CS 2102 - DMT1 - Spring 2020 — Luther Tychonievich Practice exercise in class friday april 1-, 2020

Practice 10

PROBLEM 1 Convert to prose

P: the set of all single-input functions

- *I*: the set of all inputs
- C(p, i): p crashes when run on i

Convert the following to simple, readable English. Make sure your answer shows how the questions are different:

1. $\exists p \in P : \forall i \in I : C(p, i)$

There's a program that crashes no matter what input you give it.

2. $\exists i \in I . \forall p \in P . C(p, i)$

There's one special input that will crash any program you run it on.

3. $\forall p \in P . \exists i \in I . C(p, i)$

Every program has some input it crashes on.

4. $\forall i \in I$. $\exists p \in P$. C(p,i)

Every input has some program it crashes.

Convert the following to logic:

5. If a program crashes on any input, it crashes on more than one input.

 $\forall p \in P \ . \ \left(\exists i \in I \ . \ C(p,i) \right) \rightarrow \left(\exists i, j \in I \ . \ i \neq j \land C(p,i) \land C(p,j) \right)$

6. No program crashes on every input.

$$\begin{split} \forall p \in P \;.\; \exists i \in I \;.\; \neg C(p,i) \\ \underbrace{ \quad \quad or \quad \dots \quad} \\ \nexists p \in P \;.\; \forall i \in I \;.\; C(p,i) \end{split}$$

PROBLEM 2 Identify domain and range

7. If the domain of f(x) = x² is ℝ, it's range is <u>ℝ⁺ ∪ {0}</u>
8. If the domain of f(x) = x² is ℝ, it's range is <u>the perfect squares (0, 1, 4, 9, 16, ...)</u>
9. If the domain of f(x) = x³ is ℝ, it's range is <u>ℝ</u>
10. If the codomain of f(x) = 1/(2x) is ℕ and f is total, ℤ ∩ its domain is <u>ℤ⁻ ∪ {0}</u>
PROBLEM 3 *Provide example functions*In each blank, define a total function f : ℤ → ℤ
11. Give an example injective (1-to-1) and surjective (not onto) function: <u>f(x) = x + 1</u>
12. Give an example injective (1-to-1) but not surjective (not onto) function: <u>f(x) = 2x</u>

13. Give an example non-injective (not 1-to-1) but surjective (onto) function: $f(x) = \lfloor \frac{x}{2} \rfloor$

14. Give an example neither injective (not 1-to-1) not surjective (not onto) function: $f(x) = x^2$

In each blank, define a function $f : \mathbb{N} \to \mathbb{N}$ or relation $R : \mathbb{N} \times \mathbb{N} \to \{\top, \bot\}$

15. Give an example function that is not total: $f(x) = \underline{x-1}$

16. Give an example function that is total but not invertable: $f(x) = (x-1)^2$

17. Give the relation corresponding to the function f(x) = 3x: R(a, b): $\underline{a = 3b}$

18. Give an example relation that is not a function: R(x, y) = x < y

In each blank, define a function $f : \mathbb{R} \to \mathbb{R}$

Give an example function that is not total: $f(x) = \sqrt{x}$

Give an example function that is total but not invertable: $f(x) = \underline{x^2}$

Give an example function that is invertable: $f(x) = \underline{x}$