Name:	CompID:
CS 2102 - DMT1 - Spring 2020 — Luther Tychonievich In-class Quiz friday january 31, 2020	Quiz 02
PROBLEM GROUP 1 English and Math	
1. Write simple, succinct English that means $(P \land Q) \lor (\neg P \land \neg Q)$, where P means "I like potatoes", Q means "I'm on a quest"	2. Rewrite "I'll win if neither hurt nor tired" as an expression over atomic propositions. Include both a mapping from symbols to propositions and the final expression.
I like potatoes when on a quest, but not when not. — or — I'm on a quest if and only if I like potatoes. etc.	W: I'll win H: I'm hurt T: I'm tired

PROBLEM GROUP 2 Direct Proof

For each of the following claims, write out a series of steps, one per line, where the first and last lines are given in the problem and each line other than the first is an application of **one** equivalence rule to the line above it (a list of equivalence rules is on the next page). Write the name of each rule next to the line it creates.

 $\neg(H \vee T) \to W$

3. Prove that
$$(P \to Q) \equiv \neg(\neg Q \to \neg P)$$
4. Prove that $A \to (B \to C) \equiv (A \land B) \to C$

counterexample: if $A \to (B \to C) \equiv (A \land B) \to C$

this cannot be proven.

4. Prove that $A \to (B \to C) \equiv (A \land B) \to C$

$$A \to (B \to C)$$

$$A \to (B \to C)$$

$$A \lor (B \to C)$$

Symbols

Concept	Java/C	Python	This class	Bitwise	Other
true	true	True	\top or 1	-1	T, tautology
false	false	False	\perp or 0	Θ	F, contradiction
not P	!p	not p	$\neg P$ or \overline{P}	~p	
\overline{P} and Q	p && q	p and q	$P \wedge Q$	p & q	$PQ, P \cdot Q$
P or Q	p q	p or q	$P \vee Q$	p q	P+Q
$P \operatorname{xor} Q$	p != q	p != q	$P\oplus Q$	p ^ q	$P \veebar Q$
\overline{P} implies Q			$P \rightarrow Q$		$P\supset Q, P\Rightarrow Q$
P iff Q	p == q	p == q	$P \leftrightarrow Q$		$P \Leftrightarrow Q, P \operatorname{xnor} Q$

Axioms: Equivalence rules

- associativity and commutativity of \land , \lor , and \oplus ; commutativity of \leftrightarrow
- double negation: $\neg \neg P \equiv P$
- simplification: $P \land \bot \equiv \bot$, $P \land \top \equiv P$, $P \lor \bot \equiv P$, $P \lor \top \equiv \top$, and $P \land P \equiv P \lor P \equiv P$
- distribution: $A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$ and $A \vee (B \wedge C) \equiv (A \vee B) \wedge (A \vee C)$
- De Morgan: $\neg (A \land B) \equiv (\neg A) \lor (\neg B)$ and $\neg (A \lor B) \equiv (\neg A) \land (\neg B)$
- $\bullet \ \ \text{definitions:} \ \boxed{A \to B \equiv (\neg A) \lor B}, \ \boxed{(A \leftrightarrow B) \equiv (A \to B) \land (B \to A)} \ \ \text{and} \ \boxed{(A \oplus B) \equiv (A \lor B) \land \neg (A \land B)}$

You may use the space below for scratchwork. It will not be graded.