PROBLEM 1 Convert to prose

S: the set of all snakes

R: the set of all rabbits

$E(x, y)$: x eats y

$Y(x)$: x is yellow

Convert the following to simple, readable English:

1. $\exists r \in R . \forall s \in S . (E(s, r) \rightarrow \neg Y(s))$

 There is a rabbit that no yellow snake eats.

PROBLEM 2 Primes and factors

2. $2 \cdot 3^2$ is the prime factorization of 18

3. 3^4 is the prime factorization of 81

4. $2^{20} \cdot 3^{40}$ is the prime factorization of $9^{10} \cdot 6^{20}$

5. $(1, 3, 7, 9)$ is the set of positive 1-digit numbers relatively prime with 10
PROBLEM 3 Proof by contradiction

Prove the following using proof-by-contradiction. You may use prose or symbols or any readable mix of the two.
6. \(\frac{7}{3} \notin \mathbb{Z} \)

Proof.

We proceed by contradiction.
Assume \(\frac{7}{3} \in \mathbb{Z} \); let \(x \in \mathbb{Z} \) be the element of \(\mathbb{Z} \) that equals \(\frac{7}{3} \). Thus, \(\frac{7}{3} = x \), which can be re-written as \(7 = 3x \). By the fundamental theorem of arithmetic, both must have the same prime factors, but 3 is a factor of \(x \) and is not a factor of 7, a contradiction.
Because assuming \(\frac{7}{3} \in \mathbb{Z} \) led to a contradiction, it must be the case that \(\frac{7}{3} \notin \mathbb{Z} \). \(\square \)