
CS 2102 - DMT1 - Spring 2020 — Luther Tychonievich
Practice exercise in class friday march 6, 2020 Practice 07

problem 1 Convert to prose

𝑆: the set of all snakes
𝑅: the set of all rabbits

𝐸(𝑥, 𝑦): 𝑥 eats 𝑦
𝑌(𝑥): 𝑥 is yellow

Convert the following to simple, readable English:

1. (∃𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆 . 𝐸(𝑟, 𝑠)) → (¬∀𝑠 ∈ 𝑆 . ∃𝑟 ∈ 𝑅 . 𝐸(𝑠, 𝑟))

2. ∀𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆 . (𝑌(𝑠) → ¬𝐸(𝑠, 𝑟)) ∧ (𝑌(𝑟) → 𝐸(𝑟, 𝑠))

3. ∀𝑠1 ∈ 𝑆 . ∃𝑠2 ∈ 𝑆 . ∀𝑠3 ∈ 𝑆 . 𝑌(𝑠1) → (¬𝐸(𝑠2, 𝑠3) ∧ 𝐸(𝑠1, 𝑠2) ∧ ¬𝑌(𝑠2))

problem 2 Primes and factors

4. is the prime factorization of 28

5. is the prime factorization of 256

6. is the prime factorization of 31

7. is the prime factorization of 48 ⋅ 149

8. is the set positive 1-digit numbers relatively prime with 15

9. is the set positive 1-digit numbers relatively prime with 81



P07-2

problem 3 Symbolic proof by contradiction

Write a symbolic proof outline of the the following, using proof-by-contradiction.
10. 2

3 ∉ ℤ

11. √2 ∉ ℚ
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problem 4 Prose from symbols

Write a prose proof that follows the given symbolic proof outlines.

12.

Assume 5
8 ∈ ℤ

∃𝑥 ∈ ℤ . 5
8 = 𝑥 definition of set membership

5
8 = 𝑥 existential instantiation

5 = 8𝑥 algebra

2 is a factor of 5 fundamental theorem of arithmetic

⊥ contradiction

Ergo assumption false proof by contradiction
5
8 ∉ ℤ conclusion

Proof.
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13.

Assume 3√4 ∈ ℚ

∃𝑥, 𝑦 ∈ ℤ . 3√4 = 𝑥
𝑦 ∧ gcd(𝑥, 𝑦) = 1 definition of set rationals

3√4 = 𝑥
𝑦 existential instantiation

4𝑦3 = 𝑥3 algebra

¬(2 | 𝑥) ∨ ¬(2 | 𝑦) because gcd(𝑥, 𝑦) = 1

case 1: ¬(2 | 𝑥)

¬(2 | 𝑥3)

⊥

case 2: ¬(2 | 𝑦)

(2 | 𝑥3)

(2 | 𝑥)

(8 | 𝑥3)

¬(8 | 2𝑦3)

⊥

case analysis

⊥ contradiction

Ergo assumption false proof by contradiction
3√4 ∉ ℚ conclusion

Proof.
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problem 5 Proof by contradiction

Prove the following using proof-by-contradiction. You may prove them in prose or in symbols or any read-
able mix of the two.

14. √2 ∉ ℤ

Proof.

15. 2−1 ∉ ℤ

Proof.
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16. √7 ∉ ℚ

Proof.

17. 31.5 ∉ ℚ

Proof.
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problem 6 Additional problems

18. Prove there are infinitely many prime numbers. Use 𝑝′ = 1 + ∏
𝑝∈𝑃

𝑝 where 𝑃 is the set of all primes to

derive the contradiction (e.g. by showing both that 𝑝′ ∈ 𝑃 and 𝑝′ ∉ 𝑃).
19. Prove there are infinitely many integers. Use 𝑧 + 1 where 𝑧 is the largest integer to derive the contra-

diction.
20. Prove there are infinitely many finite-length strings containing the digits 0 and 1. Use the concatena-

tion of 𝑠 and 𝑠, where 𝑧 a one of the strings of maximal length, to derive the contradiction.
21. Prove there are infinitely many finite natural numbers. Use 𝑛 + 1, where 𝑛 is the largest finite natural

number, to derive the contradiction.
22. Prove that ∀𝑛 ∈ ℕ . 4|(5𝑛 − 1). Use the well-ordering principle to derive a contradiction by showing

that if 𝑚 > 0 is the smallest 𝑛 that makes the expression false, then 𝑚 − 1 also makes it false. Include a case
that shows that the expression holds for 𝑛 = 0.

23. Prove that ∀𝑛 ∈ ℤ+ . 𝑝1 ∧ 𝑝2 ∧ … ∧ 𝑝𝑛 ≡ 𝑝1 ∨ 𝑝2 ∨ … ∨ 𝑝𝑛. Use the well-ordering principle to derive
a contradiction by showing that if 𝑚 > 1 is the smallest 𝑛 that makes the expression false, then 𝑚 − 1 also
makes it false. Include a case that shows that the expression holds for 𝑛 = 1.

24. Prove there is no smallest positive real number. Use the well-ordering principle to derive a contra-
diction by showing a smaller positive real number than the smallest positive real. Tools like 𝑛 ÷ 2 or 𝑛 × 𝑛
might help.

25. Prove there is no real number that is closest to, but not the same as, 𝑥. Use the well-ordering principle
to derive a contradiction by showing a closer real number than the closest real. Tools like 𝑥+𝑦

2 might help.
26. Prove there is no best rational approximation of √2 by showing that, for every approximation 𝑥, the

value 𝑥
2 + 1

𝑥 is a better approximation; you may need to a lemma to show that that ∀𝑥 ∈ ℚ . 𝑥
2 + 1

𝑥 ≠ 𝑥.
27. Prove that ∀𝑥 ∈ ℤ . (𝑥 + 1)(𝑥 − 1) = 𝑥2 − 1 without using the distributive law of multiplication.

Instead show that it holds for some 𝑥 (pick any you wish) and that there’s no largest or smallest 𝑥 for which
it does not hold.

28. Prove that there is no largest two-argument function f(x, y) that returns x + y in the program-
ming language of your choice. Do this by showing that if there was a largest program, you can make a larger
one that has the same behavior.

29. Prove that there is no most-complicated two-argument function f(x, y) that returns x + y in the
programming language of your choice, where complication is measured by the number ofif statements and
loops. Do this by showing that if there was a most complicated program, you can make a more complicated
one that has the same behavior.

30. Prove that there is no longest-running two-argument function f(x, y) that returns x + y in the
programming language of your choice. Do this by showing that if there was a most longest-running pro-
gram, you can make a program that takes longer to execute and has the same behavior.


