Name:		CompID:
CS 2102 - DMT1 - Spring 2020 — I Administered in class friday mare		Quiz (
PROBLEM 1 Convert to prose		
S: the set of all snakes R: the set of all rabbits $E(x,y)$: x eats y $Y(x)$: x is yellow Convert the following to simple, x	eadable English:	
1. $\exists r \in R : \forall s \in S : (E(s,r) \to \neg Y)$	(s)	
There is a rabbit that no yellow sn	ake eats.	
PROBLEM 2 Primes and factors		
2. <u>2·3²</u>	_ is the prime factorization of 18	
3. <u>3</u> ⁴	_ is the prime factorization of 81	
4. <u>2²⁰ · 3⁴⁰</u>	_ is the prime factorization of $9^{10} \cdot 6^2$	0
5. {1,3,7,9}	_ is the set positive 1-digit numbers r	relatively prime with 10

PROBLEM 3 Proof by contradiction

Prove the following using proof-by-contradiction. You may use prose or symbols or any readable mix of the

two. 6. $\frac{7}{3} \notin \mathbb{Z}$

Proof.

We proceed by contradiction. Assume $\frac{7}{3} \in \mathbb{Z}$; let $x \in \mathbb{Z}$ be the element of \mathbb{Z} that equals $\frac{7}{3}$. Thus, $\frac{7}{3} = x$, which can be re-written as 7 = 3x. By the fundamental theorem of arithmetic, both must have the same prime factors, but 3 is a factor of x and is not a factor of 7, a contradiction. Because assuming $\frac{7}{3} \in \mathbb{Z}$ led to a contradiction, it must be the case that $\frac{7}{3} \notin \mathbb{Z}$. \square