Practice 07

PROBLEM 1 Products and Powers

Write out the following in full.

1. $\{1,2\} \times \{3\} \times \{1,4\} =$	
2. $\{56\}^3 =$	
3. $\{1,2\} \times \mathcal{P}(\{1\}) =$	
4. $\{(1,2)\} \times \mathcal{P}(\{(1,2,3,4)\}) =$	
5. { a , b } ² =	
6. {4,1} × {1,2} =	
7. $\{4\} \times \{1,2\} \times \{3\}^3 =$	
8. $\mathcal{P}(\{\})^2 =$	

PROBLEM 2 Members of Products and Powers

Give two different example members of each of the following sets. Make them different from one another: different lengths, different internal patterns, etc., is the set allows that. If there are not enough elements of the set to give two different elements, leave some blanks blank.

9. {a, b, c}⁴ contains ______ and _____
10. {a, b, c}¹ contains ______ and ______
11. {a, b, c}⁰ contains ______ and ______
12. {a, b, c}* contains ______ and ______

13. {"good", "fun"}² contains ______ and _____

Give two strings of length 3 belonging to

14. {"a", "ok"}*: ______ and _____

15. {"a", "bb", "ccc"}*: _____ and _____

PROBLEM 3 Subsequences

Definition 1 A *subsequence* is a sequence that can be derived from another sequence by deleting zero or more elements without changing the order of the remaining elements.

What are the subsequences of the string "OK"?_____

What is the longest subsequence shared by "MATHEMATICS" and "COMPUTERS"?

PROBLEM 4 Summation proofs

Prove the following theorems by induction. 16. $\forall n \in \mathbb{N}$. $\sum_{i=0}^{n} i = \frac{(n)(n+1)}{2}$ *Proof.*

19.
$$\forall x \in \{a \mid a \in \mathbb{Z} \land a \ge -1\}$$
. $\sum_{k=-1}^{x} 12 - 2k = 26 + 11x - x^2$
Proof.

You might also try doing inductive proofs with other summation formulae, such as

$$\begin{split} \sum_{i=0}^{n} i^2 &= \frac{(n+1)(2n+1)(n)}{6} \\ \sum_{i=1}^{n+1} i^2 &= \frac{(n+2)(2n+3)(n+1)}{6} \\ \sum_{i=2}^{n+2} i^2 &= \frac{(n+3)(2n+5)(n+2)}{6} \\ 6 \sum_{i=0}^{n} i^3 - i &= \binom{n+2}{4} \\ 0 \sum_{x=0}^{n} \frac{x^2 - 1}{x+1} &= \frac{(n+1)(n-1)}{2} \\ \sum_{x=0}^{n} x^3 - x^2 &= \frac{(n+1)(3n+2)(n)(n-1)}{12} \\ \sum_{i=0}^{n} 3i^2 + 2i &= \frac{(2n+3)(n+1)(n)}{2} \\ \sum_{x=0}^{n^2} x &= \frac{n+n^4}{2} \\ \sum_{x=0}^{2n} (-1)^x x &= n \\ \sum_{i=1}^{n} \frac{1}{2^i} &= \frac{2^n - 1}{2^n} \\ \sum_{k=-n}^{0} k &= \frac{(n+1)n}{-2} \\ \sum_{k=-n}^{n} \frac{1}{3^i} &= \frac{3^n - 1}{3^n 2} \\ \forall k \neq 1 . \left(\sum_{i=1}^{n} \frac{1}{k^i} &= \frac{k^n - 1}{k^n(k-1)}\right) \end{split}$$

Note: at least one of the above formulae is false. In the process of proving it you should find the normal methods not working, revealing the non-truth.