Name: \qquad CompID: \qquad
CS 2102 - DMT1 - Spring 2020 - Luther Tychonievich
Administered in class friday february 7, 2020

Quiz 03

problem 1 Symbolizing

For each of the following, convert from text to symbolic logic. The first one is done for you.
No G are F. All H are G. So: No H are F
$\nexists x . G(x) \wedge F(x)$
$\forall x . H(x) \rightarrow G(x)$
$\therefore \nexists x . H(x) \wedge F(x)$

1. Something is F. Nothing is G. So: Something is not G
$\exists x . F(x)$
$\nexists x . G(x)$
$\therefore \exists x . \neg G(x)$

[^0]3. All P are Q. No Q are P. So: Nothing is P
$\forall x . P(x) \rightarrow Q(x)$
$\forall x . Q(x) \rightarrow \neg P(x)$
$\therefore \nexists x . P(x)$
problem 2 Symbolizing with a Key
Using this symbolization key: domain: all animals $A(x)$: \qquad x is an alligator $M(x)$: \qquad x is a monkey
$Z(x)$:___ x lives at the zoo $L(x, y)$: \qquad x loves \qquad
f : Fluffy
s : Slick
h: Howler
Symbolize each of the following sentences; the first one is done for you.
If both Slick and Howler are alligators, then Fluffy loves them both.
$$
(A(s) \wedge A(h)) \rightarrow(L(f, s) \wedge L(f, h))
$$
4. No monkey is an alligator.
\[

$$
\begin{aligned}
& \forall x \cdot M(x) \rightarrow \neg A(x) \\
& \nexists x \cdot M(x) \wedge A(x)
\end{aligned}
$$
\]

5. Slick loves every alligator that loves Howler.
$\forall x .(A(x) \wedge L(x, h)) \rightarrow L(s, x)$
6. Every animal in the zoo has an animal they love that loves them back.
$\forall x \cdot \exists y \cdot Z(x) \rightarrow(L(x, y) \wedge L(y, x))$

You have enough to worry about memorizing without keeping dozens of symbols in your head at once. We intend to provide this table for your reference during every in-class evaluation.

Concept	Java/C	Python	This class	Bitwise	Other
true	true	True	T or 1	-1	T, tautology
false	false	False	\perp or 0	0	F, contradiction
not P	$!\mathrm{p}$	not p	$\neg P$ or \bar{P}	$\sim \mathrm{p}$	
$\overline{P \text { and } Q}$	$\mathrm{p} \& \& \mathrm{q}$	p and q	$P \wedge Q$	$\mathrm{p} \& \mathrm{q}$	$P Q, P \cdot Q$
P or Q	$\mathrm{p}\|\mid \mathrm{q}$	p or q	$P \vee Q$	$\mathrm{p} \mid \mathrm{q}$	$P+Q$
P xor Q	$\mathrm{p}!=\mathrm{q}$	$\mathrm{p} \quad!=\mathrm{q}$	$P \oplus Q$	$\mathrm{p} \wedge$	q
\bar{P} implies Q			$P Q Q$		
P iff Q	$\mathrm{p}==\mathrm{q}$	$\mathrm{p}==\mathrm{q}$	$P \leftrightarrow Q$		$P \supset Q, P \Rightarrow Q$

Concept	Symbol	Meaning
equivalent	三	" $A \equiv B$ " means " $A \leftrightarrow B$ is a tautology"
entails	\vDash	" $A \vDash B$ " means " $A \rightarrow B$ is a tautology"
provable	\vdash	$" A \vdash B$ " means " A proves B "; it means both " $A \vDash B$ " and "I know B is true because A is true"
		$" \vdash B^{\prime \prime}$ (i.e., without A) means "I know B is true"
therefore	\therefore	$\prime \prime \therefore A$ " means both "the lines above this $\vdash A^{\prime \prime}$
		$" \therefore A$ " also connotes " A is the thing we wanted to show"

[^0]: 2. Some P is Q . All Q are R. So: Some P is R
 $\exists x . P(x) \wedge Q(x)$
 $\forall x . Q(x) \rightarrow R(x)$
 $\therefore \exists x . P(x) \wedge R(x)$
