CS 2102 - DMT1 - Spring 2020 — Luther Tychonievich Practice exercise in class friday march 6, 2020

Practice 07

PROBLEM 1 Convert to prose

S: the set of all snakes R: the set of all rabbits E(x, y): x eats y Y(x): x is yellow Convert the following to simple, readable English:

1. $(\exists r \in R, s \in S . E(r, s)) \rightarrow (\neg \forall s \in S . \exists r \in R . E(s, r))$

If any rabbit eats a snake then not all snakes have a rabbit they eat.

2. $\forall r \in R, s \in S . (Y(s) \rightarrow \neg E(s, r)) \land (Y(r) \rightarrow E(r, s))$

Yellow snakes don't eat rabbits, but yellow rabbits eat all the snakes.

3.
$$\forall s_1 \in S : \exists s_2 \in S : \forall s_3 \in S : Y(s_1) \rightarrow (\neg E(s_2, s_3) \land E(s_1, s_2) \land \neg Y(s_2))$$

Every yellow snakes eats some non-yellow snake that doesn't eat snakes.

PROBLEM 2 Primes and factors

PROBLEM 3 Symbolic proof by contradiction

Write a symbolic proof outline of the the following, using proof-by-contradiction. 10. $\frac{2}{3} \notin \mathbb{Z}$

Assume $\frac{2}{3} \in \mathbb{Z}$

definition of set membership
existential instantiation
algebra
fundamental theorem of arithmetic
contradiction
proof by contradiction
conclusion

11. $\sqrt{2} \notin \mathbb{Q}$

Assume $\sqrt{2} \in \mathbb{Q}$ $\exists x, y \in \mathbb{Z} . \sqrt{2} = \frac{x}{y}$ definition of rationals $\sqrt{2} = \frac{x}{y}$ existential instantiation $2y^2 = x^2$ algebra 2 is a factor of $2y^2$ with odd multiplicity fundamental theorem of arithmetic all factors of x^2 have even multiplicity fundamental theorem of arithmetic \bot contradiction Ergo assumption false proof by contradiction $\sqrt{2} \notin \mathbb{Q}$ conclusion

PROBLEM 4 Prose from symbols

Write a prose proof that follows the given symbolic proof outlines.

Assume $\frac{5}{8} \in \mathbb{Z}$	
$\exists x \in \mathbb{Z} \ . \ \frac{5}{8} = x$	definition of set membership
$\frac{5}{8} = x$	existential instantiation
5 = 8x	algebra
2 is a factor of 5	fundamental theorem of arithmetic
\bot	contradiction
Ergo assumption false	proof by contradiction
$\frac{5}{8} \notin \mathbb{Z}$	conclusion

Proof.

12.

We proceed by contradiction.

Assume that $\frac{5}{8}$ is an integer; call that integer *x*. This means that 5 = 8x. By the fundamental theorem of algebra, both sides must have the same prime factors; in particular, 2 is a factor of 8*x*, so it must be a factor of 5; but 2 is not a factor of 5, giving us a contradiction.

Because assume that $\frac{5}{8}$ is an integer resulted in a contradiction, it must be the case that $\frac{5}{8}$ is not an integer.

Assume
$$\sqrt[3]{4} \in \mathbb{Q}$$

 $\exists x, y \in \mathbb{Z} : \sqrt[3]{4} = \frac{x}{y} \land \gcd(x, y) = 1$ definition of set rationals
 $\sqrt[3]{4} = \frac{x}{y}$ existential instantiation
 $4y^3 = x^3$ algebra
 $\neg(2 \mid x) \lor \neg(2 \mid y)$ because $\gcd(x, y) = 1$
 $\boxed{ case 1: \neg(2 \mid x) }$
 $\neg(2 \mid x^3)$
 \bot
 $case 2: \neg(2 \mid y)$
 $(2 \mid x^3)$
 $(2 \mid x)$
 $(8 \mid x^3)$
 $\neg(8 \mid 2y^3)$
 \bot
 $\boxed{ L}$ contradiction
Ergo assumption false proof by contradiction
 $\sqrt[3]{4} \notin \mathbb{Q}$ conclusion

Proof.

13.

We proceed by contradiction.

Assume that $\sqrt[3]{4}$ is a rational number; write that rational in lowest terms as $\frac{x}{y}$. This means that $4y^3 = x^3$. Because $\frac{x}{y}$ is in lowest terms, 2 cannot be a factor of both *x* and *y*; we thus consider two cases:

Case: 2 is not a factor of x This contradicts the fundamental theorem of arithmetic: because $4y^3 = x^3$, 2 must be a factor of x^3 and hence a factor of x as well.

Case: 2 is not a factor of y By the fundamental theorem of arithmetic, 2 must be a factor of x^3 and hence 8 must be a factor of x^3 ; however, 8 cannot be a factor of $4y^3$ unless 2 is a factor of y, resulting in a contradiction.

Because both cases resulted in a contradiction, we have a contradiction in general.

Because assume that $\sqrt[3]{4}$ is a rational number resulted in a contradiction, it must be the case that $\sqrt[3]{4}$ is irrational. \Box

PROBLEM 5 Proof by contradiction

Prove the following using proof-by-contradiction. You may prove them in prose or in symbols or any readable mix of the two.

14. √2 ∉ ℤ

Proof.

We proceed by contradiction.

Assume $\sqrt{2} \in \mathbb{Z}$; let $x \in \mathbb{Z}$ be the element of \mathbb{Z} that equals $\sqrt{2}$. Thus, $2 = x^2$, which means that the prime factorization of x is 2^1 . But a square must have even powers and 1 is not even, which is a contradiction. Because assuming $\sqrt{2} \in \mathbb{Z}$ led to a contradiction, it must be the case that $\sqrt{2} \notin \mathbb{Z}$. \Box

15. $2^{-1} \notin \mathbb{Z}$

Proof.

We proceed by contradiction.

Assume 2^{-1} is an integer; call that integer *x*. Then $2^{-1} = x$, meaning 1 = 2x. By the fundamental theorem of arithmetic, that means that 2 is a factor of 1, but it is not. Because assuming 2^{-1} is an integer led to a contradiction, it must be the case that $2^{-1} \notin \mathbb{Z}$. \Box

16.
$$\sqrt{7} \notin \mathbb{Q}$$

Proof.

We proceed by contradiction. Assume $\sqrt{7} \in \mathbb{Q}$. Then

$$\exists x, y \in \mathbb{Z} \cdot \frac{x}{y} = \sqrt{7}$$
$$\frac{x}{y} = \sqrt{7}$$
$$x = \sqrt{7}y$$
$$x^2 = 7y^2$$

But x^2 must have an even number of 7s in its prime factorization and $7y^2$ must have an odd number, which is a contradiction. Because assuming $\sqrt{7} \in \mathbb{Q}$ led to a contradiction, it must be the case that $\sqrt{7} \notin \mathbb{Q}$. \Box

17. $3^{1.5} \notin \mathbb{Q}$

Proof.

We proceed by contradiction.

Assume $3^{1.5} \in \mathbb{Q}$. Let $\frac{x}{y} = 3^{1.5}$, where *x* and *y* are coprime. Then $\left(\frac{x}{y}\right)^2 = 3^3$ meaning $x^2 = 3^3y^2$. x^2 has an even number of 3s in its prime factorization, as does y^2 , meaning 3^3y^2 has an odd number. But prime factorization are unique, meaning equal values cannot have differing numbers of 3s in their factorization: thus we have a contradiction.

Because assuming $3^{1.5} \in \mathbb{Q}$ led to a contradiction, it must be the case that $3^{1.5} \notin \mathbb{Q}$. \Box

PROBLEM 6 Additional problems

^{18.} Prove there are infinitely many prime numbers. Use $p' = 1 + \prod_{p \in P} p$ where *P* is the set of all primes to derive the contradiction (e.g. by showing both that $p' \in P$ and $p' \notin P$).

^{19.} Prove there are infinitely many integers. Use z + 1 where z is the largest integer to derive the contradiction.

^{20.} Prove there are infinitely many finite-length strings containing the digits 0 and 1. Use the concatenation of *s* and *s*, where *z* a one of the strings of maximal length, to derive the contradiction.

^{21.} Prove there are infinitely many finite natural numbers. Use n + 1, where n is the largest finite natural number, to derive the contradiction.

22. Prove that $\forall n \in \mathbb{N}$. $4|(5^n - 1)$. Use the well-ordering principle to derive a contradiction by showing that if m > 0 is the smallest n that makes the expression false, then m - 1 also makes it false. Include a case that shows that the expression holds for n = 0.

23. Prove that $\forall n \in \mathbb{Z}^+$. $\overline{p_1 \land p_2 \land \dots \land p_n} \equiv \overline{p_1} \lor \overline{p_2} \lor \dots \lor \overline{p_n}$. Use the well-ordering principle to derive a contradiction by showing that if m > 1 is the smallest n that makes the expression false, then m - 1 also makes it false. Include a case that shows that the expression holds for n = 1.

^{24.} Prove there is no smallest positive real number. Use the well-ordering principle to derive a contradiction by showing a smaller positive real number than the smallest positive real. Tools like $n \div 2$ or $n \times n$ might help.

25. Prove there is no real number that is closest to, but not the same as, *x*. Use the well-ordering principle to derive a contradiction by showing a closer real number than the closest real. Tools like $\frac{x+y}{2}$ might help.

26. Prove there is no best rational approximation of $\sqrt{2}$ by showing that, for every approximation x, the value $\frac{x}{2} + \frac{1}{x}$ is a better approximation; you may need to a lemma to show that that $\forall x \in \mathbb{Q}$. $\frac{x}{2} + \frac{1}{x} \neq x$. 27. Prove that $\forall x \in \mathbb{Z}$. $(x + 1)(x - 1) = x^2 - 1$ without using the distributive law of multiplication.

27. Prove that $\forall x \in \mathbb{Z}$. $(x + 1)(x - 1) = x^2 - 1$ without using the distributive law of multiplication. Instead show that it holds for some x (pick any you wish) and that there's no largest or smallest x for which it does not hold.

28. Prove that there is no largest two-argument function f(x, y) that returns x + y in the programming language of your choice. Do this by showing that if there was a largest program, you can make a larger one that has the same behavior.

^{29.} Prove that there is no most-complicated two-argument function f(x, y) that returns x + y in the programming language of your choice, where complication is measured by the number of if statements and loops. Do this by showing that if there was a most complicated program, you can make a more complicated one that has the same behavior.

30. Prove that there is no longest-running two-argument function f(x, y) that returns x + y in the programming language of your choice. Do this by showing that if there was a most longest-running program, you can make a program that takes longer to execute and has the same behavior.