CS 2102 - DMT1 - Spring 2020 - Luther Tychonievich
Practice exercise in class friday february 28,2020
problem 1 Convert to prose
Convert the following symbolic proof that $f(x)=x^{2}$ to prose.

1. let $f(x)$ be computed as
if $x<=0$ then return 0
else return $(2 * x-1)+f(x-1)$
Symbolic Proof.

1 \begin{tabular}{l|ll}
1 \& $f(0)=0=0^{2}$ \& \\

2 \& | 2 | $f(x-1)=(x-1)^{2}$ | assumption |
| :--- | :--- | :--- |
| 3 | $f(x)=2 x-1+f(x-1)$ | definition |
| 4 | $f(x)=2 x-1+(x-1)^{2}$ | combine line 2 and 3 |
| 5 | $f(x)=2 x-1+\left(x^{2}-2 x+1\right)$ | algebra on line 4 |
| 6 | $f(x)=x^{2}$ | simplify line 5 |

\end{tabular}

$3 \forall x \geq 0 . f(x)=x^{2}$

Practice 06
definition
principle of induction on lines 1 and 2

Proof.
problem 2 Code termination
Prove by induction that each of the following functions terminate given any integer argument.

```
2. let f(x) be computed as
    if x <= 0 then return x
    otherwise return 1 + f(x-1)
Proof.
```

```
3. let f(x) be computed as
    if x <= 1 then return x
    otherwise return 1 + f(x-1) + f(x-2)
Proof.
```

4. Let $f(x)$ be computed as if $x>=-1$ then return x otherwise return $1+f(x+1)$
Proof.
problem 3 Code property
Prove by induction each of the following functions returns an even number given any non-negative integer argument.
```
5. Let \(f(x)\) be computed as
    \(y=0\)
    repeat \(x\) times:
        \(y+=2\)
    return y
Proof.
```

6. Let $f(x)$ be computed as
if x <= 0 then return 0
else return $4 \star f(x-1)$
Proof.
7. let $f(x)$ be computed as
if x <= 0 then return 2
else return 2 * $f(x-2)$
Proof.
