CS 2102 - DMT1 - Spring 2020 - Luther Tychonievich
Practice exercise in class friday march 6, 2020
Practice 07
problem 1 Products and Powers
Write out the following in full.

1. $\{1,2\} \times\{3\} \times\{1,4\}=$ $\{(1,3,1),(1,3,4),(2,3,1),(2,3,4)\}$
2. $\{56\}^{3}=$ \qquad
3. $\{1,2\} \times \mathscr{P}(\{1\})=\quad\{(1,\{ \}),(1,\{1\}),(2,\{ \}),(2,\{1\})\}$
$\{(1,2,\{ \}),(1,2,\{(1,2,3,4)\})\}$; some uses will treat singleton sets as their one element to get $\{(1,2,\{ \}),(1,2,1,2,3,4)\}$ or chose not to flatten to get
4. $\{(1,2)\} \times P(\{(1,2,3,4)\})=\{((1,2),\{ \}),((1,2),\{(1,2,3,4)\})\}$ or $\{((1,2),\{ \}),((1,2),(1,2,3,4))\}$ instead.
5. $\{a, b\}^{2}=$ \qquad
6. $\{4,1\} \times\{1,2\}=$ \qquad $\{(4,1),(4,2),(1,1),(1,2)\}$
7. $\{4\} \times\{1,2\} \times\{3\}^{3}=$ \qquad
8. $P\left(\})^{2}=\right.$ \qquad
problem 2 Members of Products and Powers
Give two different example members of each of the following sets. Make them different from one another: different lengths, different internal patterns, etc., is the set allows that. If there are not enough elements of the set to give two different elements, leave some blanks blank.
9. $\{a, b, c\}^{4}$ contains \qquad and \qquad
10. $\{a, b, c\}^{1}$ contains \qquad and \qquad
11. $\{a, b, c\}^{0}$ contains \qquad and \qquad
12. $\{a, b, c\}^{*}$ contains \qquad and \qquad
13. $\left\{\right.$ "good", "fun" ${ }^{2}$ contains "goodgood"_ and "fungood"

Give two strings of length 3 belonging to
14. \{"a", "ok"\}": \qquad and \qquad
15. \{"a", "bb", "ccc"\}* \qquad and \qquad
problem 3 Subsequences
Definition 1 A subsequence is a sequence that can be derived from another sequence by deleting zero or more elements without changing the order of the remaining elements.

What are the subsequences of the string " $O K$ "? \qquad """, "O", "K", "OK"

What is the longest subsequence shared by "MATHEMATICS" and "COMPUTERS"? \qquad problem 4 Summation proofs

Prove the following theorems by induction.
16. $\forall n \in \mathbb{N} . \sum_{i=0}^{n} i=\frac{(n)(n+1)}{2}$

Proof.

We proceed by induction.
Base Case When $n=0$ we have $\sum_{i=0}^{0} i=0$ and $\frac{(0)(1)}{2}=0$, so the theorem holds for $n=0$.
Inductive step Assume the theorem holds for some $n \in \mathbb{N}$: that is, $\sum_{i=0}^{n} i=\frac{(n)(n+1)}{2}$. Adding $n+1$ to both sides, we have $n+1+\sum_{i=0}^{n} i=n+1+\frac{(n)(n+1)}{2}$; the left-had side is equivalent to $\sum_{i=0}^{n+1} i$ by the definition of summation; the right-hand side can be rearranged using algebra to get $\frac{2(n+1)+(n)(n+1)}{2}=$ $\frac{(2+n)(n+1)}{2}=\frac{(n+1)((n+1)+1)}{2}$; this means that $\sum_{i=0}^{n+1} i=\frac{(n+1)((n+1)+1)}{2}$, or in other words that the theorem holds for $n+1$.

By the principle of induction, the theorem holds for all $n \in \mathbb{N}$.
17. $\forall n \in \mathbb{N} \cdot \sum_{x=0}^{n} \frac{1}{2^{x}}=\frac{2^{n+1}-1}{2^{n}}$

Proof.

We proceed by induction.
Base Case When $n=0$ we have $\sum_{x=0}^{0} \frac{1}{2^{x}}=1$ and $\frac{2^{1}-1=1}{2^{0}=1}=1$, so the theorem holds for $n=0$.
Inductive step Assume the theorem holds for some $n \in \mathbb{N}$: that is, $\sum_{x=0}^{n} \frac{1}{2^{x}}=\frac{2^{n+1}-1}{2^{n}}$. Adding $\frac{1}{2^{n+1}}$ to both sides, we have $\frac{1}{2^{n+1}}+\sum_{x=0}^{n} \frac{1}{2^{x}}=\frac{1}{2^{n+1}}+\frac{2^{n+1}-1}{2^{n}}$; the left-had side is equivalent to $\sum_{x=0}^{n+1} \frac{1}{2^{x}}$ by the definition of summation; the right-hand side can be rearranged to get $\frac{1+2\left(2^{n+1}-1\right)}{2^{n+1}}=\frac{2^{n+2}-1}{2^{n+1}}$; this means that $\sum_{x=0}^{n+1} \frac{1}{2^{x}}=\frac{2^{n+2}-1}{2^{n+1}}$, or in other words that the theorem holds for $n+1$.

By the principle of induction, the theorem holds for all $n \in \mathbb{N}$.
18. $\forall n \in \mathbb{N} \cdot \sum_{x=n}^{2 n} x=\frac{3(n+1) n}{2}$

Proof.

We proceed by induction.
Base Case When $n=0$ we have $\sum_{x=0}^{0} 0=0$ and $\frac{3(0) 9}{2}=0$, so the theorem holds for $n=0$.
Inductive step Assume the theorem holds for some $n \in \mathbb{N}$: that is, $\sum_{x=n}^{2 n} x=\frac{3(n+1) n}{2}$. Consider the sum evaluated at $n+1$:

$$
\begin{aligned}
\sum_{x=n+1}^{2(n+1)} x & =-n+2 n+1+2 n+2+\sum_{x=n}^{2 n} x \\
& =3 n+3+\sum_{x=n}^{2 n} x \\
& =3 n+3+\frac{3(n+1) n}{2} \\
& =3 n+3+\frac{3 n^{2}+3 n}{2} \\
& =\frac{6 n+6+3 n^{2}+3 n}{2} \\
& =\frac{3\left(n^{2}+3 n+2\right)}{2} \\
& =\frac{3(n+2)(n+1)}{2} \\
& =\frac{3((n+1)+1)(n+1)}{2}
\end{aligned}
$$

which means the theorem holds at $n+1$ as well.

By the principle of induction, the theorem holds for all $n \in \mathbb{N}$.
19. $\forall x \in\{a \mid a \in \mathbb{Z} \wedge a \geq-1\} . \sum_{k=-1}^{x} 12-2 k=26+11 x-x^{2}$

Proof.
We proceed by induction.
Base Case When $x=-1$ we have $\sum_{k=-1}^{-1} 12-2 k=14=26-11-1$, so the theorem holds for $x=-1$.
Inductive step Assume the theorem holds for some x; that is, $\sum_{k=-1}^{x} 12-2 k=26+11 x-x^{2}$. Consider the sum evaluated at $x+1$:

$$
\begin{aligned}
\sum_{k=-1}^{x+1} 12-2 k & =12-2(x+1)+\sum_{k=-1}^{x} 12-2 k \\
& =10-2 x+26+11 x-x^{2} \\
& =(11-1)-2 x+26+11 x-x^{2} \\
& =26+(11+11 x)-\left(1+2 x+x^{2}\right) \\
& =26+11(x+1)-(x+1)^{2}
\end{aligned}
$$

which means the theorem holds at $x+1$ as well.

By the principle of induction, the theorem holds for all $x \in\{a \mid a \in \mathbb{Z} \wedge a \geq-1\}$.

You might also try doing inductive proofs with other summation formulae, such as

$$
\begin{aligned}
\sum_{i=0}^{n} i^{2} & =\frac{(n+1)(2 n+1)(n)}{6} \\
\sum_{i=1}^{n+1} i^{2} & =\frac{(n+2)(2 n+3)(n+1)}{6} \\
\sum_{i=2}^{n+2} i^{2} & =\frac{(n+3)(2 n+5)(n+2)}{6} \\
6 \sum_{i=0}^{n} i^{3}-i & =\binom{n+2}{4} \\
\sum_{x=0}^{n} \frac{x^{2}-1}{x+1} & =\frac{(n+1)(n-1)}{2} \\
\sum_{x=0}^{n} x^{3}-x^{2} & =\frac{(n+1)(3 n+2)(n)(n-1)}{12} \\
\sum_{i=0}^{n} 3 i^{2}+2 i & =\frac{(2 n+3)(n+1)(n)}{2} \\
\sum_{x=n}^{n^{2}} x & =\frac{n+n^{4}}{2} \\
\sum_{x=0}^{2 n}(-1)^{x} x & =n \\
\sum_{i=1}^{n} \frac{1}{2^{i}} & =\frac{2^{n}-1}{2^{n}} \\
\sum_{k=-n}^{0} k & =\frac{(n+1) n}{-2} \\
\sum_{i=1}^{n} \frac{1}{3^{i}} & =\frac{3^{n}-1}{3^{n} 2} \\
\forall k \neq 1 .\left(\sum_{i=1}^{n} \frac{1}{k^{i}}\right. & \left.=\frac{k^{n}-1}{k^{n}(k-1)}\right)
\end{aligned}
$$

Note: at least one of the above formulae is false. In the process of proving it you should find the normal methods not working, revealing the non-truth.

