problem 1 Convert to prose
$S$ : the set of all snakes
$R$ : the set of all rabbits
$E(x, y): x$ eats $y$
$Y(x): x$ is yellow
Convert the following to simple, readable English:

1. $(\exists r \in R, s \in S . E(r, s)) \rightarrow(\neg \forall s \in S . \exists r \in R . E(s, r))$

If any rabbit eats a snake then not all snakes have a rabbit they eat.
$\forall r \in R, s \in S .(Y(s) \rightarrow \neg E(s, r)) \wedge(Y(r) \rightarrow E(r, s))$
Yellow snakes don't eat rabbits, but yellow rabbits eat all the snakes.
$\forall s_{1} \in S . \exists s_{2} \in S . \forall s_{3} \in S . Y\left(s_{1}\right) \rightarrow\left(\neg E\left(s_{2}, s_{3}\right) \wedge E\left(s_{1}, s_{2}\right) \wedge \neg Y\left(s_{2}\right)\right)$
Every yellow snakes eats some non-yellow snake that doesn't eat snakes.
problem 2 Primes and factors
4. $\qquad$ is the prime factorization of 28
5. $\qquad$ is the prime factorization of 256
6. $\qquad$ is the prime factorization of 31
7. $\qquad$ is the prime factorization of $4^{8} \cdot 14^{9}$
8. $\qquad$ is the set positive 1-digit numbers relatively prime with 15
9. $\qquad$ is the set positive 1-digit numbers relatively prime with 81
problem 3 Symbolic proof by contradiction
Write a symbolic proof outline of the the following, using proof-by-contradiction.
10. $\frac{2}{3} \notin \mathbb{Z}$

Assume $\frac{2}{3} \in \mathbb{Z}$
$\exists x \in \mathbb{Z} \cdot \frac{2}{3}=x \quad$ definition of set membership
$\frac{2}{3}=x \quad$ existential instantiation
$2=3 x$
3 is a factor of 2 fundamental theorem of arithmetic
$\perp$
contradiction
Ergo assumption false proof by contradiction
$\frac{2}{3} \notin \mathbb{Z} \quad$ conclusion
11. $\sqrt{2} \notin \mathbb{Q}$

Assume $\sqrt{2} \in \mathbb{Q}$
$\exists x, y \in \mathbb{Z} \cdot \sqrt{2}=\frac{x}{y} \quad$ definition of rationals
$\sqrt{2}=\frac{x}{y}$
$2 y^{2}=x^{2}$
2 is a factor of $2 y^{2}$ with odd multiplicity
all factors of $x^{2}$ have even multiplicity
$\perp$

Ergo assumption false
$\sqrt{2} \notin \mathbb{Q}$
existential instantiation
algebra
fundamental theorem of arithmetic
fundamental theorem of arithmetic
contradiction
proof by contradiction
conclusion
problem 4 Prose from symbols
Write a prose proof that follows the given symbolic proof outlines.

```
Assume \(\frac{5}{8} \in \mathbb{Z}\)
    \(\exists x \in \mathbb{Z} \cdot \frac{5}{8}=x \quad\) definition of set membership
    \(\frac{5}{8}=x \quad\) existential instantiation
    \(5=8 x \quad\) algebra
    2 is a factor of 5 fundamental theorem of arithmetic
    \(\perp\) contradiction
Ergo assumption false proof by contradiction
    \(\frac{5}{8} \notin \mathbb{Z} \quad\) conclusion
```

Proof.
We proceed by contradiction.
Assume that $\frac{5}{8}$ is an integer; call that integer $x$. This means that $5=8 x$. By the fundamental theorem of algebra, both sides must have the same prime factors; in particular, 2 is a factor of $8 x$, so it must be a factor of 5 ; but 2 is not a factor of 5 , giving us a contradiction.
Because assume that $\frac{5}{8}$ is an integer resulted in a contradiction, it must be the case that $\frac{5}{8}$ is not an integer.

Assume $\sqrt[3]{4} \in \mathbb{Q}$
$\exists x, y \in \mathbb{Z} \cdot \sqrt[3]{4}=\frac{x}{y} \wedge \operatorname{gcd}(x, y)=1 \quad$ definition of set rationals
$\sqrt[3]{4}=\frac{x}{y} \quad$ existential instantiation
$4 y^{3}=x^{3} \quad$ algebra
$\neg(2 \mid x) \vee \neg(2 \mid y) \quad$ because $\operatorname{gcd}(x, y)=1$

case $1:$|  | $\neg(2 \mid x)$ |
| ---: | :--- |
|  | $\neg\left(2 \mid x^{3}\right)$ |
|  | $\perp$ |
| case $2:$ | $\neg(2 \mid y)$ |
|  | $\left(2 \mid x^{3}\right)$ |
|  | $(2 \mid x)$ |
|  | $\left(8 \mid x^{3}\right)$ |
|  | $\neg\left(8 \mid 2 y^{3}\right)$ |
|  | $\perp$ |

case analysis
contradiction
Ergo assumption false
$\sqrt[3]{4} \notin \mathbb{Q}$
proof by contradiction
conclusion

Proof.
We proceed by contradiction.
Assume that $\sqrt[3]{4}$ is a rational number; write that rational in lowest terms as $\frac{x}{y}$. This means that $4 y^{3}=x^{3}$. Because $\frac{x}{y}$ is in lowest terms, 2 cannot be a factor of both $x$ and $y$; we thus consider two cases:

Case: 2 is not a factor of $x$ This contradicts the fundamental theorem of arithmetic: because $4 y^{3}=x^{3}, 2$ must be a factor of $x^{3}$ and hence a factor of $x$ as well.

Case: 2 is not a factor of $y$ By the fundamental theorem of arithmetic, 2 must be a factor of $x^{3}$ and hence 8 must be a factor of $x^{3}$; however, 8 cannot be a factor of $4 y^{3}$ unless 2 is a factor of $y$, resulting in a contradiction.

Because both cases resulted in a contradiction, we have a contradiction in general.
Because assume that $\sqrt[3]{4}$ is a rational number resulted in a contradiction, it must be the case that $\sqrt[3]{4}$ is irrational.
problem 5 Proof by contradiction
Prove the following using proof-by-contradiction. You may prove them in prose or in symbols or any readable mix of the two.
14. $\sqrt{2} \notin \mathbb{Z}$

Proof.
We proceed by contradiction.
Assume $\sqrt{2} \in \mathbb{Z}$; let $x \in \mathbb{Z}$ be the element of $\mathbb{Z}$ that equals $\sqrt{2}$. Thus, $2=x^{2}$, which means that the prime factorization of $x$ is $2^{1}$. But a square must have even powers and 1 is not even, which is a contradiction.
Because assuming $\sqrt{2} \in \mathbb{Z}$ led to a contradiction, it must be the case that $\sqrt{2} \notin \mathbb{Z}$. $\square$

$$
\text { 15. } 2^{-1} \notin \mathbb{Z}
$$

## Proof.

We proceed by contradiction.
Assume $2^{-1}$ is an integer; call that integer $x$. Then $2^{-1}=x$, meaning $1=2 x$. By the fundamental theorem of arithmetic, that means that 2 is a factor of 1 , but it is not.
Because assuming $2^{-1}$ is an integer led to a contradiction, it must be the case that $2^{-1} \notin \mathbb{Z} . \square$
16. $\sqrt{7} \notin \mathbb{Q}$

Proof.
We proceed by contradiction.
Assume $\sqrt{7} \in \mathbb{Q}$. Then

$$
\begin{aligned}
\exists x, y \in \mathbb{Z} \cdot \frac{x}{y} & =\sqrt{7} \\
\frac{x}{y} & =\sqrt{7} \\
x & =\sqrt{7} y \\
x^{2} & =7 y^{2}
\end{aligned}
$$

But $x^{2}$ must have an even number of 7 s in its prime factorization and $7 y^{2}$ must have an odd number, which is a contradiction.
Because assuming $\sqrt{7} \in \mathbb{Q}$ led to a contradiction, it must be the case that $\sqrt{7} \notin \mathbb{Q}$. $\square$

$$
\text { 17. } 3^{1.5} \notin \mathbb{Q}
$$

Proof.
We proceed by contradiction.
Assume $3^{1.5} \in \mathbb{Q}$. Let $\frac{x}{y}=3^{1.5}$, where $x$ and $y$ are coprime. Then $\left(\frac{x}{y}\right)^{2}=3^{3}$ meaning $x^{2}=3^{3} y^{2}$. $x^{2}$ has an even number of 3 s in its prime factorization, as does $y^{2}$, meaning $3^{3} y^{2}$ has an odd number. But prime factorization are unique, meaning equal values cannot have differing numbers of 3 s in their factorization: thus we have a contradiction.
Because assuming $3^{1.5} \in \mathbb{Q}$ led to a contradiction, it must be the case that $3^{1.5} \notin \mathbb{Q}$.
problem 6 Additional problems
18. Prove there are infinitely many prime numbers. Use $p^{\prime}=1+\prod_{p \in P} p$ where $P$ is the set of all primes to derive the contradiction (e.g. by showing both that $p^{\prime} \in P$ and $p^{\prime} \notin P$ ).
19. Prove there are infinitely many integers. Use $z+1$ where $z$ is the largest integer to derive the contradiction.
20. Prove there are infinitely many finite-length strings containing the digits 0 and 1 . Use the concatenation of $s$ and $s$, where $z$ a one of the strings of maximal length, to derive the contradiction.
21. Prove there are infinitely many finite natural numbers. Use $n+1$, where $n$ is the largest finite natural number, to derive the contradiction.
22. Prove that $\forall n \in \mathbb{N} .4 \mid\left(5^{n}-1\right)$. Use the well-ordering principle to derive a contradiction by showing that if $m>0$ is the smallest $n$ that makes the expression false, then $m-1$ also makes it false. Include a case that shows that the expression holds for $n=0$.
23. Prove that $\forall n \in \mathbb{Z}^{+} . \overline{p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n}} \equiv \overline{p_{1}} \vee \overline{p_{2}} \vee \ldots \vee \overline{p_{n}}$. Use the well-ordering principle to derive a contradiction by showing that if $m>1$ is the smallest $n$ that makes the expression false, then $m-1$ also makes it false. Include a case that shows that the expression holds for $n=1$.
24. Prove there is no smallest positive real number. Use the well-ordering principle to derive a contradiction by showing a smaller positive real number than the smallest positive real. Tools like $n \div 2$ or $n \times n$ might help.
25. Prove there is no real number that is closest to, but not the same as, $x$. Use the well-ordering principle to derive a contradiction by showing a closer real number than the closest real. Tools like $\frac{x+y}{2}$ might help.
26. Prove there is no best rational approximation of $\sqrt{2}$ by showing that, for every approximation $x$, the value $\frac{x}{2}+\frac{1}{x}$ is a better approximation; you may need to a lemma to show that that $\forall x \in \mathbb{Q} \cdot \frac{x}{2}+\frac{1}{x} \neq x$.
27. Prove that $\forall x \in \mathbb{Z} .(x+1)(x-1)=x^{2}-1$ without using the distributive law of multiplication. Instead show that it holds for some $x$ (pick any you wish) and that there's no largest or smallest $x$ for which it does not hold.
28. Prove that there is no largest two-argument function $f(x, y)$ that returns $x+y$ in the programming language of your choice. Do this by showing that if there was a largest program, you can make a larger one that has the same behavior.
29. Prove that there is no most-complicated two-argument function $f(x, y)$ that returns $x+y$ in the programming language of your choice, where complication is measured by the number of if statements and loops. Do this by showing that if there was a most complicated program, you can make a more complicated one that has the same behavior.
30. Prove that there is no longest-running two-argument function $f(x, y)$ that returns $x+y$ in the programming language of your choice. Do this by showing that if there was a most longest-running program, you can make a program that takes longer to execute and has the same behavior.

