Name: _____

CompID: _____

CS 2102 - DMT1 - Spring 2020 — Luther Tychonievich Administered in class friday february 7, 2020

Quiz 03

PROBLEM 1 Symbolizing

For each of the following, convert from text to symbolic logic. The first one is done for you.

No G are F. All H are G. So: No H are F $\nexists x \cdot G(x) \wedge F(x)$ $\forall x \cdot H(x) \rightarrow G(x)$ $\therefore \nexists x \cdot H(x) \wedge F(x)$

1. Something is F. Nothing is G. So: Something is not G $\exists x . F(x)$ $\nexists x . G(x)$ $\therefore \exists x . \neg G(x)$

2. Some P is Q. All Q are R. So: Some P is R $\exists x . P(x) \land Q(x)$ $\forall x . Q(x) \rightarrow R(x)$ $\therefore \exists x . P(x) \land R(x)$

3. All P are Q. No Q are P. So: Nothing is P $\forall x . P(x) \rightarrow Q(x)$ $\forall x . Q(x) \rightarrow \neg P(x)$ $\therefore \nexists x . P(x)$ **PROBLEM 2** Symbolizing with a Key

Using this symbolization key:

Symbolize each of the following sentences; the first one is done for you.

If both Slick and Howler are alligators, then Fluffy loves them both.

 $\left(A(s) \wedge A(h)\right) \rightarrow \left(L(f,s) \wedge L(f,h)\right)$

4. No monkey is an alligator.

5. Slick loves every alligator that loves Howler.

 $\forall x . (A(x) \land L(x,h)) \to L(s,x)$

6. Every animal in the zoo has an animal they love that loves them back.

 $\forall x . \exists y . Z(x) \rightarrow (L(x,y) \land L(y,x))$

Concept	Java/C	Python	This class	Bitwise	Other
true	true	True	\top or 1	-1	T, tautology
false	false	False	\perp or 0	0	F, contradiction
not P	!p	not p	$\neg P \text{ or } \overline{P}$	~p	
P and Q	p && q	p and q	$P \wedge Q$	p & q	$PQ, P \cdot Q$
P or Q	p q	p or q	$P \lor Q$	p q	P + Q
$P \operatorname{xor} Q$	p != q	p != q	$P \oplus Q$	p ^ q	$P \succeq Q$
\overline{P} implies Q			$P \rightarrow Q$		$P \supset Q, P \Rightarrow Q$
P iff Q	p == q	p == q	$P \leftrightarrow Q$		$P \Leftrightarrow Q, P \operatorname{xnor} Q$

You have enough to worry about memorizing without keeping dozens of symbols in your head at once. We intend to provide this table for your reference during every in-class evaluation.

Concept	Symbol	Meaning
equivalent	Ξ	$"A \equiv B"$ means " $A \leftrightarrow B$ is a tautology"
entails	Þ	" $A \models B$ " means " $A \rightarrow B$ is a tautology"
provable	\vdash	" $A \vdash B$ " means "A proves B"; it means both " $A \models B$ " and "I know B is true
		because A is true"
		" \vdash B" (i.e., without A) means "I know B is true"
therefore	:.	":: A" means both "the lines above this \vdash A"
		": A " also connotes "A is the thing we wanted to show"