Name: \qquad CompID: \qquad
CS 2102 - DMT1 - Spring 2020 - Luther Tychonievich
Administered in class friday february 28, 2020

Quiz 06

problem 1 Convert to prose
Convert the following symbolic proof that $f(x)=(x)(x+1)$ to prose.

1. let $f(x)$ be computed as if x <= 0 then return 0 else return $2 * x+f(x-1)$ Symbolic Proof.
1 f(0) = 0 = (0) (0+1) definition

2	$f(x-1)=(x-1)(x)$	assumption
3	$f(x)=2 x+f(x-1)$	definition
4	$f(x)=2 x+(x-1)(x)$	combine line 2 and 3
5	$f(x)=2 x+\left(x^{2}-x\right)$	algebra on line 4
6	$f(x)=x^{2}+x$	algebra o line 5
7	$f(x)=(x)(x+1)$	simplify line 6

$3 \forall x \geq 0 \cdot f(x)=(x)(x+1)$
principle of induction on lines 1 and 2 Proof.
problem 2 Code termination
Prove by induction that each of the following function terminates given any natural number argument.
2. let $f(x)$ be computed as if $x==0$ then return 1 otherwise return $2 * f(x-1)$
Proof.

