanks to complete the following proofs by cases.

Theorem 1 $(P \land Q) \rightarrow M \equiv P \rightarrow (Q \rightarrow M)$

Proof. 5. Either _____ is true or it is false.

Case 1: _____ is true The expression $(P \land Q) \rightarrow M$ in this case 6.

The expression $P \rightarrow (Q \rightarrow M)$ in this case 7.

Because the two are equivalent to the same thing, they are equivalent to each other.

Case 2: _____ **is false** The expression $(P \land Q) \rightarrow M$ in this case

8.

The expression $P \rightarrow (Q \rightarrow M)$ in this case 9.

Because the two are equivalent to the same thing, they are equivalent to each other. Since $(P \land Q) \rightarrow M \equiv P \rightarrow (Q \rightarrow M)$ is true in both cases, it is true in general. \Box

Theorem 2 $P \oplus Q \equiv \overline{P} \oplus \overline{Q}$

Proof. 10. Either _____ is true or it is false.

Case 1: _____ **is true** The expression $P \oplus Q$ in this case

11.

The expression $\overline{P} \oplus \overline{Q}$ in this case

12.

Because the two are equivalent to the same thing, they are equivalent to each other.

Case 2: _____ **is false** The expression $P \oplus Q$ in this case

13.

The expression $\overline{P} \oplus \overline{Q}$ in this case

14.

Because the two are equivalent to the same thing, they are equivalent to each other.

Because $P \oplus Q \equiv \overline{P} \oplus \overline{Q}$ is true in both cases, it is true in general. \Box

What more practice? Try MCS problem 1.7; writing the example proofs in $\forall x$ 15.6, 16.3, 19.2, and 19.6 *in prose;* $\forall x$ *practice 15.A,* 15.B, and 15.C