CS 2102 - DMT1 - Spring 2020 — Luther Tychonievich Practice exercise in class friday february 28, 2020

Practice 06

PROBLEM 1 Convert to prose

Convert the following symbolic proof that $f(x) = x^2$ to prose. 1. let f(x) be computed as if x <= 0 then return 0 else return $(2 \times x - 1) + f(x - 1)$ Symbolic Proof. $1 \mid f(0) = 0 = 0^2$ definition $2 | f(x-1) = (x-1)^2$ assumption $3 \quad f(x) = 2x - 1 + f(x - 1)$ definition $4 | f(x) = 2x - 1 + (x - 1)^2$ 2 combine line 2 and 3 5 $f(x) = 2x - 1 + (x^2 - 2x + 1)$ algebra on line 4 $6 | f(x) = x^2$ simplify line 5 $3 \quad \forall x \ge 0 \ . \ f(x) = x^2$ principle of induction on lines 1 and 2

Proof.

We proceed by induction on x.

Base case: Assume x = 0. Then f(x) = 0, which is $x \star x$.

Inductive step: Assume that x > 0 and that f(x-1) = (x-1)*(x-1). Then f(x) = 2*x-1 + f(x-1); replacing f(x-1) with (x-1)*(x-1) gives us f(x) = 2*x - 1 + (x-1)*(x-1). Distributing the last term gives us 2*x - 1 + (x*x - 2*x + 1) which can be simplified to x*x.

By the principle of induction, it follows that f(x) always returns $x \star x$. \Box

PROBLEM 2 Code termination

Prove by induction that each of the following functions terminate given any integer argument.

We proceed by induction on x.

- **Base case:** Assume $x \le 0$. Then the function terminates immediately by taking the first branch of the if statement.
- **Inductive step:** Assume that x > 0 and f(x-1) terminates. Then the function takes the second branch of the if statement and terminates after invoking f(x-1) and performing one addition.

By the principle of induction, it follows that f(x) terminates for all integer x. \Box

We proceed by induction on x.

- **Base case:** Assume $x \le 1$. Then the function terminates immediately by taking the first branch of the if statement.
- **Inductive step:** Assume that x > 1 and that f(y) terminates for all y < x. Then the function takes the second branch of the if statement, invoking both f(x-1) and f(x-2). Since both x-1 and x-2 are < x, both invocations terminate, so f(x) also terminates.

By the principle of induction, it follows that f(x) terminates for all integer x. \Box

```
4. let f(x) be computed as
    if x >= -1 then return x
    otherwise return 1 + f(x+1)
Proof.
```

We proceed by induction on x.

Base case: Assume $x \ge -1$. Then the function terminates immediately by taking the first branch of the if statement.

Inductive step: Assume that x < -1 and that f(x+1) terminates. Then the function takes the second branch of the if statement and terminates after invoking f(x+1) and performing one addition.

By the principle of induction, it follows that f(x) terminates for all integer x. \Box

PROBLEM 3 Code property

Prove by induction each of the following functions returns an even number given any non-negative integer argument.

```
5. let f(x) be computed as
y = 0
repeat x times:
y += 2
return y
```

Proof.

We proceed by induction on x.

Base case: Assume x = 0. Then the loop runs 0 times, meaning f(x) = 0, which is even.

Inductive step: Assume that x > 0 and that f(x-1) is even. Then the loop runs one more time than it did for f(x-1), meaning y is 2 larger than f(x-1)'s return value. Since f(x-1) is even and 2 is even and the product of two even numbers is even, y must also be even meaning f(x) is even.

By the principle of induction, it follows that f(x) always returns an even number. \Box

6. let f(x) be computed as if x <= 0 then return 0 else return 4 * f(x-1) Proof.

We proceed by induction on x.

Base case: Assume x = 0. Then f(x) = 0, which is even.

Inductive step: Assume that x > 0 and that f(x-1) is even. Then f(x) = 4 + f(x-1); since 4 is even and f(x-1) is even and the sum of two even numbers is even, f(x) must also be even.

By the principle of induction, it follows that f(x) always returns an even number. \Box

We proceed by induction on x.

Base case: Assume $x = -1^*$. Then f(x) = 2, which is even.

Assume x = 0. Then f(x) = 2, which is even.

Inductive step: Assume that x > 0 and that f(x-2) is even. Then f(x) = 2x f(x-2); since 2 is even and f(x-2) is even and the product of two even numbers is even, f(x) must also be even.

By the principle of induction, it follows that f(x) always returns an even number. \Box

^{*} Note that -1 is not in the domain of the proof (which is non-negative integers), but but will be reached by the code when given a non-negative integer (such as 1) so it is a valid and important base case.