Name: \qquad CompID: \qquad
CS 2102 - DMT1 - Spring 2020 - Luther Tychonievich
Administered in class friday february 14, 2020

Quiz 04

problem 1 Symbolizing

1. Provide a logic translation for "I'm known by someone so famous that everyone knows them." domain: people

$$
\begin{gathered}
K(x, y): x \text { knows } y \\
m: \mathrm{Me}
\end{gathered}
$$

$$
\exists x \cdot K(x, m) \wedge \forall y . K(y, x)
$$

problem 2 Prosify
Convert the following proof into a prose proof.
2. Definition: A positive integer is abundant if it is smaller than the sum of its factors.

Theorem: There is at least one abundant integer.
Formalism: $\exists x . A(x)$ (domain: positive integers; $A(x): x$ is abundant)
Proof outline: 12 has factors $1,2,3,4,6 ; 1+2+3+4+6=16 \vdash A(12) ; A(12) \vdash \exists x . A(x)$
Proof.
Consider the number 12. The factors of 12 are $1,2,3,4$, and 6 . The sum of those factors is 16 , which is greater than 12.
Since the sum of the factors of 12 is greater than 12,12 is abundant, meaning there is at least one abundant number.
problem 3 Complete
Fill in the blanks to complete the following proof by cases that $P \rightarrow(P \vee Q)$ is a tautology.
Proof. 3. Either $Q \quad$ is true or it is false.
Case 1: \qquad is true The expression $P \rightarrow(P \vee Q)$ in this case
4. can be simplified to $P \rightarrow \mathrm{~T}$,
which is equivalent to T.
Case 2: Q \qquad is false The expression $P \rightarrow(P \vee Q)$ in this case
5. can be simplified to $P \rightarrow P$,
which is equivalent to T.
Since $P \rightarrow(P \vee Q)$ is true in both cases, it is true in general, meaning it is a tautology.

Symbols

Concept	Java/C	Python	This class	Bitwise	Other
true	true	True	T or 1	-1	T, tautology
false	false	False	\perp or 0	0	F, contradiction
not P	$!\mathrm{p}$	not p	$\neg P$ or \bar{P}	$\sim \mathrm{p}$	
P and Q	$\mathrm{p} \& \& \mathrm{q}$	p and q	$P \wedge Q$	$\mathrm{p} \& \mathrm{q}$	$P Q, P \cdot Q$
P or Q	$\mathrm{p}\|\mid \mathrm{q}$	p or q	$P \vee Q$	$\mathrm{p} \mid \mathrm{q}$	$P+Q$
P xor Q	$\mathrm{p}!=\mathrm{q}$	$\mathrm{p} \quad!=\mathrm{q}$	$P \oplus Q$	$\mathrm{p} \wedge \wedge \mathrm{q}$	$P \vee Q$
P implies Q			$P \rightarrow Q$		$P \supset Q, P \Rightarrow Q$
P iff Q	$\mathrm{p}==\mathrm{q}$	$\mathrm{p}==\mathrm{q}$	$P \leftrightarrow Q$		$P \Leftrightarrow Q, P$ xnor Q

Axioms: Equivalence rules

- associativity and commutativity of \wedge, \vee, and \oplus; commutativity of \leftrightarrow
- double negation: $\neg \neg P \equiv P$
- simplification: $P \wedge \perp \equiv P \wedge \neg P \equiv \perp, P \vee \top \equiv P \vee \neg P \equiv \top$, and $P \wedge T \equiv P \vee \perp \equiv P \wedge P \equiv P \vee P \equiv P$
- distribution: $A \wedge(B \vee C) \equiv(A \wedge B) \vee(A \wedge C)$ and $A \vee(B \wedge C) \equiv(A \vee B) \wedge(A \vee C)$
- De Morgan: $\neg(A \wedge B) \equiv(\neg A) \vee(\neg B)$ and $\neg(A \vee B) \equiv(\neg A) \wedge(\neg B)$
- definitions: $A \rightarrow B \equiv(\neg A) \vee B,(A \leftrightarrow B) \equiv(A \rightarrow B) \wedge(B \rightarrow A)$ and $(A \oplus B) \equiv(A \vee B) \wedge \neg(A \wedge B)$

