CS 2102 - DMT1 - Spring 2020 - Luther Tychonievich
Practice exercise in class friday february 28,2020

Practice 06

problem 1 Convert to prose
Convert the following symbolic proof that $f(x)=x^{2}$ to prose.

1. let $f(x)$ be computed as
if x <= 0 then return 0
else return $(2 * x-1)+f(x-1)$
Symbolic Proof.
1 f(0) $=0=0^{2}$ definition

2	$f(x-1)=(x-1)^{2}$	assumption
3	$f(x)=2 x-1+f(x-1)$	definition
4	$f(x)=2 x-1+(x-1)^{2}$	combine line 2 and 3
5	$f(x)=2 x-1+\left(x^{2}-2 x+1\right)$	algebra on line 4
6	$f(x)=x^{2}$	simplify line 5

$3 \forall x \geq 0 . f(x)=x^{2}$
principle of induction on lines 1 and 2

Proof.
We proceed by induction on x.
Base case: Assume $x=0$. Then $f(x)=0$, which is $x * x$.
Inductive step: Assume that $x>0$ and that $f(x-1)=(x-1) *(x-1)$. Then $f(x)=2 * x-1+f(x-1)$; replacing $f(x-1)$ with $(x-1) *(x-1)$ gives us $f(x)=2 * x-1+(x-1) *(x-1)$. Distributing the last term gives us $2 * x-1+(x * x-2 * x+1)$ which can be simplified to $x * x$.

By the principle of induction, it follows that $f(x)$ always returns $x * x$. \qquad

problem 2 Code termination

Prove by induction that each of the following functions terminate given any integer argument.
2. Let $f(x)$ be computed as if x <= 0 then return x
otherwise return $1+\mathrm{f}(\mathrm{x}-1)$
Proof.
We proceed by induction on x.
Base case: Assume $x \leq 0$. Then the function terminates immediately by taking the first branch of the if statement.

Inductive step: Assume that $x>0$ and $f(x-1)$ terminates. Then the function takes the second branch of the if statement and terminates after invoking $f(x-1)$ and performing one addition.

By the principle of induction, it follows that $f(x)$ terminates for all integer x.
3. let $f(x)$ be computed as if x <= 1 then return x
otherwise return $1+f(x-1)+f(x-2)$
Proof.
We proceed by induction on x.
Base case: Assume $x \leq 1$. Then the function terminates immediately by taking the first branch of the if statement.

Inductive step: Assume that $x>1$ and that $f(y)$ terminates for all $y<x$. Then the function takes the second branch of the if statement, invoking both $f(x-1)$ and $f(x-2)$. Since both $x-1$ and $x-2$ are $<x$, both invocations terminate, so $f(x)$ also terminates.

By the principle of induction, it follows that $f(x)$ terminates for all integer x.
4. Let $f(x)$ be computed as
if $x>=-1$ then return x
otherwise return $1+\mathrm{f}(\mathrm{x}+1)$
Proof.
We proceed by induction on x.
Base case: Assume $x \geq-1$. Then the function terminates immediately by taking the first branch of the if statement.

Inductive step: Assume that $x<-1$ and that $f(x+1)$ terminates. Then the function takes the second branch of the if statement and terminates after invoking $f(x+1)$ and performing one addition.

By the principle of induction, it follows that $f(x)$ terminates for all integer x.

problem 3 Code property

Prove by induction each of the following functions returns an even number given any non-negative integer argument.

```
5. let \(f(x)\) be computed as
    \(y=0\)
    repeat \(x\) times:
        \(y+=2\)
    return y
Proof.
```

We proceed by induction on x.
Base case: Assume $x=0$. Then the loop runs 0 times, meaning $f(x)=0$, which is even.
Inductive step: Assume that $x>0$ and that $f(x-1)$ is even. Then the loop runs one more time than it did for $f(x-1)$, meaning y is 2 larger than $f(x-1)$'s return value. Since $f(x-1)$ is even and 2 is even and the product of two even numbers is even, y must also be even meaning $f(x)$ is even.

By the principle of induction, it follows that $f(x)$ always returns an even number.
6. Let $f(x)$ be computed as
if x <= 0 then return 0
else return $4 \star f(x-1)$
Proof.
We proceed by induction on x.
Base case: Assume $x=0$. Then $f(x)=0$, which is even.
Inductive step: Assume that $x>0$ and that $f(x-1)$ is even. Then $f(x)=4+f(x-1)$; since 4 is even and $f(x-1)$ is even and the sum of two even numbers is even, $f(x)$ must also be even.

By the principle of induction, it follows that $f(x)$ always returns an even number.
7. let $f(x)$ be computed as
if x <= 0 then return 2
else return $2 \star f(x-2)$
Proof.
We proceed by induction on x.
Base case: Assume $x=-1^{*}$. Then $f(x)=2$, which is even.
Assume $x=0$. Then $f(x)=2$, which is even.
Inductive step: Assume that $x>0$ and that $f(x-2)$ is even. Then $f(x)=2 x f(x-2)$; since 2 is even and
$f(x-2)$ is even and the product of two even numbers is even, $f(x)$ must also be even.
By the principle of induction, it follows that $f(x)$ always returns an even number.
*Note that -1 is not in the domain of the proof (which is non-negative integers), but but will be reached by the code when given a non-negative integer (such as 1) so it is a valid and important base case.

