Name: \qquad
CS 2102 - DMT1 - Spring 2020 - Luther Tychonievich Administered in class friday march 6, 2020
problem 1 Convert to prose
S : the set of all snakes
R : the set of all rabbits
$E(x, y): x$ eats y
$Y(x): x$ is yellow
Convert the following to simple, readable English:

1. $\exists r \in R . \forall s \in S .(E(s, r) \rightarrow \neg Y(s))$

There is a rabbit that no yellow snake eats.
problem 2 Primes and factors
2. $2 \cdot 3^{2}$
is the prime factorization of 18
3. 3^{4} is the prime factorization of 81
4. $2^{20} \cdot 3^{40}$ is the prime factorization of $9^{10} \cdot 6^{20}$
5. $\{1,3,7,9\}$ is the set positive 1 -digit numbers relatively prime with 10
problem 3 Proof by contradiction
Prove the following using proof-by-contradiction. You may use prose or symbols or any readable mix of the two.
6. $\frac{7}{3} \notin \mathbb{Z}$

Proof.
We proceed by contradiction.
Assume $\frac{7}{3} \in \mathbb{Z}$; let $x \in \mathbb{Z}$ be the element of \mathbb{Z} that equals $\frac{7}{3}$. Thus, $\frac{7}{3}=x$, which can be re-written as $7=3 x$. By the fundamental theorem of arithmetic, both must have the same prime factors, but 3 is a factor of x and is not a factor of 7, a contradiction.
Because assuming $\frac{7}{3} \in \mathbb{Z}$ led to a contradiction, it must be the case that $\frac{7}{3} \notin \mathbb{Z}$.

