CS 2102 - DMT1 - Spring 2020 - Luther Tychonievich
Practice exercise in class friday march 6, 2020
Practice 07
problem 1 Products and Powers
Write out the following in full.

1. $\{1,2\} \times\{3\} \times\{1,4\}=$ \qquad
2. $\{56\}^{3}=$ \qquad
3. $\{1,2\} \times \mathscr{P}(\{1\})=$ \qquad
4. $\{(1,2)\} \times P(\{(1,2,3,4)\})=$ \qquad
5. $\{a, b\}^{2}=$ \qquad
6. $\{4,1\} \times\{1,2\}=$ \qquad
7. $\{4\} \times\{1,2\} \times\{3\}^{3}=$ \qquad
8. $P\left(\})^{2}=\right.$ \qquad
problem 2 Members of Products and Powers
Give two different example members of each of the following sets. Make them different from one another: different lengths, different internal patterns, etc., is the set allows that. If there are not enough elements of the set to give two different elements, leave some blanks blank.
9. $\{a, b, c\}^{4}$ contains \qquad and \qquad
10. $\{a, b, c\}^{1}$ contains \qquad and \qquad
11. $\{a, b, c\}^{0}$ contains \qquad and \qquad
12. $\{a, b, c\}^{*}$ contains \qquad and \qquad
13. $\{\text { "good", "fun" }\}^{2}$ contains \qquad and \qquad

Give two strings of length 3 belonging to
14. $\{" a ", " o k "\}^{*}:$ \qquad and \qquad
15. \{"a", "bb", "ccc"\}*: \qquad and \qquad problem 3 Subsequences

Definition 1 A subsequence is a sequence that can be derived from another sequence by deleting zero or more elements without changing the order of the remaining elements.

What are the subsequences of the string " OK "? \qquad

What is the longest subsequence shared by "MATHEMATICS" and "COMPUTERS"? \qquad problem 4 Summation proofs

Prove the following theorems by induction.
16. $\forall n \in \mathbb{N} \cdot \sum_{i=0}^{n} i=\frac{(n)(n+1)}{2}$

Proof.
17. $\forall n \in \mathbb{N} \cdot \sum_{x=0}^{n} \frac{1}{2^{x}}=\frac{2^{n+1}-1}{2^{n}}$

Proof.
18. $\forall n \in \mathbb{N} \cdot \sum_{x=n}^{2 n} x=\frac{3(n+1) n}{2}$

Proof.
19. $\forall x \in\{a \mid a \in \mathbb{Z} \wedge a \geq-1\} . \sum_{k=-1}^{x} 12-2 k=26+11 x-x^{2}$

Proof.

You might also try doing inductive proofs with other summation formulae, such as

$$
\begin{aligned}
\sum_{i=0}^{n} i^{2} & =\frac{(n+1)(2 n+1)(n)}{6} \\
\sum_{i=1}^{n+1} i^{2} & =\frac{(n+2)(2 n+3)(n+1)}{6} \\
\sum_{i=2}^{n+2} i^{2} & =\frac{(n+3)(2 n+5)(n+2)}{6} \\
6 \sum_{i=0}^{n} i^{3}-i & =\binom{n+2}{4} \\
\sum_{x=0}^{n} \frac{x^{2}-1}{x+1} & =\frac{(n+1)(n-1)}{2} \\
\sum_{x=0}^{n} x^{3}-x^{2} & =\frac{(n+1)(3 n+2)(n)(n-1)}{12} \\
\sum_{i=0}^{n} 3 i^{2}+2 i & =\frac{(2 n+3)(n+1)(n)}{2} \\
\sum_{x=n}^{n^{2}} x & =\frac{n+n^{4}}{2} \\
\sum_{x=0}^{2 n}(-1)^{x} x & =n \\
\sum_{i=1}^{n} \frac{1}{2^{i}} & =\frac{2^{n}-1}{2^{n}} \\
\sum_{k=-n}^{0} k & =\frac{(n+1) n}{-2} \\
\sum_{i=1}^{n} \frac{1}{3^{i}} & =\frac{3^{n}-1}{3^{n} 2} \\
\forall k \neq 1 .\left(\sum_{i=1}^{n} \frac{1}{k^{i}}\right. & \left.=\frac{k^{n}-1}{k^{n}(k-1)}\right)
\end{aligned}
$$

Note: at least one of the above formulae is false. In the process of proving it you should find the normal methods not working, revealing the non-truth.

