Problem 1
Convert to prose

\(S \): the set of all snakes
\(R \): the set of all rabbits
\(E(x, y) \): \(x \) eats \(y \)
\(Y(x) \): \(x \) is yellow

Convert the following to simple, readable English:

1. \((\exists r \in R, s \in S . E(r, s)) \rightarrow (\neg \forall s \in S . \exists r \in R . E(s, r)) \)

2. \(\forall r \in R, s \in S . (Y(s) \rightarrow \neg E(s, r)) \land (Y(r) \rightarrow E(r, s)) \)

3. \(\forall s_1 \in S . \exists s_2 \in S . \forall s_3 \in S . Y(s_1) \rightarrow (\neg E(s_2, s_3) \land E(s_1, s_2) \land \neg Y(s_2)) \)

Problem 2
Primes and factors

4. ________________ is the prime factorization of 28

5. ________________ is the prime factorization of 256

6. ________________ is the prime factorization of 31

7. ________________ is the prime factorization of \(4^8 \cdot 14^9\)

8. ________________ is the set positive 1-digit numbers relatively prime with 15

9. ________________ is the set positive 1-digit numbers relatively prime with 81
PROBLEM 3 Symbolic proof by contradiction

Write a symbolic proof outline of the following, using proof-by-contradiction.

10. $\frac{2}{3} \notin \mathbb{Z}$

11. $\sqrt{2} \notin \mathbb{Q}$
PROBLEM 4 Prose from symbols

Write a prose proof that follows the given symbolic proof outlines.

Assume \(\frac{5}{8} \in \mathbb{Z} \)

\[\exists x \in \mathbb{Z} . \frac{5}{8} = x \] definition of set membership

\[\frac{5}{8} = x \] existential instantiation

\[5 = 8x \] algebra

12. 2 is a factor of 5 fundamental theorem of arithmetic

\(\bot \) contradiction

Ergo assumption false proof by contradiction

\[\frac{5}{8} \notin \mathbb{Z} \] conclusion

Proof.
Assume $\sqrt[3]{4} \in \mathbb{Q}$

$\exists x, y \in \mathbb{Z} . \sqrt[3]{4} = \frac{x}{y} \land \gcd(x, y) = 1$ \hspace{1em} \text{definition of set rationals}

$\sqrt[3]{4} = \frac{x}{y}$ \hspace{1em} \text{existential instantiation}

$4y^3 = x^3$ \hspace{1em} \text{algebra}

$\neg(2 \mid x) \lor \neg(2 \mid y)$ \hspace{1em} \text{because } \gcd(x, y) = 1

<table>
<thead>
<tr>
<th>case 1: $\neg(2 \mid x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\neg(2 \mid x^3)$</td>
</tr>
<tr>
<td>\bot</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>case 2: $\neg(2 \mid y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2 \mid x^3$</td>
</tr>
<tr>
<td>$2 \mid x$</td>
</tr>
<tr>
<td>$8 \mid x^3$</td>
</tr>
<tr>
<td>$\neg(8 \mid 2y^3)$</td>
</tr>
<tr>
<td>\bot</td>
</tr>
</tbody>
</table>

\bot \hspace{1em} \text{case analysis}

\bot \hspace{1em} \text{contradiction}

Ergo assumption false \hspace{1em} \text{proof by contradiction}

$\sqrt[3]{4} \notin \mathbb{Q}$ \hspace{1em} \text{conclusion}

Proof.
PROBLEM 5 Proof by contradiction

Prove the following using proof-by-contradiction. You may prove them in prose or in symbols or any readable mix of the two.

14. $\sqrt{2} \notin \mathbb{Z}$

Proof.

15. $2^{-1} \notin \mathbb{Z}$

Proof.
16. $\sqrt{7} \notin \mathbb{Q}$

Proof.

17. $3^{1.5} \notin \mathbb{Q}$

Proof.
PROBLEM 6 Additional problems

18. Prove there are infinitely many prime numbers. Use \(p' = 1 + \prod_{p \in P} p \) where \(P \) is the set of all primes to derive the contradiction (e.g. by showing both that \(p' \in P \) and \(p' \notin P \)).

19. Prove there are infinitely many integers. Use \(z + 1 \) where \(z \) is the largest integer to derive the contradiction.

20. Prove there are infinitely many finite-length strings containing the digits 0 and 1. Use the concatenation of \(s \) and \(s' \), where \(z \) is one of the strings of maximal length, to derive the contradiction.

21. Prove there are infinitely many finite natural numbers. Use \(n + 1 \), where \(n \) is the largest finite natural number, to derive the contradiction.

22. Prove that \(\forall n \in \mathbb{N} . 4|(5^n - 1) \). Use the well-ordering principle to derive a contradiction by showing that if \(m > 0 \) is the smallest \(n \) that makes the expression false, then \(m - 1 \) also makes it false. Include a case that shows that the expression holds for \(n = 0 \).

23. Prove that \(\forall n \in \mathbb{Z}^+ . p_1 \land p_2 \land \ldots \land p_m \equiv p_1 \lor p_2 \lor \ldots \lor p_m \). Use the well-ordering principle to derive a contradiction by showing that if \(m > 1 \) is the smallest \(n \) that makes the expression false, then \(m - 1 \) also makes it false. Include a case that shows that the expression holds for \(n = 1 \).

24. Prove there is no smallest positive real number. Use the well-ordering principle to derive a contradiction by showing a smaller positive real number than the smallest positive real. Tools like \(n \div 2 \) or \(n \times n \) might help.

25. Prove there is no real number that is closest to, but not the same as, \(x \). Use the well-ordering principle to derive a contradiction by showing a closer real number than the closest real. Tools like \(\frac{x+y}{2} \) might help.

26. Prove there is no best rational approximation of \(\sqrt{2} \) by showing that, for every approximation \(x \), the value \(\frac{\sqrt{2} + \frac{1}{3}}{2} \) is a better approximation; you may need to a lemma to show that that \(\forall x \in \mathbb{Q} . \frac{\sqrt{2} + \frac{1}{3}}{2} \neq x \).

27. Prove that \(\forall x \in \mathbb{Z} . (x + 1)(x - 1) = x^2 - 1 \) without using the distributive law of multiplication. Instead show that it holds for some \(x \) (pick any you wish) and that there’s no largest or smallest \(x \) for which it does not hold.

28. Prove that there is no largest two-argument function \(f(x, y) \) that returns \(x + y \) in the programming language of your choice. Do this by showing that if there was a largest program, you can make a larger one that has the same behavior.

29. Prove that there is no most-complicated two-argument function \(f(x, y) \) that returns \(x + y \) in the programming language of your choice, where complication is measured by the number of \(\text{if} \) statements and loops. Do this by showing that if there was a most complicated program, you can make a more complicated one that has the same behavior.

30. Prove that there is no longest-running two-argument function \(f(x, y) \) that returns \(x + y \) in the programming language of your choice. Do this by showing that if there was a most longest-running program, you can make a program that takes longer to execute and has the same behavior.