CS 2102 - DMT1 - Spring 2020 — Luther Tychonievich Practice exercise in class friday april 1-, 2020

Practice 10

PROBLEM 1 Convert to prose

P: the set of all single-input functions

I: the set of all inputs

C(p,i): p crashes when run on i

Convert the following to simple, readable English. Make sure your answer shows how the questions are different:

1. $\exists p \in P : \forall i \in I : C(p,i)$

2. $\exists i \in I$. $\forall p \in P$. C(p,i)

3. $\forall p \in P . \exists i \in I . C(p, i)$

4. $\forall i \in I . \exists p \in P . C(p, i)$

Convert the following to logic:

5. If a program crashes on any input, it crashes on more than one input.

6. No program crashes on every input.

PROBLEM 2 Identify domain and range

7. If the domain of $f(x) = x^2$ is \mathbb{R} , it's range is	
8. If the domain of $f(x) = x^2$ is \mathbb{N} , it's range is	
9. If the domain of $f(x) = x^3$ is \mathbb{R} , it's range is	
10. If the codomain of $f(x) = \frac{1}{2^x}$ is \mathbb{N} and f is total, $\mathbb{Z} \cap$ its domain is	
PROBLEM 3 Provide example functions	
In each blank, define a total function $f:\mathbb{Z} \to \mathbb{Z}$	
11. Give an example injective (1-to-1) and surjective (onto) function:	
12. Give an example injective (1-to-1) but not surjective (not onto) function:	
13. Give an example non-injective (not 1-to-1) but surjective (onto) function:	
14. Give an example neither injective (not 1-to-1) not surjective (not onto) function:	

In each blank, define a function $f : \mathbb{N} \to \mathbb{N}$ or relation $R : \mathbb{N} \times \mathbb{N} \to \{\top, \bot\}$

15. Give an example function that is not total: f(x) =

16. Give an example function that is total but not invertable: f(x) =

17. Give the relation corresponding to the function f(x) = 3x: R(a, b):

18. Give an example relation that is not a function: R(x, y) = ______

In each blank, define a function $f : \mathbb{R} \to \mathbb{R}$

Give an example function that is not total: f(x) = _____

Give an example function that is total but not invertable: f(x) =

Give an example function that is invertable: f(x) = _____