problem 1 Convert to prose
P : the set of all single-input functions
I : the set of all inputs
$C(p, i)$: p crashes when run on i
Convert the following to simple, readable English. Make sure your answer shows how the questions are different:

1. $\exists p \in P . \forall i \in I . C(p, i)$

There's a program that crashes no matter what input you give it.
2. $\exists i \in I . \forall p \in P . C(p, i)$

There's one special input that will crash any program you run it on.
3. $\forall p \in P . \exists i \in I . C(p, i)$

Every program has some input it crashes on.
4. $\forall i \in I . \exists p \in P . C(p, i)$

Every input has some program it crashes.

Convert the following to logic:
5. If a program crashes on any input, it crashes on more than one input.
$\forall p \in P .(\exists i \in I . C(p, i)) \rightarrow(\exists i, j \in I . i \neq j \wedge C(p, i) \wedge C(p, j))$
6. No program crashes on every input.
$\forall p \in P . \exists i \in I . \neg C(p, i)$

- or -
$\nexists p \in P . \forall i \in I . C(p, i)$
problem 2 Identify domain and range

7. If the domain of $f(x)=x^{2}$ is \mathbb{R}, it's range is $\mathbb{R}^{+} \cup\{0\}$
8. If the domain of $f(x)=x^{2}$ is \mathbb{N}, it's range is the perfect squares $(0,1,4,9,16, \ldots)$
9. If the domain of $f(x)=x^{3}$ is \mathbb{R}, it's range is \mathbb{R} \qquad
10. If the codomain of $f(x)=\frac{1}{2^{x}}$ is \mathbb{N} and f is total, $\mathbb{Z} \cap$ its domain is $\mathbb{Z}^{-} \cup\{0\}$
problem 3 Provide example functions
In each blank, define a total function $f: \mathbb{Z} \rightarrow \mathbb{Z}$
11. Give an example injective (1-to-1) and surjective (onto) function: $f(x)=x+1$
12. Give an example injective (1-to-1) but not surjective (not onto) function: $f(x)=2 x$
13. Give an example non-injective (not 1-to-1) but surjective (onto) function: $f(x)=\left\lfloor\frac{x}{2}\right\rfloor$
14. Give an example neither injective (not 1-to-1) not surjective (not onto) function: $f(x)=x^{2}$

In each blank, define a function $f: \mathbb{N} \rightarrow \mathbb{N}$ or relation $R: \mathbb{N} \times \mathbb{N} \rightarrow\{\top, \perp\}$
15. Give an example function that is not total: $f(x)=\underline{x-1}$
16. Give an example function that is total but not invertable: $f(x)=(x-1)^{2}$
17. Give the relation corresponding to the function $f(x)=3 x: R(a, b): a=3 b$
18. Give an example relation that is not a function: $R(x, y)=\underline{x}<y$

In each blank, define a function $f: \mathbb{R} \rightarrow \mathbb{R}$

Give an example function that is not total: $f(x)=\sqrt{x}$

Give an example function that is total but not invertable: $f(x)=\underline{x^{2}}$

Give an example function that is invertable: $f(x)=\underline{x}$

