PROBLEM 1 Products and Powers

Write out the following in full.

PROBLEM 2 Members of Products and Powers

Give two different example members of each of the following sets. Make them different from one another: different lengths, different internal patterns, etc., is the set allows that. If there are not enough elements of the set to give two different elements, leave some blanks blank.

9. {a, b, c} ⁴ contains	"aaaa"	and	"cbac"
10. {a, b, c} ¹ contains	"a"	and	"c"
11. {a, b, c} ⁰ contains	un	and	
12. {a, b, c}* contains	"ba"	and	"cababacc"

Give two strings of length 3 belonging to

PROBLEM 3 Subsequences

Definition 1 A *subsequence* is a sequence that can be derived from another sequence by deleting zero or more elements without changing the order of the remaining elements.

What are the subsequences of the string "OK"? ______ "", "O", "K", "OK"

PROBLEM 4 Summation proofs

Prove the following theorems by induction.

16.
$$\forall n \in \mathbb{N}$$
 .
$$\sum_{i=0}^{n} i = \frac{(n)(n+1)}{2}$$
 Proof.

We proceed by induction.

Base Case When n = 0 we have $\sum_{i=0}^{0} i = 0$ and $\frac{(0)(1)}{2} = 0$, so the theorem holds for n = 0.

Inductive step Assume the theorem holds for some $n \in \mathbb{N}$: that is, $\sum_{i=0}^{n} i = \frac{(n)(n+1)}{2}$. Adding n+1 to both sides, we have $n+1+\sum_{i=0}^{n} i = n+1+\frac{(n)(n+1)}{2}$; the left-had side is equivalent to $\sum_{i=0}^{n+1} i$ by the definition of summation; the right-hand side can be rearranged using algebra to get $\frac{2(n+1)+(n)(n+1)}{2} = \frac{(2+n)(n+1)}{2} = \frac{(n+1)((n+1)+1)}{2}$; this means that $\sum_{i=0}^{n+1} i = \frac{(n+1)((n+1)+1)}{2}$, or in other words that the theorem holds for n+1.

By the principle of induction, the theorem holds for all $n \in \mathbb{N}$. \square

17.
$$\forall n \in \mathbb{N} : \sum_{x=0}^{n} \frac{1}{2^x} = \frac{2^{n+1} - 1}{2^n}$$
Proof.

We proceed by induction.

Base Case When n=0 we have $\sum_{x=0}^{0} \frac{1}{2^x} = 1$ and $\frac{2^1-1=1}{2^0=1} = 1$, so the theorem holds for n=0.

Inductive step Assume the theorem holds for some $n \in \mathbb{N}$: that is, $\sum_{x=0}^{n} \frac{1}{2^x} = \frac{2^{n+1}-1}{2^n}$. Adding $\frac{1}{2^{n+1}}$ to both sides, we have $\frac{1}{2^{n+1}} + \sum_{x=0}^{n} \frac{1}{2^x} = \frac{1}{2^{n+1}} + \frac{2^{n+1}-1}{2^n}$; the left-had side is equivalent to $\sum_{x=0}^{n+1} \frac{1}{2^x}$ by the definition of summation; the right-hand side can be rearranged to get $\frac{1+2(2^{n+1}-1)}{2^{n+1}} = \frac{2^{n+2}-1}{2^{n+1}}$; this means that $\sum_{x=0}^{n+1} \frac{1}{2^x} = \frac{2^{n+2}-1}{2^{n+1}}$, or in other words that the theorem holds for n+1.

By the principle of induction, the theorem holds for all $n \in \mathbb{N}$. \square

18.
$$\forall n \in \mathbb{N}$$
 . $\sum_{x=n}^{2n} x = \frac{3(n+1)n}{2}$ Proof.

We proceed by induction.

Base Case When n = 0 we have $\sum_{x=0}^{0} 0 = 0$ and $\frac{3(0)9}{2} = 0$, so the theorem holds for n = 0.

Inductive step Assume the theorem holds for some $n \in \mathbb{N}$: that is, $\sum_{x=n}^{2n} x = \frac{3(n+1)n}{2}$. Consider the sum evaluated at n+1:

$$\sum_{x=n+1}^{2(n+1)} x = -n+2n+1+2n+2+\sum_{x=n}^{2n} x$$

$$= 3n+3+\sum_{x=n}^{2n} x$$

$$= 3n+3+\frac{3(n+1)n}{2}$$

$$= 3n+3+\frac{3n^2+3n}{2}$$

$$= \frac{6n+6+3n^2+3n}{2}$$

$$= \frac{3(n^2+3n+2)}{2}$$

$$= \frac{3(n+2)(n+1)}{2}$$

$$= \frac{3((n+1)+1)(n+1)}{2}$$

which means the theorem holds at n + 1 as well.

By the principle of induction, the theorem holds for all $n \in \mathbb{N}$. \square

19.
$$\forall x \in \{a \mid a \in \mathbb{Z} \land a \ge -1\}$$
. $\sum_{k=-1}^{x} 12 - 2k = 26 + 11x - x^2$

We proceed by induction.

Base Case When x = -1 we have $\sum_{k=-1}^{-1} 12 - 2k = 14 = 26 - 11 - 1$, so the theorem holds for x = -1.

Inductive step Assume the theorem holds for some x; that is, $\sum_{k=-1}^{x} 12 - 2k = 26 + 11x - x^2$. Consider the sum evaluated at x + 1:

$$\sum_{k=-1}^{x+1} 12 - 2k = 12 - 2(x+1) + \sum_{k=-1}^{x} 12 - 2k$$

$$= 10 - 2x + 26 + 11x - x^{2}$$

$$= (11 - 1) - 2x + 26 + 11x - x^{2}$$

$$= 26 + (11 + 11x) - (1 + 2x + x^{2})$$

$$= 26 + 11(x+1) - (x+1)^{2}$$

which means the theorem holds at x + 1 as well.

By the principle of induction, the theorem holds for all $x \in \{a \mid a \in \mathbb{Z} \land a \ge -1\}$. \square

You might also try doing inductive proofs with other summation formulae, such as

$$\sum_{i=0}^{n} i^2 = \frac{(n+1)(2n+1)(n)}{6}$$

$$\sum_{i=1}^{n+1} i^2 = \frac{(n+2)(2n+3)(n+1)}{6}$$

$$\sum_{i=2}^{n+2} i^2 = \frac{(n+3)(2n+5)(n+2)}{6}$$

$$6 \sum_{i=0}^{n} i^3 - i = \binom{n+2}{4}$$

$$\sum_{x=0}^{n} \frac{x^2 - 1}{x+1} = \frac{(n+1)(n-1)}{2}$$

$$\sum_{x=0}^{n} x^3 - x^2 = \frac{(n+1)(3n+2)(n)(n-1)}{12}$$

$$\sum_{i=0}^{n} 3i^2 + 2i = \frac{(2n+3)(n+1)(n)}{2}$$

$$\sum_{x=n}^{n^2} x = \frac{n+n^4}{2}$$

$$\sum_{x=0}^{n} (-1)^x x = n$$

$$\sum_{i=1}^{n} \frac{1}{2^i} = \frac{2^n - 1}{2^n}$$

$$\sum_{k=-n}^{0} k = \frac{(n+1)n}{-2}$$

$$\sum_{i=1}^{n} \frac{1}{3^i} = \frac{3^n - 1}{3^{n2}}$$

$$\forall k \neq 1 . \left(\sum_{i=1}^{n} \frac{1}{k^i} = \frac{k^n - 1}{k^n(k-1)}\right)$$

Note: at least one of the above formulae is false. In the process of proving it you should find the normal methods not working, revealing the non-truth.